## Complexity of *k*-rainbow independent domination and some result on the lexicographic product of graphs

#### Simon Brezovnik

Faculty of Natural Sciences and Mathematics, University of Maribor

September 25, 2018,

## Joint work with...

- Tadeja Kraner Šumenjak (FKBV, University of Maribor, Slovenia)
  - tadeja.kraner@um.si

## First article on this topic

## On k-rainbow independent domination in graphs,

- Tadeja Kraner Šumenjak, Douglas F. Rall and Aleksandra Tepeh.
- Applied Mathematics and Computation, 333, 2018, 353-361.





#### Complexity of k-rainbow independent domination problem

Simon Brezovnik

#### • Simple and connected graphs

$$G = (V(G), E(G) \subseteq \{uv \mid u, v \in V(G)\}).$$

æ

-≣->

イロト イヨト イヨト イ

• Simple and connected graphs

$$G = (V(G), E(G) \subseteq \{uv \mid u, v \in V(G)\}).$$

•  $v \in V(G)$ , open neighbourhood of v is a set

$$N(v) = \{u \mid uv \in E\}.$$

The vertices  $u \in N(v)$  are called *neighbours* of v.

• Simple and connected graphs

$$G = (V(G), E(G) \subseteq \{uv \mid u, v \in V(G)\}).$$

•  $v \in V(G)$ , open neighbourhood of v is a set

$$N(v) = \{u \mid uv \in E\}.$$

The vertices  $u \in N(v)$  are called *neighbours* of v.

• Closed neighbourhood of v is  $N[v] = N(v) \cup \{v\}$ .

• Simple and connected graphs

$$G = (V(G), E(G) \subseteq \{uv \mid u, v \in V(G)\}).$$

•  $v \in V(G)$ , open neighbourhood of v is a set

$$N(v) = \{u \mid uv \in E\}.$$

The vertices  $u \in N(v)$  are called *neighbours* of v.

• Closed neighbourhood of v is  $N[v] = N(v) \cup \{v\}$ .



$$N(v_4) = \{v_3, v_5, v_6\}, \\ N[v_4] = \{v_3, v_4, v_5, v_6\}.$$

Open\closed neighbourhood of a set

For A ⊆ V(G), the open\closed neighbourhood of A is the union of all open\closed neighbourhoods of the vertices from A.

## Open\closed neighbourhood of a set

For A ⊆ V(G), the open\closed neighbourhood of A is the union of all open\closed neighbourhoods of the vertices from A.



$$A = \{v_1, v_3, v_5\}, N(A) = \{v_2, v_4, v_6\}, N[A] = V(G).$$

## Dominating set

## • $A \subseteq V(G)$ , A is a dominating set of G if N[A] = V(G).

(本部) (本語) (本語)

æ

## Dominating set

•  $A \subseteq V(G)$ , A is a dominating set of G if N[A] = V(G).



$$A = \{v_1, v_3, v_5\}, N[A] = V(G).$$

Image: A matched block of the second seco

3)) B

#### Domination number

• Can we find a dominating set of smaller cardinality?

イロト イ団ト イヨト イヨト

э

## Domination number

• Can we find a dominating set of smaller cardinality?



 The Domination number of G, denoted by γ(G), is the minimum cardinality of a dominating set of G.

### Independent set

•  $\{v_1, v_2, ..., v_k\} \subseteq V(G)$  is independent set of G if  $v_i v_j \notin E(G)$ , for all  $i, j \in \{1, ..., k\}$ .



< /₽ > < E >

# Independent dominating set and independent domination number

• If some subset of V(G) is independent and dominating, we call it an *independent dominating set* of G.

# Independent dominating set and independent domination number

- If some subset of V(G) is independent and dominating, we call it an *independent dominating set* of G.
- The *Independent domination number* of *G*, denoted by *i*(*G*), is the size of a smallest independent dominating set.

