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Definitions and basics
Basics

@ Simple and connected graphs

G = (V(G),E(G) C {uv | u,v € V(G)}).

e v € V(G), open neighbourhood of v is a set
N(v) ={u | uv € E}.

The vertices u € N(v) are called neighbours of v.
e Closed neighbourhood of v is N[v] = N(v) U {v}.

" Ve N(va) = {vs, v5, v},
N[va] = {vs, va, vs, v6 }.
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Open\closed neighbourhood of a set

e For A C V(G), the open\closed neighbourhood of A is the
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Definitions and basics
Open\closed neighbourhood of a set

e For A C V(G), the open\closed neighbourhood of A is the
union of all open\closed neighbourhoods of the vertices from
A.

A={v1,v3,v}, N(A) = {va, va, v }, N[A] = V(G).
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Dominating set
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Definitions and basics
Dominating set

e AC V(G), Ais a dominating set of G if N[A] = V(G).

A={vi,v3,vs}, N[A] = V(G).
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Definitions and basics

Domination number

@ Can we find a dominating set of smaller cardinality?

Vi Vo V3 Va Vi Ve

e The Domination number of G, denoted by +(G), is the
minimum cardinality of a dominating set of G.
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Definitions and basics

Independent set

o {vi,v,...vi} C V(G) is independent set of G if v;v; ¢ E(G),
forall i,j € {1,...,k}.
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Definitions and basics

Independent dominating set and independent domination
number

@ If some subset of V/(G) is independent and dominating, we
call it an independent dominating set of G.

e The Independent domination number of G, denoted by i(G),
is the size of a smallest independent dominating set.

i(G) = 2.
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Definitions and basics

k-dominating set

o k-dominating set of a graph G (k € Z*) is a set D C V(G)
such that every vertex in V(G) \ D has at least k neighbours
in D.
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Definitions and basics

k-dominating set

o k-dominating set of a graph G (k € Z*) is a set D C V(G)
such that every vertex in V(G) \ D has at least k neighbours

e

Vi V2 V3 V4

G

2-dominating set D = {v1, v3, v4}.
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Definitions and basics

k-domination number

@ The minimum cardinality of a k-dominating set is called the
k-domination number of G (v«(G)).
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Definitions and basics

k-domination number

@ The minimum cardinality of a k-dominating set is called the
k-domination number of G (v«(G)).

NN

Vi Vo V3 V4

G

D= {VQ, V3},72(G)) = 2.
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Definitions and basics
k-rainbow domination

Definition

A function f: V(G) — 2112k} is called a k-rainbow dominating
function (kRDF) of G if for each vertex v € V(G) such that
f(v) =0 it follows

U f(u)={1,2,.. K}

ueN(v)
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Definitions and basics

k-rainbow domination

A function f: V(G) — 2112k} is called a k-rainbow dominating

function (kRDF) of G if for each vertex v € V(G) such that
f(v) =0 it follows

U f(u)={1,2,.. K}

ueN(v)

v

The weight, w(f), of f is defined as

w(f)= > f(v)l

veV(G)
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Definitions and basics

k-rainbow domination number

Definition

Given a graph G, the minimum weight w(f), of f with respect to
all k-rainbow dominating functions is called the k-rainbow
domination number of G, which we denote by v,4(G).

Simon Brezovnik



Definitions and basics

k-rainbow independent domination

Definition

For a function f : V(G) — {0,1,2,... k} we denote

Vi={x € V(G) : f(x)=i}. Afunction f: V(G) — {0,1,...,k}
is called a k-rainbow independent dominating function (kRiDF) of
G if V; is independent for 1 < j < k, and for every x € Vj it
follows that N(x) N V; # 0, for every i € [k].
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Definitions and basics

k-rainbow independent domination

Definition

For a function f : V(G) — {0,1,2,... k} we denote

Vi={x € V(G) : f(x)=i}. Afunction f: V(G) — {0,1,...,k}
is called a k-rainbow independent dominating function (kRiDF) of
G if V; is independent for 1 < j < k, and for every x € Vj it
follows that N(x) N V; # 0, for every i € [k].

Definition

The weight of a kRiDF f is defined as w(f) = Y&, |Vi.

Definition

The k-rainbow independent domination number of a graph G
(7/ik(G)) is the minimum weight of a kRiDF of G.
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Definitions and basics

Some results

Let f be a kRiDF of an arbitrary graph G, then

k(G) < Yrik(G).

Theorem

Let T be a tree, then for any k > 2 it holds

Y&(T) = Yrik(T).
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Complexity of k-rainbow independent domination problem

k-rainbow independent domination problem

The k-RiDF problem

INSTANCE: A graph G, a positive integer k greater than 2 and a
positive integer s.

QUESTION: Does G have a k-RiDF of weight s?
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Complexity of k-rainbow independent domination problem

Complexity of k-rainbow independent domination problem

For any fixed k € Z*, k > 2, the k-rainbow independent
domination problem is NP-complete for bipartite graphs.

| A

Proposition

For any fixed k € Z+, k > 2, the k-rainbow independent
domination number of a tree can be computed in linear time.

Simon Brezovnik



A sharp lower bound of k-rainbow independent domination
number of an arbitrary graph

For any graph G,

kn
A(G) + k-

7rik( G) Z
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Sharp bounds on trees

Corollary

Let T be a tree on n vertices and S is the set of all vertices of
degree at most k — 1, then

(k—1Dn+1 n+|S|

2

Corollary

Let T be a tree on n vertices with / leaves, then

S ’Yrik( T) S

n+1 n+ 1
5 < '7ri2(T) < 5
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Lexicographic product of a graph

Definition
Lexicographic product G o H of graphs G and H is a graph with
the vertex set V(G) x V(H), where vertices (g1, h1) and (g2, h2)
are adjacent if either

° gig € E(G) or

0 21 =& and hihy € E(H).
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Lexicographic product of a graph




Sharp bounds on the lexicographic product

For every graph G and every graph H such that |V(H)| > k,

k- I(G) < 'Yrik(G o H) < ’}/r,k(H)I(G)
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2-rainbow independent domination number on the
lexicographic product of graphs

Definition
An ordered triple (A, B, C) of pairwise disjoint independent sets
A, B, C C V(G), where also AU B and AU C are independent, is
an independent dominating triple of G if
o for every vertex x € V(G) \ (AU B U C), there exists a vertex
w € A such that x € Ng(w) or there exist vertices w; € B
and wy € C such that x € Ng(wi) N Ng(wz),
o for every vertex x € B there exists a vertex y € C such that
x € Ng(y) and for every vertex x € C there exists a vertex
y € B such that x € Ng(y).
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The exact formula

Let G be an arbitrary graph and H a non-trivial graph of order n,
then
Yri2(G o H) = min{~,2(H)|A| + i(H)|BU C| :

(A, B, C) is an independent dominating triple of G}.
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Hvala! Thank you!
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