
Homology groups of generalized polyomino type tilings

2nd Croatian Combinatorial Days 27 - 28 September Zagreb

Edin Liđan lidjan_edin@hotmail.com

Homology groups of generalized polyomino

Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

1. Introduction

Homology groups of generalized polyomino type tilings Edin Lidan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

- 1. Introduction
- 2. Tiling problems

Homology groups of generalized polyomino type tilings Edin Lidan

Contents

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

- 1. Introduction
- 2. Tiling problems
- 3. Polyomino

Homology groups of generalized polyomino

- 1. Introduction
- 2. Tiling problems
- 3. Polyomino
- 4. Tilings with polyominoes. Homology groups

Contents

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino type tilings Edin Lidan

- 1. Introduction
- 2. Tiling problems
- 3. Polyomino
- 4. Tilings with polyominoes. Homology groups
- 5. Homology groups of tilings

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino type tilings Edin Lidan

- 1. Introduction
- 2. Tiling problems
- 3. Polyomino
- 4. Tilings with polyominoes. Homology groups
- 5. Homology groups of tilings
- 6. Homology groups of generalized polyomino type tilings

Contents

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino type tilings Edin Lidan

- 1. Introduction
- 2. Tiling problems
- 3. Polyomino
- 4. Tilings with polyominoes. Homology groups
- 5. Homology groups of tilings
- 6. Homology groups of generalized polyomino type tilings
- 7. Conclusion

Contents

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino type tilings Edin Lidan

- 1. Introduction
- 2. Tiling problems
- 3. Polyomino
- 4. Tilings with polyominoes. Homology groups
- 5. Homology groups of tilings
- 6. Homology groups of generalized polyomino type tilings
- 7. Conclusion
- 8. References

Contents

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Introduction

Edin Liđan

Contents

2 Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Introduction

Homology groups of generalized polyomino

► Tiling, covering, packing

type tilings Edin Liđan

Contents

Introduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Introduction

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Tilings with Homology group.

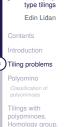
Homology groups of tilings

Homology groups of generalized polyomino

References

31

Contact Information


University of Bihać Bosnia and Herzegovina

Tiling, covering, packing

Figure: Tilings in arts and popular culture

Homology groups of generalized polyomino

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino

Region for tiling

type tilings Edin Lidan Contents Introduction

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

- Region for tiling
 - Finite region

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

- Region for tiling
 - Finite region
 - Plane

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Region for tiling

- Finite region
- Plane
- Surface

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

University of Bihać Bosnia and Herzegovina

Tiling problems

- Region for tiling
 - ► Finite region
 - Plane
 - Surface
- A finite set Σ of tiles

Definition

- A region M and finite set Σ of tile
- Does Σ tile tiles M?

Homology groups of generalized polyomino type tilings Edin Lidan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

University of Bihać Bosnia and Herzegovina

Tiling problems

- Region for tiling
 - Finite region
 - Plane
 - Surface
- A finite set Σ of tiles

Definition

- A region M and finite set Σ of tile
- Does Σ tile tiles M?
- ► Is there a tiling?

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents Introduction Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

University of Bihać Bosnia and Herzegovina

Tiling problems

- Region for tiling
 - Finite region
 - Plane
 - Surface
- A finite set Σ of tiles

Definition

- A region M and finite set Σ of tile
- ► Does Σ tile tiles M?
- ► Is there a tiling?
- How many different tilings are there?

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Conclusion

Contact Informatio

University of Bihać Bosnia and Herzegovina

Tiling problems

- Region for tiling
 - Finite region
 - Plane
 - Surface
- ► A finite set Σ of tiles

Definition

- A region M and finite set Σ of tile
- Does Σ tile tiles M?
- Is there a tiling?
- How many different tilings are there?
- Is a tiling easy to find?

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

References

31

- Region for tiling
 - Finite region
 - Plane
 - Surface
- A finite set Σ of tiles

Definition

- A region *M* and finite set Σ of tile
- Does Σ tile tiles M?
- ► Is there a tiling?
- How many different tilings are there?
- Is a tiling easy to find?
- Is it easy to prove a tiling doesn't exist?

Homology groups of generalized polyomino type tilings Edin Lidan Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

4

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

► Shapes

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

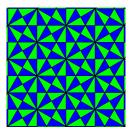


Figure: Triangular lattice (Polyamonds) Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

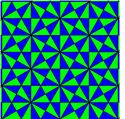


Figure: Triangular lattice (Polyamonds) Figure: Hexagonal lattice (Polyhes)

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

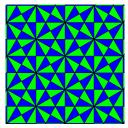


Figure: Triangular lattice (Polyamonds) Figure: Hexagonal lattice (Polyhes)

Figure: Square lattice (Polyominoes)

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

4

ntroduction

)Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

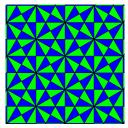


Figure: Triangular lattice (Polyamonds) Figure: Hexagonal lattice (Polyhes)

Figure: Square lattice (Polyominoes)

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

4

ntroduction

)Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

University of Bihać Bosnia and Herzegovina

► periodic

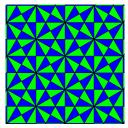


Figure: Triangular lattice (Polyamonds) Figure: Hexagonal lattice (Polyhes)

Figure: Square lattice (Polyominoes)

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

)Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

- ► periodic
- ► aperiodic

Homology groups of generalized polyomino

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of

► Polyomino

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

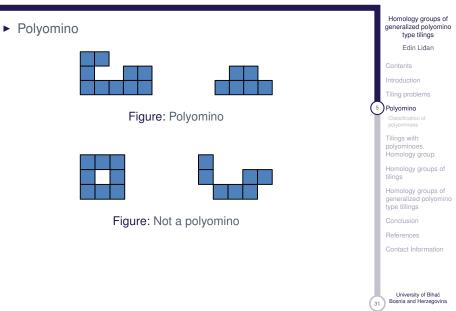
Contact Information

► Polyomino

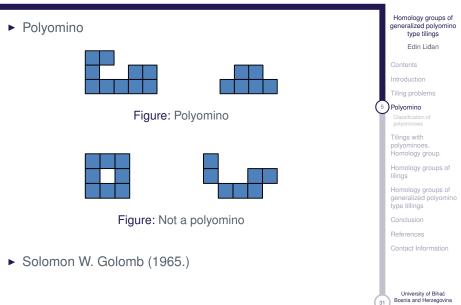
Figure: Polyomino

Homology groups of tilings

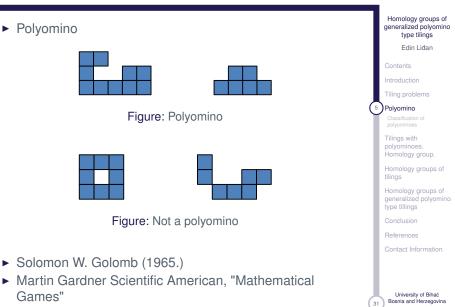
Homology groups of generalized polyomino type tillings

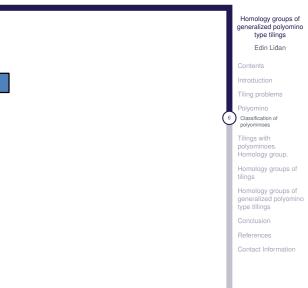

Conclusion

References


31

Contact Information





University of Bihać Bosnia and Herzegovina

University of Bihać Bosnia and Herzegovina

31

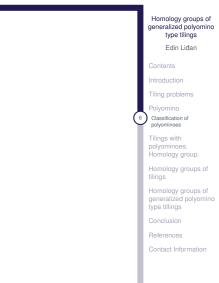


Figure: Trominoes

Figure: Domino

University of Bihać Bosnia and Herzegovina

31

Figure:

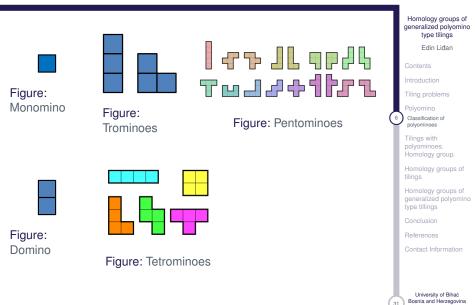

Trominoes

Figure: Monomino

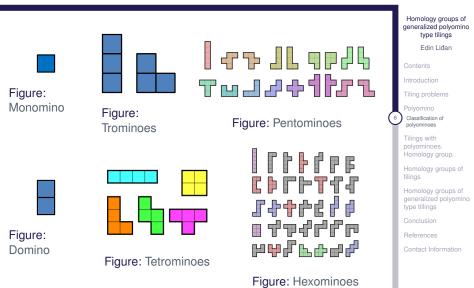

Figure: Domino

Figure: Tetrominoes

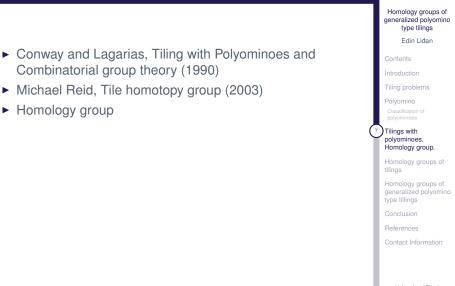
University of Bihać Bosnia and Herzegovina



	Homology groups of generalized polyomino type tilings Edin Liđan
	Contents
	Introduction
	Tiling problems
	Polyomino Classification of polyominoes
(Tilings with polyominoes. Homology group.
	Homology groups of tilings
	Homology groups of generalized polyomino type tillings
	Conclusion
	References
	Contact Information

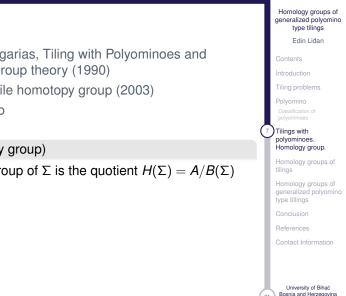
University of Bihać Bosnia and Herzegovina

University of Bihać Bosnia and Herzegovina



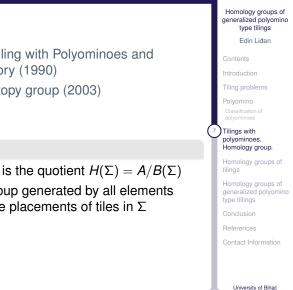
University of Bihać Bosnia and Herzegovina

Homology group



University of Bihać Bosnia and Herzegovina

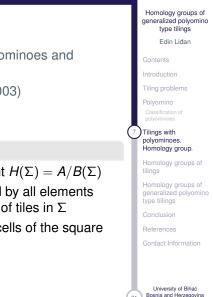
31


- Conway and Lagarias, Tiling with Polyominoes and Combinatorial group theory (1990)
- Michael Reid, Tile homotopy group (2003)
- Homology group

Definition (Homology group)

The tile homology group of Σ is the quotient $H(\Sigma) = A/B(\Sigma)$

Bosnia and Herzegovina


- Conway and Lagarias, Tiling with Polyominoes and Combinatorial group theory (1990)
- Michael Reid, Tile homotopy group (2003)
- Homology group

Definition (Homology group)

The tile homology group of Σ is the quotient $H(\Sigma) = A/B(\Sigma)$

where $B(\Sigma)$ is the subgroup generated by all elements corresponding to possible placements of tiles in Σ

- Conway and Lagarias, Tiling with Polyominoes and Combinatorial group theory (1990)
- ► Michael Reid, Tile homotopy group (2003)
- Homology group

Definition (Homology group)

The tile homology group of Σ is the quotient $H(\Sigma) = A/B(\Sigma)$

- where B(Σ) is the subgroup generated by all elements corresponding to possible placements of tiles in Σ
- *A* is the free abelian group (on all the cells of the square lattice).

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

8

31

References

Contact Information

 We consider whether exists a proper tiling of given region M (surface, surface with the boundary, etc.) subdivided into "cells" like grid with a tiles from a given set Σ.

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

University of Bihać Bosnia and Herzegovina

 We consider whether exists a proper tiling of given region M (surface, surface with the boundary, etc.) subdivided into "cells" like grid with a tiles from a given set Σ.

Definition (Homology group of tilings)

The tile homology group of Σ is the quotient $H(\Sigma) = A/B(\Sigma)$

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

Contact Information

University of Bihać Bosnia and Herzegovina

 We consider whether exists a proper tiling of given region M (surface, surface with the boundary, etc.) subdivided into "cells" like grid with a tiles from a given set Σ.

