

Graphs preserving total distance upon vertex removal

28.09.2018

Snježana Majstorović

• Wiener index or total distance of a connected graph G is the sum of distances between all (unordered) pairs of vertices in G:

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d_G(u,v) = \frac{1}{2} \sum_{v \in V(G)} t_G(v).$$

• first appearence: 1947. by H. Wiener, chemistry: the approximation formula for the boiling point of paraffin (correlations between the boiling points of paraffins and the structure of their molecules.)

 \rightarrow Wiener index = topological index in chemistry

- first math paper: 1976. by R.C. Entringer, D. E. Jackson and D. A. Snyder
- \rightarrow Wiener index = graph invariant in mathematics
- nowadays: sociometry, social networks
- \rightarrow Wiener index \sim centrality measure

Wiener index - very popular subject of study

LOTS OF CONJECTURES...

• Conjecture 1: Let G be a graph with diameter d > 2 and order 2d + 1. Then $W(G) \leq W(C_{2d+1})$.

• Conjecture 2: Among all regular graphs on n vertices, the maximum Wiener index is attained by a graph with the maximum possible diameter.

• Conjecture 3: In the class of graphs G on n vertices, W(L(G)) attains maximum for some dumbbell graph.

• Conjecture 4: For every integer $g \ge 3$, there exist infinitely many graphs G of girth g satisfying W(G) = W(L(G)).

Wiener index - very popular subject of study

LOTS OF CONJECTURES...

• Conjecture 1: Let G be a graph with diameter d > 2 and order 2d + 1. Then $W(G) \leq W(C_{2d+1})$.

• Conjecture 2: Among all regular graphs on n vertices, the maximum Wiener index is attained by a graph with the maximum possible diameter.

• Conjecture 3: In the class of graphs G on n vertices, W(L(G)) attains maximum for some dumbbell graph.

• Conjecture 4: For every integer $g \ge 3$, there exist infinitely many graphs G of girth g satisfying W(G) = W(L(G)).

Wiener index - very popular subject of study

LOTS OF CONJECTURES...

• Conjecture 1: Let G be a graph with diameter d > 2 and order 2d + 1. Then $W(G) \le W(C_{2d+1})$.

• **Conjecture 2**: Among all regular graphs on n vertices, the maximum Wiener index is attained by a graph with the maximum possible diameter.

• Conjecture 3: In the class of graphs G on n vertices, W(L(G)) attains maximum for some dumbbell graph.

• Conjecture 4: For every integer $g \ge 3$, there exist infinitely many graphs G of girth g satisfying W(G) = W(L(G)).

... AND OPEN PROBLEMS

 \bullet Problem 1: What is the maximum Wiener index among graphs of order n and diameter d ?

• Problem 2: Find the maximum Wiener index among unicyclic graphs with n vertices and matching number $i, 3 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1$.

• Problem 3: Do the extremal graphs for the maximum Wiener index in the classes of k-connected and k-edge-connected graphs coincide?

[M. Knor, R. Škrekovski and A. Tepeh: Mathematical aspects on Wiener index, Ars Math. Contemp. 11 (2016) 327–352.]

• Problem 4: [Soltes, 1991.] Find all graphs G for which W(G) = W(G - v) $\forall v \in V(G)$. One such graph is C_{11} .

... AND OPEN PROBLEMS

 \bullet Problem 1: What is the maximum Wiener index among graphs of order n and diameter d ?

• **Problem 2**: Find the maximum Wiener index among unicyclic graphs with n vertices and matching number $i, 3 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1$.

• **Problem 3**: Do the extremal graphs for the maximum Wiener index in the classes of *k*-connected and *k*-edge-connected graphs coincide?

[M. Knor, R. Škrekovski and A. Tepeh: Mathematical aspects on Wiener index, Ars Math. Contemp. 11 (2016) 327–352.]

• Problem 4: [Soltes, 1991.] Find all graphs G for which W(G) = W(G - v) $\forall v \in V(G)$. One such graph is C_{11} .

... AND OPEN PROBLEMS

 \bullet Problem 1: What is the maximum Wiener index among graphs of order n and diameter d ?

• **Problem 2**: Find the maximum Wiener index among unicyclic graphs with n vertices and matching number $i, 3 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1$.

• **Problem 3**: Do the extremal graphs for the maximum Wiener index in the classes of *k*-connected and *k*-edge-connected graphs coincide?

[M. Knor, R. Škrekovski and A. Tepeh: Mathematical aspects on Wiener index, Ars Math. Contemp. 11 (2016) 327-352.]

