Detecting communities in directed acyclic networks

Suzana Antunović¹ Damir Vukičević²

¹Faculty of Civil Engineering, Architecture and Geodesy

²Faculty of Natural Sciences

2nd Croatian Combinatorial Days

Detecting communities in directed acyclic ne

Basic Ideas

Basic idea

< ロ > < 同 > < 三 > < 三 >

• If G is a network with topologically ordered vertices $x_1 \prec x_2 \prec ... \prec x_n$, we seek division of a network into communities $A_1, A_2, ..., A_k$ in such a way that:

$$\text{if } x_i \prec x_j, \ x_i \in A_p \ \text{and} \ x_j \in A_q \ \text{then} \ A_p \prec A_q \ \text{or} \ A_p = A_q.$$

Goals

Goals

a) Simple example of a network with n = 6 vertices i m = 7 directed edges. b) Division into 2 consecutive communities after applying the algorithm

.∋...>

(日)

Challenges

Challenges

• formulation of the term "community"

< □ > < □ > < □ > < □ > < □ >

Challenges

- formulation of the term "community"
- community detection in *directed* networks

< ロ > < 同 > < 三 > < 三 >

Challenges

- formulation of the term "community"
- community detection in <u>directed</u> networks
- apart from the edge direction, the requirement for *topological sort* must be considered

Algorithm

Algorithm 1 Algorithm for consecutive community detection

- 1: each vertex is assigned with unique numerical label $I_i \in \{1, 2, ..., n\}$
- 2: vertices are placed in ascending order
- 3: while there are vertices which haven't been considered do
- 4: **for** each vertex *k* starting with the last **do**
- 5: calculate modularity change for each case $z_{k(k+1)\dots n}$, $z_{k(k+1)\dots(n-1)} + r_n$, $z_{k(k+1)\dots(n-2)} + r_{(n-1)}$, ..., $z_k + r_{(k+1)}$
- 6: specify the optimal solution r_k
- 7: place vertex k into the appropriate community in accordance with the solution obtained
- 8: end for
- 9: end while

・ロト ・ 一 マ ・ コ ト ・ 日 ト

Algorithm

Algorithm

i = 6	Z_6	$[6] \rightarrow r_6$	i = 2	Z_{23456}	$[2\ 3\ 4\ 5\ 6]$
<i>i</i> = 5	$\boxed{Z_{56}}$ $Z_5 + r_6$	$[5 \ 6] \to r_5$ $[5] \ [6]$		$Z_{2345} + r_6$ $Z_{234} + r_5$ $Z_{23} + r_4$	$\begin{bmatrix} 2 & 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} 6 \end{bmatrix}$ $\begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \end{bmatrix}$ $\begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} 4 & 5 & 6 \end{bmatrix} \rightarrow r_2$
<i>i</i> = 4	$\begin{tabular}{c} \hline Z_{456} \\ Z_{45} + r_6 \\ Z_4 + r_5 \end{tabular}$	$[4 \ 5 \ 6] \rightarrow r_4$ $[4 \ 5][6]$ $[4] \ [5 \ 6]$	<i>i</i> = 1	$Z_2 + r_3$ Z_{123456}	$\begin{bmatrix} 2 & 3 & 1 & 5 & 6 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$
<i>i</i> = 3	Z_{3456} $Z_{345} + r_6$ $Z_{34} + r_5$ $Z_{24} + r_4$	$\begin{bmatrix} 3 \ 4 \ 5 \ 6 \end{bmatrix}$ $\begin{bmatrix} 3 \ 4 \ 5 \end{bmatrix} \begin{bmatrix} 6 \end{bmatrix}$ $\begin{bmatrix} 3 \ 4 \end{bmatrix} \begin{bmatrix} 5 \ 6 \end{bmatrix}$ $\begin{bmatrix} 3 \ 4 \end{bmatrix} \begin{bmatrix} 5 \ 6 \end{bmatrix} \rightarrow r_{0}$		$Z_{12345} + r_6$ $Z_{1234} + r_5$ $Z_{123} + r_4$ $Z_{12} + r_3$ $Z_1 + r_2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Complexity

- To put the vertex k in the appropriate community the algorithm considers n - k + 1 cases
- For each case, the change in modularity is calculated.
- If we denote $d_k = d^{in}(k) + d^{out}(k)$, to correctly assign vertex k it takes $(n k + 1)d_k$ operations
- Sum through all the vertices gives the total complexity of the algorithm is O(nm)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Evaluation

- Curriculum networks
- Directed modularity

$$Q_d = \frac{1}{m} \sum_{1 \le i,j \le n} \left[A_{ij} - \frac{d^{in}(j)d^{out}(i)}{m} \right] \delta(l_i, l_j)$$

Suzana Antunovic

<ロト < 同ト < ヨト < ヨト

Evaluation

			Struč	n jak	AOI	AORZ	
	n	m	Q_d	N_c	Q_d	N_c	
Skup Q	47	254	0.311	5	0.377	4	
Elementarne funkcije	84	502	0.239	6	0.286	8	
Integral	223	655	0.455	10	0.484	10	
Obrada pod.	54	197	0.389	6	0.430	6	
Model primarne proizvodnje	28	93	0.237	3	0.259	3	
Fizika	31	49	0.238	6	0.375	4	

・ロト ・四ト ・ヨト ・ヨト

The end

Thank you for your attention!

Suzana Antunovic

Detecting communities in directed acyclic ne

CroCoDays 10 / 10

< ロ > < 同 > < 三 > < 三 >