Definition (Homology group of tilings)

The tile homology group of Σ is the quotient $H(\Sigma) = A/B(\Sigma)$

where B(Σ) is the subgroup generated by all elements corresponding to possible placements of tiles in Σ

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

Contact Information

University of Bihać Bosnia and Herzegovina

We consider whether exists a proper tiling of given region M (surface, surface with the boundary, etc.) subdivided into "cells" like grid with a tiles from a given set Σ.

Definition (Homology group of tilings)

The tile homology group of Σ is the quotient $H(\Sigma) = A/B(\Sigma)$

- where B(Σ) is the subgroup generated by all elements corresponding to possible placements of tiles in Σ
- A is free Abelian group on all the cells of given region *M*.

A BAA BA

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

Contact Information

University of Bihać Bosnia and Herzegovina

We consider whether exists a proper tiling of given region M (surface, surface with the boundary, etc.) subdivided into "cells" like grid with a tiles from a given set Σ.

Definition (Homology group of tilings)

The tile homology group of Σ is the quotient $H(\Sigma) = A/B(\Sigma)$

- where B(Σ) is the subgroup generated by all elements corresponding to possible placements of tiles in Σ
- A is free Abelian group on all the cells of given region *M*.
- A necessary condition for existence of a proper tiling is that the element corresponding to the sum of all cells of M is trivial in the homology group of tilings Σ.

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Example

Is it possible to tile torus chessboard 6×6 with tiles 1 \times 4 (all orientation are allowed)?

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Example

Is it possible to tile torus chessboard 6×6 with tiles 1 \times 4 (all orientation are allowed)?

Figure: Torus Chessboard

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

iling problems

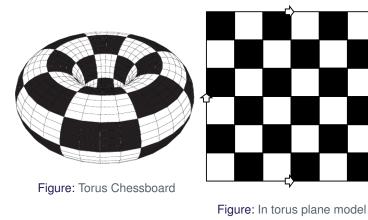
Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion


References

31

Contact Information

Example

Is it possible to tile torus chessboard 6×6 with tiles 1 \times 4 (all orientation are allowed)?

Homoloay aroups of

generalized polyomino

type tilings Edin Lidan Contents Introduction Tiling problems Polyominoo Classification of polyominoes. Homology group.

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

10 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

 a_{31} a_{36} a_{33} a_{35} u_{32} u_{34} a_{25} a_{30} u_{26} u_{29} u_{28} a_{19} a_{23} a_{20} $a_{2^{1}}$ $a_{2^{\varDelta}}$ a_{22} a_{13} a_{15} a_{14} u_{17} a_{18} a_{16} \mathcal{A}_8 \mathcal{A}_9 a_{10} \mathcal{A}_7 a_{12} \mathcal{A}_1 a_{6} a_3 \mathcal{A}_{Δ} \mathcal{A}_{5} \mathcal{A}_1 a

Figure: Naming cells

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

 a_{31} a_{36} a_{33} a_{34} a_{35} a_{32} a_{25} a_{30} a_{26} $u_{2^{\circ}}$ u_{2} u_{28} *a*₁₉ a_{23} a_{20} a_{21} $a_{2^{\varDelta}}$ a_{22} a_{13} a_{16} a_{15} a_{14} a_{17} a_{18} \mathcal{A}_8 \mathcal{A}_9 a_{10} \mathcal{A}_7 a_{12} \mathcal{A}_1 a_3 a_{6} \mathcal{A}_{Δ} \mathcal{A}_{5} \mathcal{A}_1 a

0 $a_1 + a_2 + a_3 + a_4$ =

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

University of Bihać Bosnia and Herzegovina

Figure: Naming cells

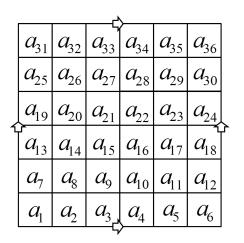


Figure: Naming cells

a_1	+	a_2	+	a 3	+	a_4	=	0
a	+	a ₂	+	a ₄	+	a_5	=	0

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

 a_{31} a_{36} a_{33} a_{35} u_{32} u_{34} a_{25} a_{30} u_{26} u_{29} u_{28} a_{19} a_{23} a_{20} $a_{2^{1}}$ $a_{2^{\varDelta}}$ a_{22} a_{13} a_{15} a_{14} u_{17} a_{18} a_{16} \mathcal{A}_8 \mathcal{A}_9 a_{10} \mathcal{A}_7 a_{12} \mathcal{A}_1 a_{6} a_3 \mathcal{A}_{Δ} \mathcal{A}_{5} \mathcal{A}_1 a

$a_1 + a_2 + a_3 + a_4$	=	0
$a_2 + a_3 + a_4 + a_5$	=	0
$a_3 + a_4 + a_5 + a_6$	=	0

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

University of Bihać Bosnia and Herzegovina

Figure: Naming cells

 a_{31} a_{33} a_{36} a_{32} a_{34} a_{35} a_{25} u_{26} a_{29} a_{30} a_{2} u_{28} a_{19} a_{23} a_{20} a_{21} a_{24} a_{22} a_{16} a_{13} a_{15} a_{18} a_{14} a_{17} \mathcal{A}_8 \mathcal{A}_9 a_{10} \mathcal{A}_7 a_{12} \mathcal{A}_1 a_{6} a_3 \mathcal{A}_{Δ} \mathcal{U}_{5} \mathcal{A}_1 a

$a_1 + a_2 + a_3 + a_4$	=	0
$a_2 + a_3 + a_4 + a_5$	=	0
$a_3 + a_4 + a_5 + a_6$	=	0
$a_4 + a_5 + a_6 + a_1$	=	0

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

University of Bihać Bosnia and Herzegovina

Figure: Naming cells

 a_{31} a_{36} a_{33} a_{35} a_{32} u_{34} a_{25} u_{26} a_{30} u_{29} u_{28} a_{19} a_{23} a_{20} $a_{2^{1}}$ $a_{2^{4}}$ a_{22} a_{13} a_{15} a_{14} u_{17} a_{18} a_{16} \mathcal{A}_8 \mathcal{A}_9 a_{10} \mathcal{A}_7 a_{12} \mathcal{A}_1 a_{6} a_3 \mathcal{A}_{Δ} \mathcal{A}_{5} \mathcal{A}_1 a

$a_1 + a_2 + a_3 + a_4$	=	С
$a_2 + a_3 + a_4 + a_5$	=	0
$a_3 + a_4 + a_5 + a_6$	=	С
$a_4 + a_5 + a_6 + a_1$	=	С
$a_5 + a_6 + a_1 + a_2$	=	0

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

10

31

References

Contact Information

Figure: Naming cells

Homology groups of generalized polyomino

 a_{31} a_{36} a_{33} a_{35} u_{32} u_{34} a_{25} a_{30} u_{26} u_{28} *a*₁₉ a_{23} a_{20} a_{21} $a_{2^{2}}$ a_{22} a_{13} a_{15} a_{14} a_{16} u_{17} a_{18} \mathcal{A}_8 \mathcal{A}_9 a_{10} \mathcal{A}_7 a_{12} \mathcal{A}_1 a_{6} a_3 $\mathcal{A}_{\mathcal{A}}$ \mathcal{U}_{5} \mathcal{A}_1

$a_1 + a_2 + a_3 + a_4$	=	0
$a_2 + a_3 + a_4 + a_5$	=	0
$a_3 + a_4 + a_5 + a_6$	=	0
$a_4 + a_5 + a_6 + a_1$	=	0
$a_5 + a_6 + a_1 + a_2$	=	0

 relation in finite group type tilings Edin Lidan

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

University of Bihać Bosnia and Herzegovina

Figure: Naming cells

 a_{31} a_{36} a_{33} a_{35} u_{32} u_{34} a_{25} a_{30} u_{26} u_{28} *a*₁₉ a_{23} a_{20} $a_{2^{1}}$ $a_{2^{\varDelta}}$ a_{22} a_{13} a_{15} a_{14} u_{17} a_{18} a_{16} \mathcal{A}_8 \mathcal{A}_9 a_{10} \mathcal{A}_7 a_{12} \mathcal{A}_1 a_{6} a_{3} \mathcal{A}_{Δ} \mathcal{A}_{5} \mathcal{A}_1

Figure: Naming cells

$a_1 + a_2 + a_3 + a_4$	=	0
$a_2 + a_3 + a_4 + a_5$	=	0
$a_3 + a_4 + a_5 + a_6$	=	0
$a_4 + a_5 + a_6 + a_1$	=	0
$a_5 + a_6 + a_1 + a_2$	=	0

 relation in finite group

$$a_1 = a_5 = a_3$$

Homology groups of generalized polyomino type tilings Edin Lidan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

 a_{31} a_{36} a_{33} a_{35} u_{32} u_{34} a_{25} u_{26} a_{30} u_{28} a_{19} a_{20} a_{21} a_{23} $a_{2^{\varDelta}}$ a_{22} a_{13} a_{15} a_{14} u_{17} a_{18} a_{16} \mathcal{A}_9 a_{10} a_8 \mathcal{A}_7 a_{12} \mathcal{A}_1 a_{6} a_{3} \mathcal{A}_{Δ} \mathcal{U}_{5} \mathcal{A}_1

Figure: Naming cells

$a_1 + a_2 + a_3 + a_4$	=	0
$a_2 + a_3 + a_4 + a_5$	=	0
$a_3 + a_4 + a_5 + a_6$	=	0
$a_4 + a_5 + a_6 + a_1$	=	0
$a_5 + a_6 + a_1 + a_2$	=	0

 relation in finite group

$$a_1 = a_5 = a_3$$

$$a_2 = a_6 = a_4$$

Homology groups of generalized polyomino type tilings Edin Lidan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

11 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

			بر	<u> </u>		
	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}	a_7	$a_{\!8}$
	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
	a_7	a_8	a_7	a_8	a_7	a_{8}
ì	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	$a_{\!_8}$	a_7	a_8
	$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2
			,	/		

Figure: Equivalent cells

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino type tilings Edin Lidan

Contents

		r	<u> </u>	\succ		
	a_7	$a_{\!\!8}$	a_7	a_{8}	a_7	a_8
	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
	a_7	a_8	a_7		a_7	a_{8}
١	a_{l}	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
	a_7	$a_{\!_8}$	a_7	$a_{\!_8}$	a_7	a_8
	$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2
			,			

Figure: Equivalent cells

► if we put now tile 1 × 4 on our chessboard

Homology groups of tilings

generalized polyomino type tillings

Conclusion

Tilings with

Homology group.