• Problem 4: [Soltes, 1991.] Find all graphs G for which W(G) = W(G - v) $\forall v \in V(G)$. One such graph is C_{11} .

... AND OPEN PROBLEMS

 \bullet Problem 1: What is the maximum Wiener index among graphs of order n and diameter d ?

• **Problem 2**: Find the maximum Wiener index among unicyclic graphs with n vertices and matching number $i, 3 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1$.

• **Problem 3**: Do the extremal graphs for the maximum Wiener index in the classes of *k*-connected and *k*-edge-connected graphs coincide?

[M. Knor, R. Škrekovski and A. Tepeh: Mathematical aspects on Wiener index, Ars Math. Contemp. 11 (2016) 327-352.]

• Problem 4: [Šoltes, 1991.] Find all graphs G for which W(G) = W(G - v) $\forall v \in V(G)$. One such graph is C_{11} .

Problem: Find all graphs G for which

W(G) = W(G - v)

for some particular vertex v.

Solution: (We show that) there are infinitely many graphs with this property!!!

\blacklozenge **Problem**: Find all graphs G for which

$$W(G) = W(G - v)$$

for some particular vertex v.

Solution: (We show that) there are infinitely many graphs with this property!!!

\blacklozenge Problem: Find all graphs G for which

$$W(G) = W(G - v)$$

for some particular vertex v.

Solution: (We show that) there are infinitely many graphs with this property!!!

\blacklozenge Problem: Find all graphs G for which

$$W(G) = W(G - v)$$

for some particular vertex v.

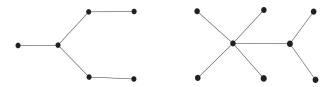
Solution: (We show that) there are infinitely many graphs with this property!!!

A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and application, Acta Appl. Math. 66 (2001) 211–249

- \rightarrow several examples of G for which G v = T (T tree) and W(G) = W(T)
- ightarrow for G as a join of T and some vertex v_0 : W(G) = W(T) if and only if T is:

- A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and application, Acta Appl. Math. 66 (2001) 211-249
- \rightarrow several examples of G for which G v = T (T tree) and W(G) = W(T)
- \rightarrow for G as a join of T and some vertex v_0 : W(G) = W(T) if and only if T is:

- A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and application, Acta Appl. Math. 66 (2001) 211-249
- \rightarrow several examples of G for which G-v=T (T tree) and W(G)=W(T)
- \rightarrow for G as a join of T and some vertex v_0 : W(G) = W(T) if and only if T is:



• What are the conditions on the particular vertex v_0 that we wish to remove from G so that $W(G) = W(G - v_0)$?

Answer

Let G be a graph and v_0 its vertex so that $W(G) = W(G - v_0)$. Then: (i) $d(v_0) \neq 1$, $W(G) = W(G - v_0) + t_{G - v_0}(u) + |V(G - v_0)|$, $v_0 u \in E(G)$ (ii) v_0 belongs to at least one cycle, (iii) if $d(v_0) = 2$, then v_0 is not a vertex of triangle, (iv) if $d(v_0) = 2$, then v_0 is not a vertex of chordless 4-cycle.

• What are the conditions on the particular vertex v_0 that we wish to remove from G so that $W(G) = W(G - v_0)$?

Answer

Let *G* be a graph and v_0 its vertex so that $W(G) = W(G - v_0)$. Then: (*i*) $d(v_0) \neq 1$, $W(G) = W(G - v_0) + t_{G-v_0}(u) + |V(G - v_0)|$, $v_0u \in E(G)$ (*ii*) v_0 belongs to at least one cycle, (*iii*) if $d(v_0) = 2$, then v_0 is not a vertex of triangle, (*iv*) if $d(v_0) = 2$, then v_0 is not a vertex of chordless 4-cycle.

• K. Knor, S. Majstorović, R. Škrekovski, Graphs whose Wiener index does not change when a specific vertex is deleted, Discrete Appl.

Math. 238 (2018) 126-132.

Theorem 1 [R. Škrekovski, M. Knor, S.M.]

Let $c \ge 5$. There exists infinitely many unicyclic graphs G with a cycle of length c and $W(G) = W(G - v_0)$.

• K. Knor, S. Majstorović, R. Škrekovski, Graphs whose Wiener index does not change when a specific vertex is deleted, Discrete Appl.

Math. 238 (2018) 126-132.

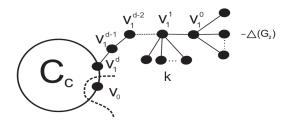
Theorem 1 [R. Škrekovski, M. Knor, S.M.]

Let $c \ge 5$. There exists infinitely many unicyclic graphs G with a cycle of length c and $W(G) = W(G - v_0)$.