# Independent dominating set and independent domination number

- If some subset of V(G) is independent and dominating, we call it an *independent dominating set* of G.
- The *Independent domination number* of *G*, denoted by *i*(*G*), is the size of a smallest independent dominating set.



$$i(G) = 2.$$

## *k*-dominating set

k-dominating set of a graph G (k ∈ Z<sup>+</sup>) is a set D ⊆ V(G) such that every vertex in V(G) \ D has at least k neighbours in D.

## *k*-dominating set

k-dominating set of a graph G (k ∈ Z<sup>+</sup>) is a set D ⊆ V(G) such that every vertex in V(G) \ D has at least k neighbours in D.



2-dominating set  $D = \{v_1, v_3, v_4\}$ .

## k-domination number

• The minimum cardinality of a k-dominating set is called the k-domination number of G ( $\gamma_k(G)$ ).

• • = • • = •

э

## k-domination number

• The minimum cardinality of a k-dominating set is called the k-domination number of G ( $\gamma_k(G)$ ).



 $D = \{v_2, v_3\}, \gamma_2(G)) = 2.$ 

## k-rainbow domination

#### Definition

A function  $f: V(G) \to 2^{\{1,2,\dots,k\}}$  is called a *k*-rainbow dominating function (*k*RDF) of *G* if for each vertex  $v \in V(G)$  such that  $f(v) = \emptyset$  it follows

$$\bigcup_{u\in N(v)} f(u) = \{1, 2, ..., k\}.$$

## k-rainbow domination

#### Definition

A function  $f: V(G) \to 2^{\{1,2,\dots,k\}}$  is called a *k*-rainbow dominating function (*k*RDF) of *G* if for each vertex  $v \in V(G)$  such that  $f(v) = \emptyset$  it follows

$$\bigcup_{u \in N(v)} f(u) = \{1, 2, ..., k\}.$$

#### Definition

The weight, w(f), of f is defined as

$$w(f) = \sum_{v \in V(G)} |f(v)|.$$

#### k-rainbow domination number

#### Definition

Given a graph G, the minimum weight w(f), of f with respect to all k-rainbow dominating functions is called the k-rainbow domination number of G, which we denote by  $\gamma_{rk}(G)$ .

## k-rainbow independent domination

#### Definition

For a function  $f: V(G) \rightarrow \{0, 1, 2, ..., k\}$  we denote  $V_i = \{x \in V(G) : f(x) = i\}$ . A function  $f: V(G) \rightarrow \{0, 1, ..., k\}$ is called a *k*-rainbow independent dominating function (*kRiDF*) of *G* if  $V_i$  is independent for  $1 \le i \le k$ , and for every  $x \in V_0$  it follows that  $N(x) \cap V_i \ne \emptyset$ , for every  $i \in [k]$ .

## k-rainbow independent domination

#### Definition

For a function  $f: V(G) \rightarrow \{0, 1, 2, ..., k\}$  we denote  $V_i = \{x \in V(G) : f(x) = i\}$ . A function  $f: V(G) \rightarrow \{0, 1, ..., k\}$ is called a *k*-rainbow independent dominating function (*kRiDF*) of *G* if  $V_i$  is independent for  $1 \le i \le k$ , and for every  $x \in V_0$  it follows that  $N(x) \cap V_i \ne \emptyset$ , for every  $i \in [k]$ .

#### Definition

The weight of a kRiDF f is defined as  $w(f) = \sum_{i=1}^{k} |V_i|$ .

## k-rainbow independent domination

#### Definition

For a function  $f: V(G) \rightarrow \{0, 1, 2, ..., k\}$  we denote  $V_i = \{x \in V(G) : f(x) = i\}$ . A function  $f: V(G) \rightarrow \{0, 1, ..., k\}$ is called a *k*-rainbow independent dominating function (*kRiDF*) of *G* if  $V_i$  is independent for  $1 \le i \le k$ , and for every  $x \in V_0$  it follows that  $N(x) \cap V_i \ne \emptyset$ , for every  $i \in [k]$ .