References

31

Contact Information

			بر	<u> </u>			
	a_7	$a_{\!8}$	a_7	a_{8}	a_7	a_8	
	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	
	a_7	a_8	a_7	a_8	a_7	a_{8}	
ĩ	a_{l}	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	r
	a_7	$a_{\!_8}$	a_7	$a_{\!_8}$	a_7	a_8	
	$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2	
			,				

 if we put now tile 1 × 4 on our chessboard

$$2a_1 + 2a_2 = 0$$

Figure: Equivalent cells

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

	_		بر	<u> </u>			
í	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}	a_7	a_8	
	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	
	a_7	a_8	a_7	a_8	a_7	a_{8}	
	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	ſ
	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	$a_{\!_8}$	a_7	a_8	
	$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2	
			<u> </u> ,				

 if we put now tile 1 × 4 on our chessboard

$$2a_1 + 2a_2 = 0$$

$$2a_7 + 2a_8 = 0$$

Figure: Equivalent cells

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

			^				
	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}	a_7	a_{8}	
	a_{l}	a_2	a_{1}	a_2	a_{l}	a_2	
	a_7	a_8	a_7	a_8	a_7	a_{8}	
٦	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	ſ
	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	$a_{\!_8}$	a_7	a_8	
	$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2	
			—,				

► if we put now tile 1 × 4 on our chessboard

$$2a_1 + 2a_2 = 0 2a_1 + 2a_7 = 0$$

$$2a_7 + 2a_8 = 0$$

Figure: Equivalent cells

Homology groups of generalized polyomino type tilings
Edin Liđan
Contents
Introduction
Tiling problems
Polyomino Classification of polyominoes
Tilings with polyominoes. Homology group.
Homology groups of tilings
Homology groups of generalized polyomino type tillings
Conclusion
References
Contact Information

University of Bihać Bosnia and Herzegovina

			ť	<u> </u>			
	a_7	$a_{\!_8}$	a_7	$a_{\!_8}$	a_7	$a_{\!8}$	
	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	
	a_7	$a_{\!8}$	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}	
٦	$\int a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	ſ
	a_7	a_8	a_7	$a_{\!_8}$	a_7	a_8	
	$a_{\rm l}$	a_2	a_{1}	a_2	$a_{\rm l}$	a_2	

► if we put now tile 1 × 4 on our chessboard

$$2a_1 + 2a_2 = 0$$

$$2a_7 + 2a_8 = 0$$

$$2a_1 + 2a_7 = 0$$

 $2a_2 + 2a_8 = 0$

Homology groups of generalized polyomino type tilings Edin Liđan Contents Polyomino Tilings with Homology group. Homology groups of Homology groups of generalized polyomino type tillings References

University of Bihać Bosnia and Herzegovina

Homology groups of generalized polyomino type tilings Edin Lidan

		/			
a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}	a_7	$a_{\!\!8}$
a_{l}	a_2	a_{l}	a_2	a_{l}	a_2
a_7	$a_{\!8}$	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}
a_{1}	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
a_7	a_8	a_7	a_8	a_7	a_8
$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2
	$\begin{bmatrix} a_1 \\ a_7 \\ a_1 \\ a_7 \\ a_7 \end{bmatrix}$	$\begin{array}{c c} a_1 & a_2 \\ \hline a_7 & a_8 \\ \hline a_1 & a_2 \\ \hline a_7 & a_8 \\ \hline a_1 & a_2 \\ \hline a_7 & a_8 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

► if we put now tile 1 × 4 on our chessboard

$$2a_1 + 2a_2 = 0$$

 $2a_7 + 2a_8 = 0$

$$2a_1 + 2a_7 = 0$$

 $2a_2 + 2a_8 = 0$

Classification of polyominoes Tilings with

Homology groups of

Homology groups of generalized polyomino type tillings

References

31

Contents

Figure: Equivalent cells

► 4 generators a₁, a₂, a₇, a₈

		^			
a_7	$a_{\!_8}$	a_7	a_{8}	a_7	$a_{\!\!8}$
$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
a_7	$a_{\!8}$	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}
$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
a_7	a_8	a_7	$a_{\!_8}$	a_7	$a_{\!\!8}$
$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2
	a_1 a_7 a_1 a_7	$\begin{array}{c c} a_1 & a_2 \\ \hline a_7 & a_8 \\ \hline a_1 & a_2 \\ \hline a_7 & a_8 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- if we put now tile 1 × 4 on our chessboard
 - $\begin{array}{ll} 2a_1+2a_2=0 & 2a_1+2a_7=0 \\ 2a_7+2a_8=0 & 2a_2+2a_8=0 \end{array}$

- ▶ 4 generators *a*₁, *a*₂, *a*₇, *a*₈
- Homology groups

 $< G(a_1, a_2, a_7, a_8 | 2a_1 + 2a_2, 2a_7 + 2a_8, 2a_1 + 2a_7, 2a_2 + 2a_8) >$

Homology groups of generalized polyomino type tilings Edin Lidan
Contents
Introduction
Tiling problems
Polyomino Classification of polyominoes
Tilings with polyominoes. Homology group.
Homology groups of tilings
Homology groups of generalized polyomino type tillings
Conclusion
References
Contact Information

University of Bihad Bosnia and Herzegovina

Homology groups of generalized polyomino type tilings Edin Lidan

		^			
a_7	$a_{\!_8}$	a_7	a_{8}	a_7	$a_{\!\!8}$
$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
a_7	$a_{\!8}$	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}
$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
a_7	a_8	a_7	$a_{\!_8}$	a_7	$a_{\!\!8}$
$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2
	a_1 a_7 a_1 a_7	$\begin{array}{c c} a_1 & a_2 \\ \hline a_7 & a_8 \\ \hline a_1 & a_2 \\ \hline a_7 & a_8 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- ► if we put now tile 1 × 4 on our chessboard
 - $2a_1 + 2a_2 = 0$ $2a_1 + 2a_2 = 0$ $2a_2 + 2a_3 = 0$ $2a_3 + 2a_3 = 0$

 $2a_1 + 2a_7 = 0$ $2a_2 + 2a_8 = 0$

Figure: Equivalent cells

- ▶ 4 generators *a*₁, *a*₂, *a*₇, *a*₈
- Homology groups

 $< G(a_1, a_2, a_7, a_8 | 2a_1 + 2a_2, 2a_7 + 2a_8, 2a_1 + 2a_7, 2a_2 + 2a_8) >$

▶ 9 cells *a*₁,

Contents Introduction Tiling problems Polyomino Classification of polyominoes Homology groups Homology groups of tilings Homology groups of generalized polyomino type tilings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino

		^			
a_7	$a_{\!_8}$	a_7	a_{8}	a_7	$a_{\!\!8}$
$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
a_7	$a_{\!8}$	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}
$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
a_7	a_8	a_7	$a_{\!_8}$	a_7	$a_{\!\!8}$
$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2
	$\begin{array}{c} a_1 \\ a_7 \\ a_1 \\ a_7 \\ a_7 \end{array}$	$\begin{array}{c c} a_1 & a_2 \\ \hline a_7 & a_8 \\ \hline a_1 & a_2 \\ \hline a_7 & a_8 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- ► if we put now tile 1 × 4 on our chessboard
 - $2a_1 + 2a_2 = 0$ $2a_2$ $2a_7 + 2a_8 = 0$ $2a_2$

```
2a_1 + 2a_7 = 0
2a_2 + 2a_8 = 0
```

Figure: Equivalent cells

- ▶ 4 generators *a*₁, *a*₂, *a*₇, *a*₈
- Homology groups

 $< G(a_1, a_2, a_7, a_8 | 2a_1 + 2a_2, 2a_7 + 2a_8, 2a_1 + 2a_7, 2a_2 + 2a_8) >$

▶ 9 cells *a*₁, 9 cells *a*₂,

type tilings
Edin Liđan
Contents
Introduction
Tiling problems
Polyomino Classification of polyominoes
Tilings with polyominoes. Homology group.
Homology groups of tilings
Homology groups of generalized polyomino type tillings
Conclusion
References

University of Bihać Bosnia and Herzegovina

		^			
a_7	$a_{\!_8}$	a_7	a_{8}	a_7	$a_{\!\!8}$
$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
a_7	$a_{\!8}$	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}
$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
a_7	a_8	a_7	$a_{\!_8}$	a_7	$a_{\!\!8}$
$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2
	$\begin{array}{c} a_1 \\ a_7 \\ a_1 \\ a_7 \\ a_7 \end{array}$	$\begin{array}{c c} a_1 & a_2 \\ \hline a_7 & a_8 \\ \hline a_1 & a_2 \\ \hline a_7 & a_8 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- ► if we put now tile 1 × 4 on our chessboard
 - $2a_1 + 2a_2 = 0$ $2a_1$ $2a_7 + 2a_8 = 0$ $2a_2$

 $2a_1 + 2a_7 = 0$ $2a_2 + 2a_8 = 0$

Figure: Equivalent cells

- ▶ 4 generators *a*₁, *a*₂, *a*₇, *a*₈
- Homology groups

 $< G(a_1, a_2, a_7, a_8 | 2a_1 + 2a_2, 2a_7 + 2a_8, 2a_1 + 2a_7, 2a_2 + 2a_8) >$

▶ 9 cells *a*₁, 9 cells *a*₂, 9 cells *a*₇,

Homoloay aroups of generalized polyomino type tilinas Edin Liđan Tilings with Homoloay aroups of generalized polyomino type tillings

University of Bihać Bosnia and Herzegovina

		^			
a_7	$a_{\!_8}$	a_7	a_{8}	a_7	$a_{\!\!8}$
$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
a_7	$a_{\!8}$	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}
$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
a_7	a_8	a_7	$a_{\!_8}$	a_7	$a_{\!\!8}$
$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2
	a_1 a_7 a_1 a_7	$\begin{array}{c c} a_1 & a_2 \\ \hline a_7 & a_8 \\ \hline a_1 & a_2 \\ \hline a_7 & a_8 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- if we put now tile 1 × 4 on our chessboard
 - $\begin{array}{ll} 2a_1+2a_2=0 & 2a_1+2a_7=0 \\ 2a_7+2a_8=0 & 2a_2+2a_8=0 \end{array}$

- ▶ 4 generators *a*₁, *a*₂, *a*₇, *a*₈
- Homology groups

 $< G(a_1, a_2, a_7, a_8 | 2a_1 + 2a_2, 2a_7 + 2a_8, 2a_1 + 2a_7, 2a_2 + 2a_8) >$

▶ 9 cells a_1 , 9 cells a_2 , 9 cells a_7 , 9 cells a_8

Homology groups of generalized polyomino type tilings
Edin Liđan
Contents
Introduction
Tiling problems
Polyomino Classification of polyominoes
Tilings with polyominoes. Homology group.
Homology groups of tilings
Homology groups of generalized polyomino type tillings
Conclusion
References
Contact Information

University of Bihad Bosnia and Herzegovina

			^			
	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}	a_7	$a_{\!\!8}$
	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
	a_7	$a_{\!_8}$	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}
ì	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
	a_7	$a_{\!_8}$	a_7	$a_{\!_8}$	a_7	$a_{\!\!8}$
	$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2

- if we put now tile 1 × 4 on our chessboard
 - $\begin{array}{ll} 2a_1+2a_2=0 & 2a_1+2a_7=0 \\ 2a_7+2a_8=0 & 2a_2+2a_8=0 \end{array}$

- ▶ 4 generators *a*₁, *a*₂, *a*₇, *a*₈
- Homology groups

 $< G(a_1, a_2, a_7, a_8 | 2a_1 + 2a_2, 2a_7 + 2a_8, 2a_1 + 2a_7, 2a_2 + 2a_8) >$

▶ 9 cells a_1 , 9 cells a_2 , 9 cells a_7 , 9 cells a_8

 $a_1 + a_2 + a_7 + a_8$

Homology groups of generalized polyomino type tilings Edin Lidan
Contents
Introduction
Tiling problems
Polyomino Classification of polyominoes
Tilings with polyominoes. Homology group.
Homology groups of tilings
Homology groups of generalized polyomino type tillings
Conclusion
References
Contact Information

			^			
	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}	a_7	$a_{\!\!8}$
	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
	a_7	$a_{\!_8}$	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}
ì	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
	a_7	$a_{\!_8}$	a_7	$a_{\!_8}$	a_7	$a_{\!\!8}$
	$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2

- if we put now tile 1 × 4 on our chessboard
 - $\begin{array}{ll} 2a_1+2a_2=0 & 2a_1+2a_7=0 \\ 2a_7+2a_8=0 & 2a_2+2a_8=0 \end{array}$

- ▶ 4 generators *a*₁, *a*₂, *a*₇, *a*₈
- Homology groups

 $< G(a_1, a_2, a_7, a_8 | 2a_1 + 2a_2, 2a_7 + 2a_8, 2a_1 + 2a_7, 2a_2 + 2a_8) >$

▶ 9 cells a_1 , 9 cells a_2 , 9 cells a_7 , 9 cells a_8

 $a_1 + a_2 + a_7 + a_8$

Homology groups of generalized polyomino type tilings Edin Lidan
Contents
Introduction
Tiling problems
Polyomino Classification of polyominoes
Tilings with polyominoes. Homology group.
Homology groups of tilings
Homology groups of generalized polyomino type tillings
Conclusion
References
Contact Information

			^			
	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}	a_7	$a_{\!\!8}$
	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
	a_7	$a_{\!_8}$	a_7	$a_{\!\scriptscriptstyle 8}$	a_7	a_{8}
ì	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	$a_{\rm l}$	a_2
	a_7	$a_{\!_8}$	a_7	$a_{\!_8}$	a_7	$a_{\!\!8}$
	$a_{\rm l}$	a_2	a_{l}	a_2	$a_{\rm l}$	a_2

- if we put now tile 1 × 4 on our chessboard
 - $\begin{array}{ll} 2a_1+2a_2=0 & 2a_1+2a_7=0 \\ 2a_7+2a_8=0 & 2a_2+2a_8=0 \end{array}$