Theorem 1 [R. Škrekovski, M. Knor, S.M.]

Let $c \ge 5$. There exists infinitely many unicyclic graphs G with a cycle of length c and $W(G) = W(G - v_0)$.

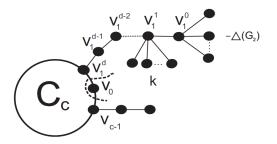
 $c \ge 8$



Theorem 1 [R. Škrekovski, M. Knor, S.M.]

Let $c \ge 5$. There exists infinitely many unicyclic graphs G with a cycle of length c and $W(G) = W(G - v_0)$.

 $c = \{5, 6, 7\}$



Theorem 2 [R. Škrekovski, M. Knor, S.M.]

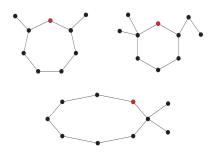
Let $c \in \{3,4\}$. Then there is no unicyclic graph G with a cycle of length c satisfying $W(G) = W(G - v_0)$.

Theorem 3 [R. Škrekovski, M. Knor, S.M.]

A unicyclic graph G on n vertices for which $W(G)=W(G-v_0)$ exists if and only if $n\geq 9.$

Theorem 3 [R. Škrekovski, M. Knor, S.M.]

A unicyclic graph G on n vertices for which $W(G)=W(G-v_0)$ exists if and only if $n\geq 9.$



Lemma 1 [R. Škrekovski, M. Knor, S.M.]

Let C_c be a cycle of even length, c = 2a, such that a is a square $(C_c = v_0 v_1 v_2 \cdots v_n v_0)$. Moreover, let G_m be a graph with a vertex u for which $t_{G_m}(u) = \frac{a}{3}[a^2 - 6a + 2]$. Let H be obtained from G_m and C_c by identifying u with v_i , where $i = a - \sqrt{a}$. Then $W(H) = W(H - v_0)$.

Lemma 2 [R. Škrekovski, M. Knor, S.M.]

Let C_c be a cycle of odd length, c = 2a + 1, such that 4a + 1 is a square $(C_c = v_0v_1v_2\cdots v_nv_0)$. Moreover, let G_m be a graph with a vertex u for which $t_{G_m}(u) = \frac{a}{6}[2a^2 - 9a - 5]$. Let H be obtained from G_m and C_c by identifying u with v_i , where $i = \frac{1}{2}(2a + 1 - \sqrt{4a + 1})$. Then $W(H) = W(H - v_0)$.

Lemma 1 [R. Škrekovski, M. Knor, S.M.]

Let C_c be a cycle of even length, c = 2a, such that a is a square $(C_c = v_0v_1v_2\cdots v_nv_0)$. Moreover, let G_m be a graph with a vertex u for which $t_{G_m}(u) = \frac{a}{3}[a^2 - 6a + 2]$. Let H be obtained from G_m and C_c by identifying u with v_i , where $i = a - \sqrt{a}$. Then $W(H) = W(H - v_0)$.

Lemma 2 [R. Škrekovski, M. Knor, S.M.]

Let C_c be a cycle of odd length, c = 2a + 1, such that 4a + 1 is a square $(C_c = v_0v_1v_2\cdots v_nv_0)$. Moreover, let G_m be a graph with a vertex u for which $t_{G_m}(u) = \frac{a}{6}[2a^2 - 9a - 5]$. Let H be obtained from G_m and C_c by identifying u with v_i , where $i = \frac{1}{2}(2a + 1 - \sqrt{4a + 1})$. Then $W(H) = W(H - v_0)$.

Lemma 1 [R. Škrekovski, M. Knor, S.M.]

Let C_c be a cycle of even length, c = 2a, such that a is a square $(C_c = v_0v_1v_2\cdots v_nv_0)$. Moreover, let G_m be a graph with a vertex u for which $t_{G_m}(u) = \frac{a}{3}[a^2 - 6a + 2]$. Let H be obtained from G_m and C_c by identifying u with v_i , where $i = a - \sqrt{a}$. Then $W(H) = W(H - v_0)$.

Lemma 2 [R. Škrekovski, M. Knor, S.M.]

Let C_c be a cycle of odd length, c = 2a + 1, such that 4a + 1 is a square $(C_c = v_0v_1v_2\cdots v_nv_0)$. Moreover, let G_m be a graph with a vertex u for which $t_{G_m}(u) = \frac{a}{6}[2a^2 - 9a - 5]$. Let H be obtained from G_m and C_c by identifying u with v_i , where $i = \frac{1}{2}(2a + 1 - \sqrt{4a + 1})$. Then $W(H) = W(H - v_0)$.

