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I. The automorphism

and isomorphism

problems



The graph isomorphism problem

I We consider vertex colored graphs G on n vertices with each
vertex i ∈ {1, . . . , n} having a color cG (i).

I Suppose that we have a graph G on n vertices {1, . . . , n}, we
want to compute its automorphism group Aut(G ).
g is formed of all elements in Sym(n) such that

{g(i), g(j)} ∈ E (G ) if and only if {i , j} ∈ E (G )

and c(g(i)) = c(i) for 1 ≤ i ≤ n.

I Suppose that G1 and G2 are two graphs on n vertices
{1, . . . , n}, we want to test if G1 and G2 are isomorphic, i.e. if
there is g ∈ Sym(n) such that

{g(i), g(j)} ∈ E (G2) if and only if {i , j} ∈ E (G1)

and cG2(g(i)) = cG1(i).



Complexity: Theoretical and Practical

Theoretical

I The theoretical complexity of the Graph isomorphism problem
was unknown for a long time.

I Then in 2015 following happened
I László Babai, Graph Isomorphism in Quasipolynomial Time,

arXiv:1512.03547

that is running time is exp((log n)O(1)).

Practical

I Since the 70s we have very efficient graph isomorphism
programs.

I They can compute the automorphisms of graphs with
thousands of vertices.

I Some hard graphs from Projective planes with about 100
vertices can be problematic.



The program nauty

I The program nauty by Brendan McKay solves the graph
isomorphism and the automorphism problems.

http://cs.anu.edu.au/people/bdm/nauty/

I nauty is extremely efficient in doing those computations.

I nauty can deal with directed graph but this is not
recommended.

I nauty can deal with vertex colors.

I nauty iterates over all n! permutation but it prunes the
search tree so as to obtain a fast running time.

I nauty has exponential runtime in worst case.

I There are alternatives such as bliss or traces with the
same performance features.

http://cs.anu.edu.au/people/bdm/nauty/


II. Vertex colored

graph reductions



The reduction to a graph

Why focus on graph?
I We have many other combinatorial problems:

I subset of vertex-set of a graph,
I set system,
I edge weighted graph,
I plane graph,
I partially ordered set, etc.

I If M is a “combinatorial structure”, then we have to define a
graph G (M), such that:

I If M1 and M2 are two “combinatorial structure”, then M1 and
M2 are isomorphic if and only if G (M1) and G (M2) are
isomorphic.

I If M is a “combinatorial structure”, then Aut(M) is isomorphic
to Aut(G (M)).



Subset of vertex-set of a graph

I Suppose that we have a graph G , two subsets S1, S2 of G , we
want to know if there is an automorphism φ of G such that
φ(S1) = S2.
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S1 = {1, 2, 4}
S2 = {3, 5, 6}

I The method is to define two graphs associated to it:
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Set systems

I Suppose we have some subsets S1, . . . , Sr of {1, . . . , n}. We
want to find the permutations of {1, . . . , n}, which permutes
the Si .

I We define a graph with n + r vertices j and Si with j adjacent
to Si if and only if j ∈ Si

I Example S = {{1, 2, 3}, {1, 5, 6}, {3, 4, 5}, {2, 4, 6}}:

S S S1 2 3 4

1 2 3 4 5 6

S



Edge colored graphs

I G is a graph with vertex-set (vi )1≤i≤N , edges are colored with
k colors C1, . . . , Ck :
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I We want to find automorphisms preserving the graph and the
edge colors.

I We form the graph with vertex-set (vi ,Cj) and
I edges between (vi ,Cj) and (vi ,Cj′)
I edges between (vi ,Cj) and (vi ′ ,Cj) if there is an edge between

vi and vi ′ of color Cj

We get a graph with kN vertices.



Edge colored graphs

I The picture obtained is:

I Actually, one can do better, if the binary expression of j is
b1 . . . br with bi = 0 or 1 then we form the graph with
vertex-set (vi , l), 1 ≤ l ≤ r and

I edges between (vi , l) and (vi , l
′)

I edges between (vi , l) and (vi ′ , l) if the binary number bl of the
expression of Cj is 1.

This makes a graph with dlog2(k)eN vertices.



Plane graphs

I If G is a simple 3-connected plane graph then the skeleton
determine the embedding, we can forget the faces.

I If G has multiple edge and/or is not 3-connected we consider
the graph formed by its vertices, edges and faces with
adjacency given by incidence
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I This idea extends to partially ordered sets, face lattices, etc.