- ▶ 4 generators *a*₁, *a*₂, *a*₇, *a*₈
- Homology groups

 $< G(a_1, a_2, a_7, a_8 | 2a_1 + 2a_2, 2a_7 + 2a_8, 2a_1 + 2a_7, 2a_2 + 2a_8) >$

▶ 9 cells a_1 , 9 cells a_2 , 9 cells a_7 , 9 cells a_8

 $a_1 + a_2 + a_7 + a_8$

Homology groups of generalized polyomino type tilings Edin Lidan
Contents
Introduction
Tiling problems
Polyomino Classification of polyominoes
Tilings with polyominoes. Homology group.
Homology groups of tilings
Homology groups of generalized polyomino type tillings
Conclusion
References
Contact Information

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

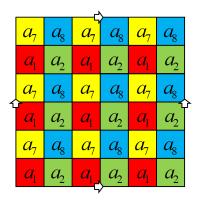
Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

12 Homology groups of generalized polyomino type tillings


Conclusion

References

31

Contact Information

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

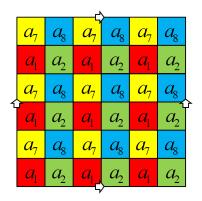
Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion


12

31

References

Contact Information

9 red cells

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Filing problems

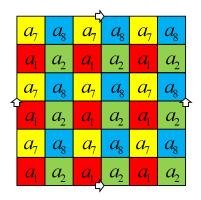
Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion


12

31

References

Contact Information

- 9 red cells
- 9 green cells

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Filing problems

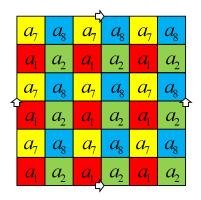
Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion


12

31

References

Contact Information

- 9 red cells
- 9 green cells
- ► 9 yellow cells

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

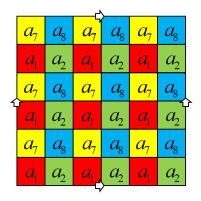
Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

12


31

References

Contact Information

Homology groups of generalized polyomino

Figure: Coloring the Chessboard

- 9 red cells
- 9 green cells
- 9 yellow cells
- 9 blue cells

Contents

ntroduction

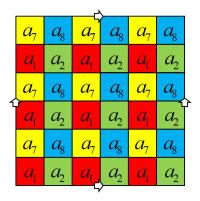
Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings


Conclusion

References

31

Contact Information

- 9 red cells
- 9 green cells
- 9 yellow cells
- 9 blue cells
- every tile 1 × 4 covering

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

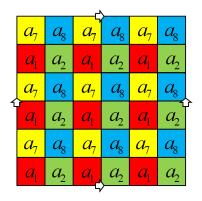
Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings


Conclusion

References

31

Contact Information

- 9 red cells
- 9 green cells
- 9 yellow cells
- 9 blue cells
- every tile 1 × 4 covering
 - 2 red and 2 green

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

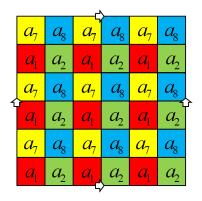
Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings


Conclusion

References

31

Contact Information

- 9 red cells
- 9 green cells
- 9 yellow cells
- 9 blue cells
- every tile 1 × 4 covering
 - 2 red and 2 green
 - 2 yellow and 2 blue

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

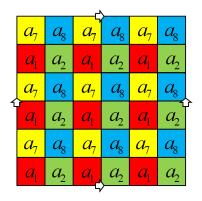
Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings


Conclusion

References

31

Contact Information

- 9 red cells
- 9 green cells
- 9 yellow cells
- 9 blue cells
- every tile 1 × 4 covering
 - 2 red and 2 green
 - 2 yellow and 2 blue
 - 2 red and 2 yellow

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

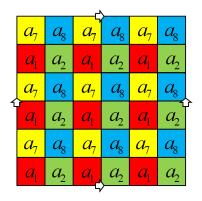
Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings


Conclusion

References

31

Contact Information

- 9 red cells
- 9 green cells
- 9 yellow cells
- 9 blue cells
- every tile 1 × 4 covering
 - 2 red and 2 green
 - 2 yellow and 2 blue
 - 2 red and 2 yellow
 - 2 green and 2 blue

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

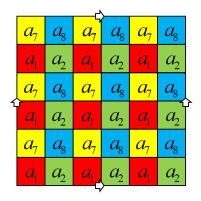
Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings


Conclusion

References

31

Contact Information

- 9 red cells
- 9 green cells
- 9 yellow cells
- 9 blue cells
- every tile 1 × 4 covering
 - 2 red and 2 green
 - 2 yellow and 2 blue
 - 2 red and 2 yellow
 - 2 green and 2 blue
- tiling is not possible

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

	_			لے	<u> </u>				
a_{11}	a_{12}								
a_{l}	a_2	a_{l}	a_2	a_1	a_2	a_{1}	a_2	a_{l}	a_2
a_{11}	<i>a</i> ₁₂	a_{11}	<i>a</i> ₁₂	a_{11}	<i>a</i> ₁₂	a_{11}	a_{12}	a_{11}	<i>a</i> ₁₂
a_1	a_2	a_{1}	a_2	$a_{\rm l}$	a_2	a_1	a_2	$a_{\rm l}$	a_2
<i>a</i> ₁₁	<i>a</i> ₁₂								
a_1	a_2	$a_{\rm l}$	a_2	a_{1}	a_2	a_{1}	a_2	$a_{\rm l}$	a_2
a_{11}	<i>a</i> ₁₂	<i>a</i> ₁₁	<i>a</i> ₁₂						
$a_{\rm l}$	a_2	$a_{\rm l}$	a_2	a_1	a_2	$a_{\rm l}$	a_2	a_{1}	a_2
<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₁	a_{12}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₁	<i>a</i> ₁₂
a_1	a_2	a_1	a_2	a_{1}	a_2	a_{l}	a_2	a_{1}	a_2

Theorem

The torus chessboard of dimension $(4k + 2) \times (4k + 2)$ can be not tiling with the tile 1 × 4.

Edin Liđa

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁴ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Example

Is it possible to tile torus chessboard 10 \times 10 with T - tetrominoes? (all orientation are allowed)

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Example

Is it possible to tile torus chessboard 10 \times 10 with T - tetrominoes? (all orientation are allowed)

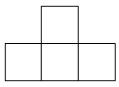


Figure: T - tetramino

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

15 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

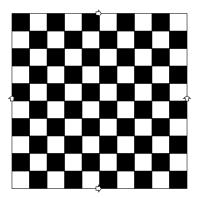


Figure: In torus plane model

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁵ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino type tilings

Edin Liđan

Tilings with

Homology groups of

15 Homology groups of generalized polyomino type tillings

31

University of Bihać Bosnia and Herzegovina

 a_{61} a_{51} a_{41} a_{31} a_{21} a_{11} a,

Figure: In torus plane model

Figure: Naming cells

 a_{95}

 a_{85}

 a_{75} a_{76} a_{77} a_{78} a_{79} a_{80}

 a_{25} a_{26} a_{27} a_{28} a_{29} a_{30}

 a_{15}

 a_5

 a_{96}

 a_{86} a_{87} a_{88} a_{so} a_{00}

 a_{66}

 a_{56}

 a_{36} a_{37}

 a_{16} a_{17} a_{18} a_{19} a_{20}

 a_6 a_7 a_8 a_0 a_{10}

 a_{97} a_{98}

 a_{67} a_{68}

 a_{57} a_{58} a_{99} a_{100}

 a_{69} a_{70}

 a_{59} a_{60}

 a_{49} a_{50}

 a_{39} a_{40}

 a_{38}

 $a_{\!_{94}}$

 a_{74}

 a_{34} a_{35}

a a24

 a_{92}

 $a_{\!82}$ a_{83} a_{84}

 a_{62}

 a_{52} a_{52} a_{54} a_{55}

 a_{42}

 a_{32} a_{33}

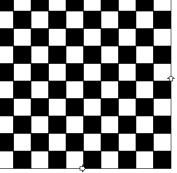
 a_{22} a_{23}

 a_{12} a_{13} a_{14}

 a_2

 a_{03}

 a_{63} a_{64} a_{65}


 a_{43} 1 a₄₄ a_{45} a_{46} a_{47} a_{48}

 a_3 a_4

 a_{91}

 $a_{\!81}$

 a_{71} a_{77} a_{73}

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁶ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

				<u>г</u>	\rightarrow				
a_{91}	a_{92}	a_{93}	a_{94}	a_{95}	a_{96}	a ₉₇	a_{98}	a ₉₉	a_{100}
a_{81}	$a_{\!82}$	a_{83}	$a_{\!_{84}}$	a_{85}	a_{86}	$a_{\!_{87}}$	$a_{\!_{88}}$	$a_{\!89}$	$a_{\!90}$
a_{71}	a_{72}	a_{73}	a_{74}	a_{75}	a_{76}	a ₇₇	a_{78}	a_{79}	$a_{\!_{80}}$
a_{61}	a_{62}	<i>a</i> ₆₃	<i>a</i> ₆₄	a ₆₅	a ₆₆	a ₆₇	<i>a</i> ₆₈	a ₆₉	a_{70}
a_{51}	<i>a</i> ₅₂	a ₅₃	a ₅₄	a ₅₅	a ₅₆	a ₅₇	a ₅₈	a ₅₉	a_{60}
a_{41}	<i>a</i> ₄₂	<i>a</i> ₄₃	<i>a</i> ₄₄	a ₄₅	a_{46}	a ₄₇	<i>a</i> ₄₈	<i>a</i> ₄₉	a_{50}
a_{31}	<i>a</i> ₃₂	a ₃₃	a ₃₄	a ₃₅	a ₃₆	a ₃₇	a ₃₈	<i>a</i> ₃₉	a_{40}
a_{21}	<i>a</i> ₂₂	<i>a</i> ₂₃	<i>a</i> ₂₄	a ₂₅	a_{26}	a ₂₇	a_{28}	a_{29}	a_{30}
<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}	a_{19}	a_{20}
$a_{\rm I}$	a_2	a_3	a_4	a_{5}	a_6	a_7	a_8	a_9	a_{10}

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁶ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

				ť	<u> </u>				
a_{91}	a_{92}	a_{93}	$a_{\!94}$	a_{95}	a_{96}	a ₉₇	$a_{\!98}$	a ₉₉	a_{100}
a_{81}	$a_{\!82}$	a ₈₃	<i>a</i> ₈₄	a_{85}	a ₈₆	a ₈₇	$a_{\!_{88}}$	a ₈₉	$a_{\!_{90}}$
a_{71}	<i>a</i> ₇₂	<i>a</i> ₇₃	<i>a</i> ₇₄	a ₇₅	a_{76}	<i>a</i> ₇₇	a_{78}	<i>a</i> ₇₉	$a_{\!_{80}}$
a_{61}	a_{62}	<i>a</i> ₆₃	<i>a</i> ₆₄	a_{65}	a ₆₆	a ₆₇	a ₆₈	a ₆₉	a_{70}
<i>a</i> ₅₁	<i>a</i> ₅₂	<i>a</i> ₅₃	a ₅₄	a ₅₅	a ₅₆	a ₅₇	a ₅₈	a ₅₉	a_{60}
a ₄₁	<i>a</i> ₄₂	<i>a</i> ₄₃	<i>a</i> ₄₄	<i>a</i> ₄₅	<i>a</i> ₄₆	<i>a</i> ₄₇	<i>a</i> ₄₈	<i>a</i> ₄₉	a_{50}
a_{31}	a_{32}	<i>a</i> ₃₃	a ₃₄	<i>a</i> ₃₅	<i>a</i> ₃₆	a ₃₇	a_{38}	<i>a</i> ₃₉	a_{40}
a_{21}	<i>a</i> ₂₂	<i>a</i> ₂₃	<i>a</i> ₂₄	a_{25}	a_{26}	a ₂₇	a_{28}	<i>a</i> ₂₉	a_{30}
a_{11}	a_{12}	a_{13}	a_{14}	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}	<i>a</i> ₁₉	a_{20}
$a_{\rm l}$	a_2	<i>a</i> ₃	a_4	a ₅ _	a_6	a_7	a_8	a_9	a_{10}