#### Definition

The weight of a kRiDF f is defined as  $w(f) = \sum_{i=1}^{k} |V_i|$ .

#### Definition

The k-rainbow independent domination number of a graph G  $(\gamma_{rik}(G))$  is the minimum weight of a kRiDF of G.

э

・ロト ・同ト ・ヨト ・ヨト

## Some results

#### Theorem

Let f be a kRiDF of an arbitrary graph G, then

 $\gamma_k(G) \leq \gamma_{rik}(G).$ 

#### Theorem

Let T be a tree, then for any  $k \ge 2$  it holds

 $\gamma_k(T) = \gamma_{rik}(T).$ 

→ < Ξ →</p>

k-rainbow independent domination problem

#### The k-RiDF problem

INSTANCE: A graph G, a positive integer k greater than 2 and a positive integer s. QUESTION: Does G have a k-RiDF of weight s?

## Complexity of *k*-rainbow independent domination problem

#### Theorem

For any fixed  $k \in \mathbb{Z}^+$ ,  $k \ge 2$ , the *k*-rainbow independent domination problem is NP-complete for bipartite graphs.

#### Proposition

For any fixed  $k \in \mathbb{Z}^+$ ,  $k \ge 2$ , the k-rainbow independent domination number of a tree can be computed in linear time.

# A sharp lower bound of *k*-rainbow independent domination number of an arbitrary graph

#### Corollary

For any graph G,

$$\gamma_{rik}(G) \geq rac{kn}{\Delta(G)+k}.$$

## Sharp bounds on trees

#### Corollary

Let T be a tree on n vertices and S is the set of all vertices of degree at most k - 1, then

$$\frac{(k-1)n+1}{k} \leq \gamma_{rik}(T) \leq \frac{n+|S|}{2}.$$

#### Corollary

Let T be a tree on n vertices with l leaves, then

$$\frac{n+1}{2} \leq \gamma_{ri2}(T) \leq \frac{n+l}{2}.$$

## Lexicographic product of a graph

#### Definition

*Lexicographic product*  $G \circ H$  of graphs G and H is a graph with the vertex set  $V(G) \times V(H)$ , where vertices  $(g_1, h_1)$  and  $(g_2, h_2)$  are adjacent if either

•  $g_1g_2 \in E(G)$  or

• 
$$g_1 = g_2$$
 and  $h_1 h_2 \in E(H)$ .

## Lexicographic product of a graph



▲ 同 ▶ → 三 ▶

3)) B

Sharp bounds on the lexicographic product

#### Theorem

For every graph G and every graph H such that  $|V(H)| \ge k$ ,

$$k \cdot i(G) \leq \gamma_{rik}(G \circ H) \leq \gamma_{rik}(H)i(G).$$

# 2-rainbow independent domination number on the lexicographic product of graphs

#### Definition

An ordered triple (A, B, C) of pairwise disjoint independent sets  $A, B, C \subseteq V(G)$ , where also  $A \cup B$  and  $A \cup C$  are independent, is an *independent dominating triple* of G if

- for every vertex x ∈ V(G) \ (A ∪ B ∪ C), there exists a vertex w ∈ A such that x ∈ N<sub>G</sub>(w) or there exist vertices w<sub>1</sub> ∈ B and w<sub>2</sub> ∈ C such that x ∈ N<sub>G</sub>(w<sub>1</sub>) ∩ N<sub>G</sub>(w<sub>2</sub>),
- for every vertex  $x \in B$  there exists a vertex  $y \in C$  such that  $x \in N_G(y)$  and for every vertex  $x \in C$  there exists a vertex  $y \in B$  such that  $x \in N_G(y)$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

#### The exact formula

#### Theorem

Let G be an arbitrary graph and H a non-trivial graph of order n, then

$$\gamma_{ri2}(G \circ H) = \min\{\gamma_{ri2}(H)|A| + i(H)|B \cup C|:$$

(A, B, C) is an independent dominating triple of G}.

#### Hvala! Thank you!

æ