III. Canonical forms



Canonical form

I One possible canonical form of a graph is obtained by taking
the lexicographic minimum of all possible adjacency matrix of
a given graph.

I Partition backtrack algorithms provide a way to get a
canonical form of a given graph. This will varies from program
to program and with option chosen.

I Suppose that one has N different graphs from which we want
to select the non-isomorphic ones:

I If one do isomorphism tests then at worst we have N(N−1)
2

tests.
I If one computes canonical forms, then we have N canonical

form computation and then string equality tests.

This is a key to many computer enumeration goals.

I The runtime of canonical form computation is about the same
as computing the automorphism group.



IV. Positive definite form



Problem setting

I For given n ≥ 2 define Sn
>0 the set of positive definite

quadratic forms.

I The group GLn(Z) acts on Sn
>0 by

(P,A)→ PAPT

Quadratic forms are used in lattice theory for covering,
packing, etc.

I For x ∈ Rn define A[x ] = xAxT

I There is a canonical form via the Minkowski reduction theory
but it is hard to compute.

I A canonical form function is just as useful in this field of
computational mathematics.

I There is an existing program (AUTO/ISOM) by Plesken &
Souvignier for computing the stabilizer and isomorphism.



Using shortest vectors

I For A ∈ Sn
>0 and λ > 0 define

Minλ(A) = {x ∈ Zn s.t.A[x ] ≤ λ}

I Define

Span(A) = {smallest λ s.t. Minλ(A) Z-spans Zn}

I For A ∈ Sn
>0 define the edge weighted graph G (A) over

Span(A) with edge weight w(v , v ′) = v ′AvT .

I The edge weighted graph can be converted into a vertex
colored graph G2(A).

I The vertices of G (A) correspond to disjoint sets of vertices in
G2(A).

I Thus we can order the sets of vertices in G2(A) by
min(S) < min(S ′).

I And so we have a canonical ordering of the vectors Span(A).



Canonical spanning set

I Given a family of vector (vi )1≤i≤N we want to find a Z-basis
B of it.

I We want a function Basis(V) such that
Basis(VP) = Basis(V)P for P ∈ GLn(Z).

I We start with B = ∅ and add vectors one by one starting from
v1, ending with vN .

I If vi is R-linearly independent from B then we insert it into B.
I If vi is belongs to the Z-span of B then we do nothing.
I If vi does not belong to the Z-span of B and is R-linearly

independent then take β > 0 the smallest integer such that

βvi =
∑
v∈B

αvv with αv ∈ Z

The α and αv are uniquely determined and invariant under
linear transformation.
We then extract a Z-basis from this and change B accordingly.

I Span(A) spans Zn so P = (Basis(Span(A)))−1 ∈ GLn(Z).

I The canonical form is then PAPT .



Extension 1: Symplectic group

I We are interested in the group G = Sp(2n,Z) defined as

G =
{
M ∈ GL2n(Z) s.t. MJMT = J

}
with J =

(
0 In
−In 0

)
I So, for a positive definite matrix A ∈ S2n

>0(R) we take the
canonical form in GL2n(Z) and the matrix
P = (Basis(Span(A)))−1.

I We take B = PJPT which is a priori different from J.

I The matrix B is integral antisymmetric. We can find a matrix
U ∈ GL2n(Z) such that B = UJUT [Hint: Do operations on
rows and column at the same time].

I We have W = U−1P ∈ Sp(2n,Z) and the canonical form is

WAW T



Extension 2: Finite index subgroups of GLn(Z)

I The approach for the symplectic group can be considered to
other subgroups G of GLn(Z).

I Since G is of finite index we have a coset decomposition

GLn(Z) = ∪mi=1giG

I Consider a positive definite form A ∈ Sn
>0 and take the

canonical form PAPT .

I The element P corresponds to one coset gi0G . The canonical
form is then

(g−1i0
P)A(g−1i0

P)T

I The problem is that this is not a practical algorithm right
now:

I The coset representatives gi have to be chosen
I It is difficult to find which coset the element belongs to.



Other extensions?

I Another aspect is that we would like to use vector sets that
are not necessarily Z-basis. This would require a canonical
form for group action on sets.

I It is not likely to obtain an uniform description for finite index
subgroups of GLn(Z). But what special finite index subgroups
could be doable?
For subgroups G of GLn(Z) preserving a finite list of
n-dimensional lattices L1, . . . , Lm we have generalization of
stabilizer/isomorphy formalism.

I Number rings are also important.
For number rings which are Euclidean, e.g. Gaussian integers
we could have further generalization.
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