 $a_1 + a_2 + a_3 + a_{12} = 0$

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁶ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

 a_{91} a_{92} a_{93} a_{94} a_{05} a_{96} a₉₇ a_{98} a₉₉ a_{100} a_{84} a_{81} a_{82} a_{83} a_{85} a_{86} a_{87} a_{88} \mathcal{A}_{89} a_{00} a_{71} a_{72} a_{73} a_{74} a_{75} a_{76} a_{77} a_{78} a_{79} a_{80} a_{64} a_{61} a_{62} a_{63} a_{65} a_{66} a_{67} a_{68} a_{60} a_{70} a_{51} a_{52} a_{53} a_{54} a_{55} a_{56} a_{57} a_{58} a_{59} a_{60} ᠬ a_{43} a_{41} a_{42} a_{44} a_{45} a_{46} a_{47} a_{48} a_{49} a_{50} a_{31} a_{33} a_{32} a_{34} a_{35} a_{36} a_{37} a_{38} a_{39} a_{40} a_{21} a_{22} a_{23} a_{24} a_{25} a_{26} a_{27} a_{28} a_{29} a_{30} a_{15} a_{16} a_{11} a_{13} a_{14} a_{17} a_{18} a_{19} a_{20} $a_{\scriptscriptstyle A}$ $a_{\rm s}$ a_6 a_7 a_8 a_0 a_{10}

$a_1 + a_2 + a_3 + a_{12} = 0$
$a_2 + a_3 + a_4 + a_{13} = 0$
$a_3 + a_4 + a_5 + a_{14} = 0$
$a_4 + a_5 + a_6 + a_{15} = 0$
$a_5 + a_6 + a_7 + a_{16} = 0$
$a_6 + a_7 + a_8 + a_{17} = 0$
$a_7 + a_8 + a_9 + a_{18} = 0$
$a_8 + a_9 + a_{10} + a_{19} = 0$
$a_9 + a_{10} + a_1 + a_{20} = 0$
$a_{10} + a_1 + a_2 + a_{11} = 0$

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁶ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁷ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

c>c>												
a_{91}	$a_{\!_{92}}$	a_{93}	a ₉₄	a_{95}	$a_{\!_{96}}$	a ₉₇	$a_{\!_{98}}$	a ₉₉	a_{100}			
$a_{\!_{81}}$	$a_{\!_{82}}$	a ₈₃	$a_{\!_{84}}$	a_{85}	$a_{\!_{86}}$	a ₈₇	$a_{\!_{88}}$	a ₈₉	a_{90}			
<i>a</i> ₇₁	<i>a</i> ₇₂	<i>a</i> ₇₃	<i>a</i> ₇₄	a ₇₅	a_{76}	<i>a</i> ₇₇	a_{78}	a_{79}	$a_{\!_{80}}$			
a_{61}	<i>a</i> ₆₂	<i>a</i> ₆₃	<i>a</i> ₆₄	a ₆₅	a ₆₆	a ₆₇	<i>a</i> ₆₈	a ₆₉	a_{70}			
<i>a</i> ₅₁	<i>a</i> ₅₂	a ₅₃	<i>a</i> ₅₄	a ₅₅	a ₅₆	a ₅₇	a ₅₈	a ₅₉	a_{60}			
a ₄₁	<i>a</i> ₄₂	<i>a</i> ₄₃	<i>a</i> ₄₄	<i>a</i> ₄₅	a_{46}	<i>a</i> ₄₇	$a_{\!$	a_{49}	a_{50}			
<i>a</i> ₃₁	a_{32}	<i>a</i> ₃₃	<i>a</i> ₃₄	a ₃₅	a_{36}	a ₃₇	a_{38}	a_{39}	a_{40}			
a_{21}	<i>a</i> ₂₂	<i>a</i> ₂₃	<i>a</i> ₂₄	a ₂₅	a_{26}	a ₂₇	a_{28}	a_{29}	a_{30}			
a_{11}	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}	a_{19}	a_{20}			
a_{l}	a_2	a_3	a_4	a5 ,	a_6	a_7	a_8	a_9	a_{10}			
	$ \begin{array}{c} a_{81} \\ a_{71} \\ a_{61} \\ a_{6$	$\begin{array}{c c} a_{81} & a_{82} \\ a_{71} & a_{72} \\ a_{61} & a_{62} \\ a_{51} & a_{52} \\ a_{41} & a_{42} \\ a_{31} & a_{32} \\ a_{21} & a_{22} \\ a_{11} & a_{12} \end{array}$	$\begin{array}{c cccc} a_{81} & a_{82} & a_{83} \\ a_{71} & a_{72} & a_{73} \\ a_{61} & a_{62} & a_{63} \\ a_{51} & a_{52} & a_{53} \\ a_{41} & a_{42} & a_{43} \\ a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{41} & a_{42} & a_{43} \\ \end{array}$	$\begin{array}{c ccccc} a_{81} & a_{82} & a_{83} & a_{84} \\ a_{71} & a_{72} & a_{73} & a_{74} \\ a_{61} & a_{62} & a_{63} & a_{64} \\ a_{51} & a_{52} & a_{53} & a_{54} \\ a_{41} & a_{42} & a_{43} & a_{44} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{41} & a_{42} & a_{43} & a_{44} \\ \end{array}$	$\begin{array}{c ccccc} a_{81} & a_{82} & a_{83} & a_{84} & a_{85} \\ a_{71} & a_{72} & a_{73} & a_{74} & a_{75} \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁷ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

a_{91}									
21	a_{92}	a_{93}	$a_{\!94}$	a_{95}	a_{96}	a ₉₇	$a_{\!_{98}}$	a ₉₉	a_{100}
a_{81}	$a_{\!_{82}}$	a ₈₃	$a_{\!_{84}}$	a_{85}	$a_{\!_{86}}$	$a_{\!_{87}}$	$a_{\!_{88}}$	$a_{\!_{89}}$	$a_{\!90}$
a_{71}	a ₇₂	a ₇₃	<i>a</i> ₇₄	a ₇₅	a_{76}	a ₇₇	a_{78}	a_{79}	$a_{\!80}$
a_{61}	$a_{\!62}$	<i>a</i> ₆₃	$a_{\!64}$	a ₆₅	a ₆₆	a ₆₇	$a_{\!_{68}}$	a ₆₉	a_{70}
a_{51}	<i>a</i> ₅₂	a ₅₃	<i>a</i> ₅₄	a ₅₅	a ₅₆	a ₅₇	a ₅₈	a ₅₉	a ₆₀
a ₄₁	a_{42}	<i>a</i> ₄₃	<i>a</i> ₄₄	<i>a</i> ₄₅	a_{46}	<i>a</i> ₄₇	$a_{\!$	$a_{\!$	а ₅₀
<i>a</i> ₃₁	<i>a</i> ₃₂	<i>a</i> ₃₃	a ₃₄	a ₃₅	a ₃₆	a ₃₇	a_{38}	a ₃₉	a_{40}
a_{21}	<i>a</i> ₂₂	a ₂₃	a ₂₄	a ₂₅	a_{26}	a ₂₇	a_{28}	a_{29}	a_{30}
a_{11}	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}	a_{19}	a_{20}
a_{l}	<i>a</i> ₂	a_3	a_4	<i>a</i> 5	a_6	<i>a</i> ₇	a_8	a_9	a_{10}
	$ \begin{array}{c} a_{71} \\ a_{61} \\ a_{51} \\ a_{41} \\ a_{31} \\ a_{21} \\ a_{11} \\ \end{array} $	$\begin{array}{c cccc} a_{71} & a_{72} \\ a_{61} & a_{62} \\ a_{51} & a_{52} \\ a_{41} & a_{42} \\ a_{31} & a_{32} \\ a_{21} & a_{22} \\ a_{11} & a_{12} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$a_{11} + a_{12} + a_{13} + a_2 = 0$	
$a_{12} + a_{13} + a_{14} + a_3 = 0$	
$a_{13} + a_{14} + a_{15} + a_4 = 0$	
$a_{14} + a_{15} + a_{16} + a_5 = 0$	
$a_{15} + a_{16} + a_{17} + a_6 = 0$	
$a_{16} + a_{17} + a_{18} + a_7 = 0$	
$a_{17} + a_{18} + a_{19} + a_8 = 0$	
$a_{18} + a_{19} + a_{20} + a_{9} = 0$	
$a_{19} + a_{20} + a_{11} + a_{10} = 0$	
$a_{20} + a_{11} + a_{12} + a_1 = 0$	

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁷ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

			<u> </u>	\rightarrow				
a_{92}	a_{93}	a ₉₄	a_{95}	a_{96}	a ₉₇	$a_{\!_{98}}$	a ₉₉	a_{100}
$a_{\!82}$	a ₈₃	$a_{\!_{84}}$	a_{85}	a_{86}	a ₈₇	$a_{\!_{88}}$	a ₈₉	$a_{\!_{90}}$
<i>a</i> ₇₂	<i>a</i> ₇₃	<i>a</i> ₇₄	a ₇₅	a_{76}	<i>a</i> ₇₇	a_{78}	a_{79}	$a_{\!_{80}}$
a_{62}	a ₆₃	$a_{\!64}$	a_{65}	a_{66}	a ₆₇	a ₆₈	a ₆₉	a_{70}
<i>a</i> ₅₂	a ₅₃	<i>a</i> ₅₄	a ₅₅	a_{56}	a ₅₇	a ₅₈	a ₅₉	a_{60}
<i>a</i> ₄₂	<i>a</i> ₄₃	<i>a</i> ₄₄	<i>a</i> ₄₅	$a_{\!$	a ₄₇	<i>a</i> ₄₈	a ₄₉	a_{50}
a_{32}	<i>a</i> ₃₃	<i>a</i> ₃₄	<i>a</i> ₃₅	a_{36}	a ₃₇	a_{38}	a_{39}	a_{40}
<i>a</i> ₂₂	<i>a</i> ₂₃	<i>a</i> ₂₄	a ₂₅	a_{26}	a ₂₇	a_{28}	a_{29}	a_{30}
a_{12}	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}	a_{19}	a_{20}
a_2	a_3	a_4	a ₅ _	a_6	a_7	a_8	a_9	a_{10}
	$egin{aligned} a_{82} & a_{72} \ a_{62} & a_{52} \ a_{42} & a_{32} \ a_{22} & a_{12} \end{aligned}$	$\begin{array}{cccc} a_{82} & a_{83} \\ a_{72} & a_{73} \\ a_{62} & a_{63} \\ a_{52} & a_{53} \\ a_{42} & a_{43} \\ a_{32} & a_{33} \\ a_{22} & a_{23} \\ a_{12} & a_{13} \end{array}$	$\begin{array}{cccc} a_{82} & a_{83} & a_{84} \\ a_{72} & a_{73} & a_{74} \\ a_{62} & a_{63} & a_{64} \\ a_{52} & a_{53} & a_{54} \\ a_{42} & a_{43} & a_{44} \\ a_{32} & a_{33} & a_{34} \\ a_{22} & a_{23} & a_{24} \\ a_{12} & a_{13} & a_{14} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccccc} a_{82} & a_{83} & a_{84} & a_{85} & a_{86} \\ \hline a_{72} & a_{73} & a_{74} & a_{75} & a_{76} \\ \hline a_{62} & a_{63} & a_{64} & a_{65} & a_{66} \\ \hline a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\ \hline a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\ \hline a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ \hline a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ \hline a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$a_{11} + a_{12} + a_{13} + a_2 = 0$
$a_{12} + a_{13} + a_{14} + a_3 = 0$
$a_{13} + a_{14} + a_{15} + a_4 = 0$
$a_{14} + a_{15} + a_{16} + a_5 = 0$
$a_{15} + a_{16} + a_{17} + a_6 = 0$
$a_{16} + a_{17} + a_{18} + a_7 = 0$
$a_{17} + a_{18} + a_{19} + a_8 = 0$
$a_{18} + a_{19} + a_{20} + a_{9} = 0$
$a_{19} + a_{20} + a_{11} + a_{10} = 0$
$a_{20} + a_{11} + a_{12} + a_1 = 0$

