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Quantum Experiment — Graph Theory link
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[1] MK, Gu, Zeilinger, "Quantum Experiments and Graphs:
Multiparty States as coherent superpositions of Perfect Matchings”,
Phys. Rev. Lett. 119, 240403 (2017)



Graph Theory — preparing the stage...

Definition:
A bi-colored weighted graph G(V,E) is an undirected graph, where

- every edge is colored (monochromatic or bichromatic)
- has a complex weight associated to each edge



Graph Theory — preparing the stage...

Definition:

A bi-colored weighted graph G(V,E) is an undirected graph, where
- every edge is colored (monochromatic or bichromatic)

- has a complex weight associated to each edge

Example:
b
weighting
.. W=
. W=
| ) W=
= .. W=

irt/2

QR R R




Graph Theory — preparing the stage...

Weight of Perfect Matching (PM): Product of weight of all edges in PM

Inherited Vertex Coloring (IVC): Every Vertex gets the color of the PM‘s incident edge

Perfect Matchings (PM)
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Graph Theory — preparing the stage...

Weight of Perfect Matching (PM): Product of weight of all edges in PM

Inherited Vertex Coloring (IVC): Every Vertex gets the color of the PM‘s incident edge

Inherited Coloring Weight (ICW) for some coloring c is the sum
of all weights of PMs with coloring c: ICW (c) = Z H Wi

i |E;|ePM,

Graph G(V,E)
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(just an example, generally every
edge can have an individual weight)
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Inherited Vertex Coloring (IVC)
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Graph Theory — the Question

Weight of Perfect Matching (PM): Product of weight of all edges in PM
Inherited Vertex Coloring (IVC): Every Vertex gets the color of the PM‘s incident edge

Inherited Coloring Weight (ICW) for some coloring c is the sum

of all weights of PMs with coloring c: ICW(c) = Z H Wi
= ij
i |Ej|lePM;

Question: Is there a bi-colored weighted graph with |V| > 4 with three possible edge colors
(red, blue, green) with the following properties:

1) For each of the three colors there is a monochromatic vertex coloring ¢;;,0,,0 With non-zero
weight, i.e. [ICW (¢mono)| > 0

2) Every non-monochromatic vertex coloring ¢, _mono has zero weight, i.e.

[ICW (€n—mono)| = 0.
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Graph Theory — the Question

Question: Is there a bi-colored weighted graph with \V| > 4 with three possible edge colors
(red, blue, green) with the following properties:

1) For each of the three colors there is a monochromatic vertex coloring ¢,,,0n0 With non-zero
weight, i.e. [ICW (¢mono)| > 0

2) Every non-monochromatic vertex coloring ¢, _mono has zero weight, i.e.

ICW (ca—mono)| = 0.

Partial Solutions

o A weaker form of this question was solved by llya Bogdanov. There, the question was for
graphs with only monochromatic vertex colorings. (That can only exist for [V|=4 with three
colors)

e A related question has been solved by Gjergji Zaimi. He showed that graphs exist where each
non-monochromatic coloring appears at least two times, which is a necessary condition for the

ICW (—mono)| = 0.



Graph Theory — the Conjecture

Question: Is there a bi-colored weighted graph with \V| > 4 with three possible edge colors
(red, blue, green) with the following properties:

1) For each of the three colors there is a monochromatic vertex coloring ¢,,,0n0 With non-zero
weight, i.e. [ICW (¢mono)| > 0

2) Every non-monochromatic vertex coloring ¢, _mono has zero weight, i.e.

ICW (ca—mono)| = 0.

My Conjecture: Such a graph does not exist.

Any thoughts or ideas:
mario.krenn@univie.ac.at
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