 $a_{11} + a_{12} + a_{13} + a_2 = 0$

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

17 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

			<u> </u>	\rightarrow				
a_{92}	a_{93}	a ₉₄	a_{95}	a_{96}	a ₉₇	$a_{\!_{98}}$	a ₉₉	a_{100}
$a_{\!82}$	a ₈₃	$a_{\!_{84}}$	a_{85}	a_{86}	a ₈₇	$a_{\!_{88}}$	a ₈₉	$a_{\!_{90}}$
<i>a</i> ₇₂	<i>a</i> ₇₃	<i>a</i> ₇₄	<i>a</i> ₇₅	a_{76}	<i>a</i> ₇₇	a_{78}	a_{79}	$a_{\!_{80}}$
a_{62}	a ₆₃	$a_{\!64}$	a_{65}	a_{66}	a ₆₇	a ₆₈	a ₆₉	a_{70}
<i>a</i> ₅₂	a ₅₃	<i>a</i> ₅₄	a ₅₅	a_{56}	a ₅₇	a ₅₈	a ₅₉	a_{60}
<i>a</i> ₄₂	<i>a</i> ₄₃	<i>a</i> ₄₄	<i>a</i> ₄₅	<i>a</i> ₄₆	a ₄₇	$a_{\!48}$	a ₄₉	a_{50}
a_{32}	<i>a</i> ₃₃	<i>a</i> ₃₄	<i>a</i> ₃₅	a_{36}	a ₃₇	a_{38}	a_{39}	a_{40}
<i>a</i> ₂₂	<i>a</i> ₂₃	<i>a</i> ₂₄	a ₂₅	a_{26}	a ₂₇	a_{28}	a_{29}	a_{30}
a_{12}	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}	a_{19}	a_{20}
a_2	a_3	a_4	a ₅ _	a_6	a_7	a_8	a_9	a_{10}
	$egin{aligned} a_{82} & a_{72} \ a_{62} & a_{52} \ a_{42} & a_{32} \ a_{22} & a_{12} \end{aligned}$	$\begin{array}{cccc} a_{82} & a_{83} \\ a_{72} & a_{73} \\ a_{62} & a_{63} \\ a_{52} & a_{53} \\ a_{42} & a_{43} \\ a_{32} & a_{33} \\ a_{22} & a_{23} \\ a_{12} & a_{13} \end{array}$	$\begin{array}{cccc} a_{82} & a_{83} & a_{84} \\ a_{72} & a_{73} & a_{74} \\ a_{62} & a_{63} & a_{64} \\ a_{52} & a_{53} & a_{54} \\ a_{42} & a_{43} & a_{44} \\ a_{32} & a_{33} & a_{34} \\ a_{22} & a_{23} & a_{24} \\ a_{12} & a_{13} & a_{14} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccccc} a_{82} & a_{83} & a_{84} & a_{85} & a_{86} \\ \hline a_{72} & a_{73} & a_{74} & a_{75} & a_{76} \\ \hline a_{62} & a_{63} & a_{64} & a_{65} & a_{66} \\ \hline a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\ \hline a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\ \hline a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ \hline a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ \hline a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$a_{11} + a_{12} + a_{13} + a_2 = 0$
$a_{12} + a_{13} + a_{14} + a_3 = 0$
$a_{13} + a_{14} + a_{15} + a_4 = 0$
$a_{14} + a_{15} + a_{16} + a_5 = 0$
$a_{15} + a_{16} + a_{17} + a_6 = 0$
$a_{16} + a_{17} + a_{18} + a_7 = 0$
$a_{17} + a_{18} + a_{19} + a_8 = 0$
$a_{18} + a_{19} + a_{20} + a_{9} = 0$
$a_{19} + a_{20} + a_{11} + a_{10} = 0$
$a_{20} + a_{11} + a_{12} + a_1 = 0$

$$a_{11} + a_{12} + a_{13} + a_2 = 0$$

$$a_{11} + a_{12} + a_{13} + a_{22} = 0$$

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁷ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					<u></u>	\rightarrow				
	<i>a</i> ₉₁	a_{92}	a_{93}	a ₉₄	a_{95}	a_{96}	a ₉₇	$a_{\!_{98}}$	a ₉₉	a_{100}
	a_{81}	$a_{\!_{82}}$	a_{83}	$a_{\!_{84}}$	$a_{\!_{85}}$	$a_{\!_{86}}$	$a_{\!_{87}}$	$a_{\!_{88}}$	$a_{\!89}$	$a_{\!90}$
ſ	<i>a</i> ₇₁	<i>a</i> ₇₂	<i>a</i> ₇₃	<i>a</i> ₇₄	<i>a</i> ₇₅	a_{76}	<i>a</i> ₇₇	a_{78}	a_{79}	$a_{\!_{80}}$
ĺ	a_{61}	a_{62}	<i>a</i> ₆₃	<i>a</i> ₆₄	a ₆₅	a ₆₆	a ₆₇	<i>a</i> ₆₈	a ₆₉	a_{70}
ĺ	<i>a</i> ₅₁	<i>a</i> ₅₂	a ₅₃	<i>a</i> ₅₄	a ₅₅	a ₅₆	a ₅₇	a ₅₈	a ₅₉	a_{60}
l	a ₄₁	<i>a</i> ₄₂	<i>a</i> ₄₃	<i>a</i> ₄₄	<i>a</i> ₄₅	a_{46}	<i>a</i> ₄₇	$a_{\!$	a_{49}	a_{50}
	<i>a</i> ₃₁	<i>a</i> ₃₂	a ₃₃	a ₃₄	a ₃₅	a ₃₆	a ₃₇	a ₃₈	<i>a</i> ₃₉	a_{40}
	a_{21}	<i>a</i> ₂₂	<i>a</i> ₂₃	<i>a</i> ₂₄	a ₂₅	a_{26}	a ₂₇	a_{28}	a_{29}	a_{30}
	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}	a_{19}	a_{20}
ſ	a_{l}	a_2	a_3	a_4	a ₅ _	a_6	a_7	a_8	a_9	a_{10}

$a_{11} + a_{12} + a_{13} + a_2 = 0$
$a_{12} + a_{13} + a_{14} + a_3 = 0$
$a_{13} + a_{14} + a_{15} + a_4 = 0$
$a_{14} + a_{15} + a_{16} + a_5 = 0$
$a_{15} + a_{16} + a_{17} + a_6 = 0$
$a_{16} + a_{17} + a_{18} + a_7 = 0$
$a_{17} + a_{18} + a_{19} + a_8 = 0$
$a_{18} + a_{19} + a_{20} + a_{9} = 0$
$a_{19} + a_{20} + a_{11} + a_{10} = 0$
$a_{20} + a_{11} + a_{12} + a_1 = 0$

$$a_{11} + a_{12} + a_{13} + a_2 = 0$$
$$a_{11} + a_{12} + a_{13} + a_{22} = 0$$
$$a_{2} = a_{22}$$

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

17 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

18 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Edin Liđan

$a_1 = a_3 = a_5 = a_7 = a_9 = a_{12} = a_{14} = a_{16} = a_{18} = a_{20}$ $a_2 = a_6 = a_8 = a_{10} = a_{11} = a_{13} = a_{15} = a_{17} = a_{19}$

iling problem:

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

18 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

$$a_1 = a_3 = a_5 = a_7 = a_9 = a_{12} = a_{14} = a_{16} = a_{18} = a_{20}$$

 $a_2 = a_6 = a_8 = a_{10} = a_{11} = a_{13} = a_{15} = a_{17} = a_{19}$

Analogue

 $a_{21} = a_{23} = a_{25} = a_{27} = a_{29} = a_{32} = a_{34} = a_{36} = a_{38} = a_{40}$ $a_{41} = a_{43} = a_{45} = a_{47} = a_{49} = a_{42} = a_{44} = a_{46} = a_{48} = a_{60}$ $a_{61} = a_{63} = a_{65} = a_{67} = a_{69} = a_{62} = a_{64} = a_{66} = a_{68} = a_{80}$ $a_{81} = a_{83} = a_{85} = a_{87} = a_{89} = a_{82} = a_{84} = a_{86} = a_{88} = a_{100}$ $a_{22} = a_{24} = a_{26} = a_{28} = a_{30} = a_{31} = a_{33} = a_{35} = a_{37} = a_{39}$ $a_{42} = a_{44} = a_{46} = a_{48} = a_{50} = a_{51} = a_{53} = a_{55} = a_{57} = a_{59}$ $a_{62} = a_{64} = a_{66} = a_{68} = a_{70} = a_{71} = a_{73} = a_{75} = a_{77} = a_{79}$ $a_{82} = a_{84} = a_{86} = a_{88} = a_{90} = a_{91} = a_{93} = a_{95} = a_{97} = a_{99}$

Homology groups of generalized polyomino type tilings Edin Liđan Polyomino Tilings with Homology groups of generalized polyomino type tillings

						<u> </u>				
	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
١	a_1	a_2	a_{1}	a_2	a_{l}	a_2	a_{l}	a_2	a_{l}	a_2
	a_2	a_1	a_2	a_1	a_2	a_{l}	a_2	a_1	a_2	a_1
	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
	a_2	a_1	a_2	a_1	a_2	a_{1}	a_2	a_{l}	a_2	a_1
	a_1	a_2	a_1	a_2	a, ,	a_2	a_1	a_2	a_1	a_2

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁹ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					<u> </u>				
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_{1}	a_2	a_{l}	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2

$$3a_1 + a_2 = 0$$

generalized polyomino type tilings Edin Liđan

Homology groups of

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁹ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					<u> </u>				
a_2	a_{1}	a_2	a_1	a_2	a_{1}	a_2	a_{l}	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_1	a_2	a_{l}	a_2	a_{l}	a_2	a_{1}	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_{l}	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_{1}	a_2	a_{l}	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2

$3a_1 + a_2$	=	0
$3a_2 + a_1$	=	0

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁹ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					<u> </u>				
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_{1}
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_{1}	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_{1}	a_2	a_{l}	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2

- $3a_1 + a_2 = 0$ $3a_2 + a_1 = 0$
- $0a_2 + a_1 = 0$

$$\bullet < a_1, a_2|_{3a_1+a_2, 3a_2+a_1} >$$

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

¹⁹ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					<u> </u>				
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_{1}	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_{l}	a_2	a_1
a_1	a_2	a_1	a_2	a ₁	a_2	a_1	a_2	a_1	a_2

- $3a_1 + a_2 = 0$ $3a_2 + a_1 = 0$

$$\bullet < a_1, a_2|_{3a_1+a_2, 3a_2+a_1} >$$

► =<
$$a_1|_{8a_1=0}$$
 >= \mathbb{Z}_8

University of Bihać Bosnia and Herzegovina 31

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Tilings with Homology group.

Homology groups of tilinas

19 Homology groups of generalized polyomino type tillings

References

Contact Information

					<u> </u>				
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_{1}
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1
$\begin{bmatrix} a_1 \end{bmatrix}$	a_2	a_1	a_2	a_{l}	a_2	a_{l}	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_{l}	a_2	a_{1}	a_2	a_1
a_1	a_2	a_1	a_2	a_{1}	a_2	a_{l}	a_2	a_1	a_2
a_2	a_1	a_2	a_1	a_2	a_{l}	a_2	a_{l}	a_2	a_1
a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2	a_1	a_2

- $3a_1 + a_2 = 0$ $3a_2 + a_1 = 0$

►
$$< a_1, a_2|_{3a_1+a_2, 3a_2+a_1} >$$

► $= < a_1|_{8a_1=0} > = \mathbb{Z}_8$

$$50a_1 + 50a_2 = -100a_1 = 4a_1$$

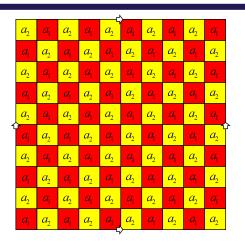
Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Tilings with Homology group.

Homology groups of tilinas


19 Homology groups of generalized polyomino type tillings

References

31

Contact Information

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

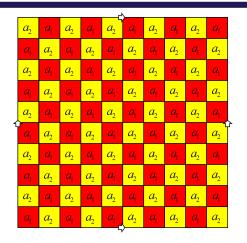
Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion


20

31

References

Contact Information

50 red cells

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Filing problems

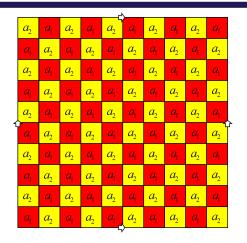
Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion


20

31

References

Contact Information

- 50 red cells
- ► 50 yellow cells

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

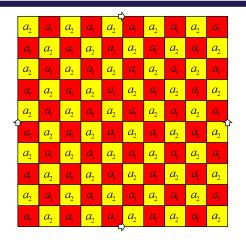
Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings


Conclusion

References

31

Contact Information

- ▶ 50 red cells
- ► 50 yellow cells
- every T tetramino cover

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

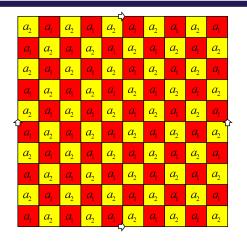
Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings


Conclusion

References

31

Contact Information

50 red cells

- ► 50 yellow cells
- every T tetramino cover
 - 3 red and 1 yellow

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Tiling problems

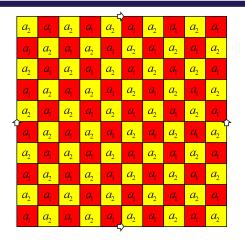
Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion


20

31

References

Contact Information

50 red cells

- ► 50 yellow cells
- every T tetramino cover
 - 3 red and 1 yellow
 - 3 yellow and 1 red

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

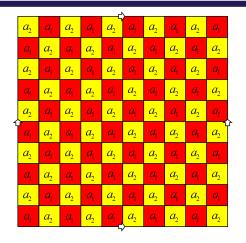
Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

²⁰ Homology groups of generalized polyomino type tillings


Conclusion

References

31

Contact Information

50 red cells

- ► 50 yellow cells
- every T tetramino cover
 - 3 red and 1 yellow
 - 3 yellow and 1 red

tiling is not possible

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Tiling problems

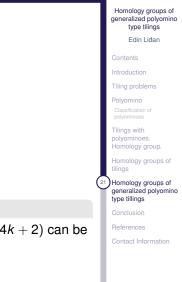
Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

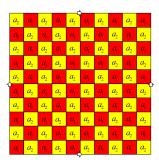
Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion


References

31


Contact Information

University of Bihać Bosnia and Herzegovina

31

Theorem

The torus chessboard of dimension $(4k + 2) \times (4k + 2)$ can be not tiling with T – tetrominoes.

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

22 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Example

Is it possible to tile torus chessboard 9×5 with one removed cell in the middle to tile with square shapes 2×2 and cross shape (all orientation are allowed)?

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

logy groups of

Conclusion

University of Bihać Bosnia and Herzegovina

Example

Is it possible to tile torus chessboard 9×5 with one removed cell in the middle to tile with square shapes 2×2 and cross shape (all orientation are allowed)?

Example

Is it possible to tile torus chessboard 9×5 with one removed cell in the middle to tile with square shapes 2×2 and cross shape (all orientation are allowed)?

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

University of Bihać Bosnia and Herzegovina

Example

Is it possible to tile torus chessboard 9×5 with one removed cell in the middle to tile with square shapes 2×2 and cross shape (all orientation are allowed)?

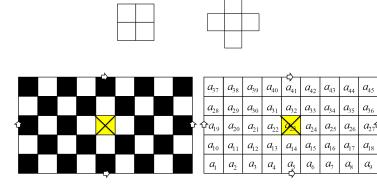


Figure: In torus plane model

Figure: Naming cell

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					^					
	a ₃₇	a_{38}	<i>a</i> ₃₉	a_{40}	a_{41}	<i>a</i> ₄₂	<i>a</i> ₄₃	<i>a</i> ₄₄	a ₄₅	
	a_{28}	a_{29}	<i>a</i> ₃₀	<i>a</i> ₃₁	a_{32}	<i>a</i> ₃₃	<i>a</i> ₃₄	<i>a</i> ₃₅	a ₃₆	
٦	a_{19}	a_{20}	a_{21}	<i>a</i> ₂₂	X	a_{24}	<i>a</i> ₂₅	a_{26}	a27	ł
	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	a_{17}	a_{18}	
	a_{l}	a_2	a_3	a_4	a _s	a_6	a_7	a_8	a_9	

Edin Liđan

Contents

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					^					
	a ₃₇	a_{38}	<i>a</i> ₃₉	a_{40}	a_{41}	$a_{\!_{42}}$	<i>a</i> ₄₃	a_{44}	<i>a</i> ₄₅	
	a_{28}	a_{29}	<i>a</i> ₃₀	<i>a</i> ₃₁	a_{32}	<i>a</i> ₃₃	<i>a</i> ₃₄	<i>a</i> ₃₅	a ₃₆	
٦	a_{19}	a_{20}	a_{21}	<i>a</i> ₂₂	X	a_{24}	<i>a</i> ₂₅	a_{26}	a27	ł
	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	a_{17}	a_{18}	
	a_{1}	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	
	· · · · · · · · · · · · · · · · · · ·				-4-					•

 $a_1 + a_2 + a_{10} + a_{11} = 0$

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					^					
	a ₃₇	a_{38}	<i>a</i> ₃₉	a_{40}	a_{41}	a_{42}	a_{43}	<i>a</i> ₄₄	<i>a</i> ₄₅	
	a_{28}	a_{29}	<i>a</i> ₃₀			<i>a</i> ₃₃		<i>a</i> ₃₅	<i>a</i> ₃₆	
í	a_{19}	a_{20}	<i>a</i> ₂₁	<i>a</i> ₂₂	X	<i>a</i> ₂₄	<i>a</i> ₂₅	a_{26}	a27	ļ
	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}	
	a_{1}	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	
	· · · · · · · · · · · · · · · · · · ·				-4-					

 $a_1 + a_2 + a_{10} + a_{11} = 0$ $a_{21} + a_{30} + a_{22} + a_{31} = 0$ Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

23) Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

23

31

References

Contact Information

University of Bihać Bosnia and Herzegovina

					^					
	a ₃₇	a_{38}	<i>a</i> ₃₉	a_{40}	a_{41}	a_{42}	a_{43}	<i>a</i> ₄₄	<i>a</i> ₄₅	
	a_{28}	a29	<i>a</i> ₃₀	a_{31}	a_{32}	<i>a</i> ₃₃	<i>a</i> ₃₄	<i>a</i> ₃₅	<i>a</i> ₃₆	
í	a_{19}	a_{20}	a_{21}	<i>a</i> ₂₂	X	<i>a</i> ₂₄	a25	a_{26}	a27	ļ
	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}	
	a_{1}	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	
					-y-					•

 a_{37} a_{42} a_{38} $a_{39} \mid a_{40}$ a_{41} a_{43} a_{44} a_{45} a_{28} a_{29} a_{30} a_{31} a_{32} a_{33} a_{24} a_{35} a_{36} a24 $\mathcal{C}a_{19}$ a_{21} an a_{25} a_{26} a279 a_{13} a_{14} a_{15} a_{16} a_{17} a_{18} a_{2} $a_{\rm s}$ a_6 a_7 a_8 a_{0} a_1 $a_{\scriptscriptstyle A}$

 $a_1 + a_2 + a_{10} + a_{11} = 0$ $a_{21} + a_{30} + a_{22} + a_{31} = 0$

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

University of Bihać Bosnia and Herzegovina

					^				
	a ₃₇	a_{38}	<i>a</i> ₃₉	a_{40}	a_{41}	$a_{\!_{42}}$	a_{43}	a_{44}	a_{45}
	a_{28}	a_{29}	<i>a</i> ₃₀	<i>a</i> ₃₁	a_{32}	<i>a</i> ₃₃	<i>a</i> ₃₄	<i>a</i> ₃₅	<i>a</i> ₃₆
4	a_{19}	a_{20}	a_{21}	<i>a</i> ₂₂	X	a_{24}	a_{25}	a_{26}	a27
	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}
	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9
		_			<u>ч</u> у–				

	a37	a_{38}	<i>a</i> ₃₉	a_{40}	a_{41}	<i>a</i> ₄₂	a_{43}	<i>a</i> ₄₄	a_{45}	
	an	a	a30	a	a ₃₂	ч2 a ₃₃	a ₃₄	a.,		
J	u ₂₈	<i>u</i> ₂₉	<i>u</i> ₃₀	<i>u</i> ₃₁	\sim		<i>u</i> ₃₄	<i>u</i> ₃₅	<i>u</i> ₃₆	l
٦	$-a_{19}$	a_{20}	a_{21}	a_{22}	<u>×</u>	<i>a</i> ₂₄	u_{25}	u_{26}	<i>a</i> ₂₇	ſ
	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	a_{17}	a_{18}	
	a_{1}	a_2	a_3	a_4	a _s	a_6	a_7	a_8	a_9	

x

$$a_1 + a_2 + a_{10} + a_{11} = 0$$
$$a_{21} + a_{30} + a_{22} + a_{31} = 0$$

$$a_{20} + a_{10} + a_{11} + a_{12} + a_2 = 0$$

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					<u>~~</u>				
	a ₃₇	a_{38}	a ₃₉	a_{40}	a_{41}	<i>a</i> ₄₂	a ₄₃	$a_{\!$	<i>a</i> ₄₅
	a_{28}	a_{29}	<i>a</i> ₃₀	<i>a</i> ₃₁	<i>a</i> ₃₂	a ₃₃	a ₃₄	a35	a_{36}
4	a_{19}	<i>a</i> ₂₀	<i>a</i> ₂₁	<i>a</i> ₂₂	\times	a_{24}	<i>a</i> ₂₅	a_{26}	a27
	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	a_{17}	a_{18}
	$a_{\rm l}$	a_2	<i>a</i> ₃	a_4	a_{5}	a_6	a_7	$a_{\!_8}$	a_9

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					^				
	a ₃₇	a_{38}	<i>a</i> ₃₉	$a_{\!$	a_{41}	a_{42}	<i>a</i> ₄₃	a ₄₄	<i>a</i> ₄₅
	a_{28}	a_{29}	<i>a</i> ₃₀	<i>a</i> ₃₁	<i>a</i> ₃₂	<i>a</i> ₃₃	<i>a</i> ₃₄	a35	a_{36}
{	a_{19}	<i>a</i> ₂₀	<i>a</i> ₂₁	<i>a</i> ₂₂	X	a_{24}	<i>a</i> ₂₅	a_{26}	a27
	a_{10}	<i>a</i> ₁₁	a_{12}	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}
	$a_{\rm l}$	a_2	a_3	a_4	a ₅	a_6	a_7	a_8	a_9

$a_{12} + a_{20} + a_{21} + a_{22} + a_{30} = 0$

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					^				
	a ₃₇	a_{38}	a_{39}	$a_{\!$	a_{41}	$a_{\!_{42}}$	$a_{\!_{43}}$	<i>a</i> ₄₄	<i>a</i> ₄₅
	a_{28}	a_{29}	<i>a</i> ₃₀	<i>a</i> ₃₁	<i>a</i> ₃₂	<i>a</i> ₃₃	a ₃₄	a35	a_{36}
{	a_{19}	<i>a</i> ₂₀	<i>a</i> ₂₁	<i>a</i> ₂₂	X	<i>a</i> ₂₄	<i>a</i> ₂₅	a_{26}	a27
	a_{10}	<i>a</i> ₁₁	a_{12}	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	a_{17}	a_{18}
	a_1	a_2	a_3	a_4	a ₅	a_6	<i>a</i> ₇	a_8	a_9

$$a_{12} + a_{20} + a_{21} + a_{22} + a_{30} = 0$$

					<u>~~</u>				
	a ₃₇	a_{38}	<i>a</i> ₃₉	a_{40}	a_{41}	$a_{\!_{42}}$	$a_{\!_{43}}$	$a_{\!\scriptscriptstyle 44}$	a_{45}
	a_{28}	a_{29}	<i>a</i> ₃₀	a_{31}	<i>a</i> ₃₂	<i>a</i> ₃₃	<i>a</i> ₃₄	<i>a</i> ₃₅	<i>a</i> ₃₆
ł	•a ₁₉	a_{20}	<i>a</i> ₂₁	<i>a</i> ₂₂	X	a_{24}	<i>a</i> ₂₅	a_{26}	a27
	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	<i>a</i> ₁₄	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}
(a_1	a_2	<i>a</i> ₃	a_4	a _s	a_6	a_7	a_8	a_9

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino type tilings Edin Liđan

					^`					
	a ₃₇	a_{38}	a_{39}	a_{40}	a_{41}	$a_{\!_{42}}$	$a_{\!_{43}}$	$a_{\!$	a_{45}	
	a_{28}	a_{29}	<i>a</i> ₃₀	<i>a</i> ₃₁	<i>a</i> ₃₂	<i>a</i> ₃₃	<i>a</i> ₃₄	a ₃₅	<i>a</i> ₃₆	
{	a_{19}	<i>a</i> ₂₀	<i>a</i> ₂₁	a ₂₂	X	<i>a</i> ₂₄	<i>a</i> ₂₅	a_{26}	a27	ł
	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}	
	a_{1}	a_2	a_3	a_4	a ₅	a_6	<i>a</i> ₇	$a_{\!\scriptscriptstyle 8}$	a_9	

$$a_{12} + a_{20} + a_{21} + a_{22} + a_{30} = 0$$

 $a_1 = a_{31}$

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino

$a_{43} a_{44} $	
43 0444	<i>a</i> ₄₅
$a_{34} a_{35}$	<i>a</i> ₃₆
$a_{25} a_{26}$	a27
$a_{16} a_{17} $	a_{18}
$a_7 a_8$	<i>a</i> ₉
	$\begin{array}{c ccc} a_{34} & a_{35} \\ \hline a_{25} & a_{26} \\ \hline a_{16} & a_{17} \end{array}$

$$a_{12} + a_{20} + a_{21} + a_{22} + a_{30} = 0$$

					<u>~~</u>					
	a ₃₇	a_{38}	<i>a</i> ₃₉	$a_{\!40}$	a_{41}	$a_{\!_{42}}$	$a_{\!_{43}}$	$a_{\!$	<i>a</i> ₄₅	
	a_{28}	a29	<i>a</i> ₃₀	(a ₃₁)	<i>a</i> ₃₂	<i>a</i> ₃₃	a ₃₄	a35	a36	
٢	a_{19}	a_{20}	<i>a</i> ₂₁	<i>a</i> ₂₂	X	a_{24}	<i>a</i> ₂₅	a_{26}	a27	ļ
	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}	<i>a</i> ₁₇	a_{18}	
	(a_1)	a_2	<i>a</i> ₃	a_4	a _s	a_6	<i>a</i> ₇	a_8	a_9	

$$a_1 = a_3$$

Analogue

$$a_{31} = a_{16} = a_{37} = a_{22}$$

 $a_1 = a_{34} = a_{10} = a_{40} = a_{25}$
 $a_{37} = a_{13} = a_{28}$
 $a_{28} = a_4 = a_{19} = a_{43}$
 $a_{28} = a_7$

type tilings Edin Lidan Contents Introduction Tiling problems Polyomino Classification of polyominoes. Tilings with polyominoes.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

24

31

References

Contact Information

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

²⁵ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					^					
	a_1	a_{38}	a_{39}	a_{1}	a_{41}	a_{42}	a_{1}	<i>a</i> ₄₄	a_{45}	
	a_1	<i>a</i> ₂₉	<i>a</i> ₃₀	a_{1}	<i>a</i> ₃₂	<i>a</i> ₃₃	a_{l}	a ₃₅	<i>a</i> ₃₆	
٤	a_1	a_{20}	a_{21}	a_1	х	<i>a</i> ₂₄	a_1	a_{26}	a277	ļ
	a_1	<i>a</i> ₁₁	<i>a</i> ₁₂	a_{l}	a_{14}	<i>a</i> ₁₅	a_{l}	<i>a</i> ₁₇	a_{18}	
	a_1	a_2	a_3	a_1	a_{5}	a_6	a_1	a_8	a_9	
										1

Figure: Cells generated with a1

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

25 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					_^					
	a_1	a_{38}	a_{39}	a_{1}	a_{41}	a_{42}	a_{1}	<i>a</i> ₄₄	a_{45}	
	a_1	<i>a</i> ₂₉	a_{30}	a_{1}	<i>a</i> ₃₂	<i>a</i> ₃₃	a_{l}	<i>a</i> ₃₅	<i>a</i> ₃₆	
í	a_1	a_{20}	a_{21}	a_1	х	<i>a</i> ₂₄	a_1	<i>a</i> ₂₆	a277	ļ T
	a_1	<i>a</i> ₁₁	<i>a</i> ₁₂	a_{l}	a_{14}	<i>a</i> ₁₅	a_{l}	<i>a</i> ₁₇	a_{18}	
	a_{1}	a_2	a_3	a_{1}	a_{5}	a_6	a_{1}	a_8	a_9	1

Figure: Cells generated with a1

Analogue

$$a_2 = a_{34} = a_5, a_{34} = a_{11} = a_{41} = a_{26}$$

 $a_{11} = a_{44}, a_{20} = a_5, a_{29} = a_{14} = a_{34}$
 $a_8 = a_{29}, a_{38} = a_{17} = a_{32}, a_{17} = a_{29}$

Homology groups of generalized polyomino type tilings Edin Lidan Contents Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

25 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

²⁶ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

5
6
, 存
3
,
2

Figure: Cells generated with a2

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

26 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					^					
	a_1	a_2	a_{39}	a_{1}	a_{41}	a_2	a_1	a_2	<i>a</i> ₄₅	
	a_1	a_2	<i>a</i> ₃₀	a_{1}	<i>a</i> ₃₂	a_2	a_{1}	a_2	<i>a</i> ₃₆	
٤	a_1	a_2	a_{21}	a_1	х	a_2	a_{1}	a_2	a274	ł
	a_1	a_2	<i>a</i> ₁₂	a_{l}	a_{14}	a_2	a_{l}	a_2	a_{18}	
	a_1	a_2	a_3	a_1	a_{5}	a_2	a_1	a_2	a_9	

Figure: Cells generated with a2

Analogue

$$a_3 = a_{36} = a_6 = a_{27}$$

 $a_{39} = a_{18} = a_{42} = a_{27}, a_{12} = a_{33}$
 $a_{33} = a_9, a_{21}, a_{24} = a_9, a_{30} = a_{15}$

University of Bihać Bosnia and Herzegovina

31

Edin Liđan

Contents

ntroduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

²⁷ Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

					<u> </u>					
	a_1	a_2	<i>a</i> ₃	a_1	a_3	a_2	a_1	a_2	a_3	
	a_{l}	a_2	a_3	a_{1}			-	2	<i>a</i> ₃	
٤	a_1	a_2	a_3	a_1	х	a_2	a_1	a_2	a ₃ 4	ļ ſ
	a_{l}	a_2	<i>a</i> ₃	a_{1}	a_3	a_2	a_{l}	a_2	a_3	
	a_1	a_2	<i>a</i> ₃	a_1		<i>a</i> ₂	a_1	a_2	a_3	

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

ntroduction

iling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

27 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

	a_{1}	a_2	<i>a</i> ₃	a_1	a_3	a_2	a_1	a_2	a_3	
	a_{l}	a_2	a_3	a_{1}	a_3	a_2	a_{l}	a_2	<i>a</i> ₃	
٤	a_1	a_2	a_3	a_1	х	a_2	a_1	a_2	a ₃ 4	ļ
	a_{l}	a_2	<i>a</i> ₃	a_{1}	a_3	a_2	a_{l}	a_2	a_3	
	a_1	a_2	a_3	a_1	a_3	<i>a</i> ₂	a_1	a_2	a_3	
					-~-					

$2a_1 + 2a_2 = 0$	
$2a_2 + 2a_3 = 0$	
$2a_1 + 2a_3 = 0$	

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

27 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

	a_{1}	a_2	<i>a</i> ₃	a_{1}	a_3	a_2	a_1	a_2	a_3	
	a_{l}	a_2	a_3	$a_{\rm l}$	<i>a</i> ₃	a_2	a_{l}	a_2	a_3	
٤	a_1	a_2	a_3	a_1	х	a_2	a_1	a_2	a ₃ 4	Ļ
	a_{l}	a_2	<i>a</i> ₃	a_{l}	a_3	a_2	a_{l}	a_2	a_3	
	a_1	a_2	<i>a</i> ₃	a_1		a_2	a_1	a_2	a_3	

2a ₁	+	$2a_{2}$	=	0

$$2a_2 + 2a_3 = 0$$

$$2a_1 + 2a_3 = 0$$

$$3a_2 + a_1 + a_3 = 0$$

$$3a_3 + a_1 + a_2 = 0$$

$$3a_1 + a_2 + a_3 = 0$$

Homology groups of generalized polyomino type tilings

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

27 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

Homology groups of generalized polyomino

	a_1	a_2	<i>a</i> ₃	a_{1}	a_3	a_2	a_1	a_2	a_3	
	a_{l}	a_2	a_3	a_{l}	<i>a</i> ₃	a_2	a_{l}	a_2	<i>a</i> ₃	
1	a_1	a_2	a_3	a_1	х	a_2	a_1	a_2	a ₃ 4	ļ
	a_{l}	a_2	<i>a</i> ₃	a_{l}	a_3	a_2	a_{l}	a_2	a_3	
	a_1	a_2	a_3	a_1	a_3	<i>a</i> ₂	a_1	a_2	a_3	
					-4-					

$2a_1 + 2a_2 = 0$
$2a_2 + 2a_3 = 0$
$2a_1 + 2a_3 = 0$
$3a_2 + a_1 + a_3 = 0$
$3a_3 + a_1 + a_2 = 0$
$3a_1 + a_2 + a_3 = 0$

Figure: Cells generated with a₃

$$\bullet < a_1, a_2, a_3 | 2a_1 = 2a_2 = 2a_3 = a_1 + a_2 + a_3 = 0 >$$

type tilings Edin Lidan Contents Introduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

27 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

	a_{1}	a_2	<i>a</i> ₃	a_{1}	a_3	a_2	a_1	a_2	a_3	
	a_{l}	a_2	a_3	a_{l}	<i>a</i> ₃	a_2	a_{l}	a_2	a_3	
1	a_1		<i>a</i> ₃						a ₃ 4	2
	a_{l}	a_2	<i>a</i> ₃	a_{l}	a_3	a_2	a_{l}	a_2	a_3	
	a_1	<i>a</i> ₂	a_3	a_1		a_2	a_1	a_2	a_3	

$2a_1 + 2a_2 = 0$
$2a_2 + 2a_3 = 0$
$2a_1 + 2a_3 = 0$
$3a_2 + a_1 + a_3 = 0$
$3a_3 + a_1 + a_2 = 0$
$3a_1 + a_2 + a_3 = 0$

$$\bullet \ < a_1, a_2, a_3 | 2a_1 = 2a_2 = 2a_3 = a_1 + a_2 + a_3 = 0 >$$

$$15a_1 + 14a_2 + 15a_3 = a_1 + a_3$$

University of Bihać Bosnia and Herzegovina

31

Edin Liđan

Contents

ntroduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

28 Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

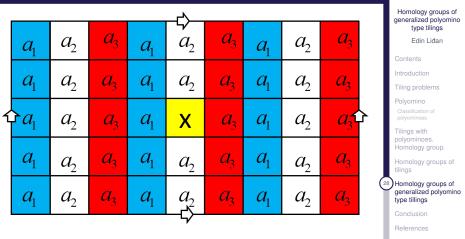


Figure: Coloring the chessboard

University of Bihać Bosnia and Herzegovina

31

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

31

References

Contact Information

University of Bihać Bosnia and Herzegovina

The same idea can be used for studying tilings on surfaces of genus g. Which are subdivided in more general cells grids.

Edin Liđan

Contents

Introduction

Filing problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31

Contact Information

- J. H. Conway, J. C. Lagarias: *Tilings with polyominoes and combinatorial group theory*, Journal of Combinatorial Theory, Series A 53, (1990), 183 208.
- [2] M. Reid: *Tile homotopy groups*, L'Enseignement Math'ematique 49 (2003), no. 1–2, pp. 123 – 155.

Edin Liđan

Contents

Introduction

Tiling problems

Polyomino Classification of polyominoes

Tilings with polyominoes. Homology group.

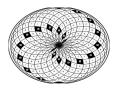
Homology groups of tilings

Homology groups of generalized polyomino type tillings

Conclusion

References

31


Contact Information

University of Bihać Bosnia and Herzegovina

Thank you for your attention.

Edin Liđan lidjan_edin@hotmail.com University of Bihać Bosnia and Herzegovina www.unbi.ba

Questions?