Basic tool:

Theorem (O. E. Polansky & D. Bonchev, 1986)

Let G_u and G_v be two graphs with n_u and n_v vertices, respectively, and let $u \in V(G_u)$, $v \in V(G_v)$.

(a) If G arises from G_u and G_v by connecting u and v by an edge, then

$$W(G) = W(G_u) + W(G_v) + n_u t_{G_v}(v) + n_v t_{G_u}(u) + n_u n_v.$$

(b) If G arises from G_u and G_v by identifying u and v, then

 $W(G) = W(G_u) + W(G_v) + (n_u - 1)t_{G_v}(v) + (n_v - 1)t_{G_u}(u).$

Basic tool:

Theorem (O. E. Polansky & D. Bonchev, 1986)

Let G_u and G_v be two graphs with n_u and n_v vertices, respectively, and let $u \in V(G_u)$, $v \in V(G_v)$.

(a) If G arises from G_u and G_v by connecting u and v by an edge, then

$$W(G) = W(G_u) + W(G_v) + n_u t_{G_v}(v) + n_v t_{G_u}(u) + n_u n_v.$$

(b) If G arises from G_u and G_v by identifying u and v, then

$$W(G) = W(G_u) + W(G_v) + (n_u - 1)t_{G_v}(v) + (n_v - 1)t_{G_u}(u).$$

Theorem 4 [R. Škrekovski, M. Knor, S.M.]

Let G be an arbitrary graph. Then there are infinitely many connected graphs H, containing G as an induced subgraph, and such that $W(H) = W(H - v_0)$ for some vertex $v_0 \in V(H) \setminus V(G)$.

• If G is unicyclic and $W(G) = W(G - v_0)$, then $d(v_0) = 2$.

Question: are there graphs G for which $W(G) = W(G - v_0)$ for $d(v_0) > 2$?

• If G is unicyclic and $W(G) = W(G - v_0)$, then $d(v_0) = 2$.

Question: are there graphs G for which $W(G) = W(G - v_0)$ for $d(v_0) > 2$?

• If G is unicyclic and $W(G) = W(G - v_0)$, then $d(v_0) = 2$.

Question: are there graphs G for which $W(G)=W(G-v_0)$ for $d(v_0)>2$?

Theorem 5 [R. Škrekovski, M. Knor, S.M.]

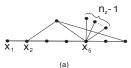
For every $k \ge 3$ there exist infinitely many graphs G with vertex v such that $d_G(v) = k$ and W(G) = W(G - v).

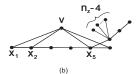
Idea of the proof: For each k we show the existence of a graph G_1 with a vertex v such that $d_{G_1}(v) = k$ and $W(G_1) = W(G_1 - v)$. Then we construct an infinite class of graphs by attaching to G_1 a new graph G_2 .

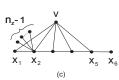
Theorem 5 [R. Škrekovski, M. Knor, S.M.]

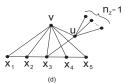
For every $k \ge 3$ there exist infinitely many graphs G with vertex v such that $d_G(v) = k$ and W(G) = W(G - v).

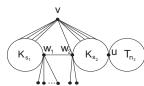
Idea of the proof: For each k we show the existence of a graph G_1 with a vertex v such that $d_{G_1}(v) = k$ and $W(G_1) = W(G_1 - v)$. Then we construct an infinite class of graphs by attaching to G_1 a new graph G_2 .











Snježana Majstorović Graphs preserving total distance upon vertex removal

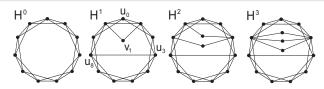
High degree vertices (d(v) is a function of |V(G)|)....

Theorem 6 [R. Škrekovski, M. Knor, S.M.]

Let $n \ge 7$. Then there exists an n-vertex graph G with vertex v such that $d_G(v) = n - 2$ and W(G) = W(G - v).

Theorem 7 [R. Škrekovski, M. Knor, S.M.]

Let $n \ge 7$. Then there exists an *n*-vertex graph G with vertex v such that $d_G(v) = n - 1$ and W(G) = W(G - v).



Theorem 8 [R. Škrekovski, M. Knor, S.M.]

If G is an $n\text{-vertex graph for which } \delta(G) \geq n/2,$ then $W(G) \neq W(G-v)$ for every $v \in V(G).$

Some open problems

Well.... Šoltes's problem is still open!

• Are there k-regular connected graphs G other than C_{11} for which the equality W(G) = W(G - v) holds for at least one vertex $v \in V(G)$?

• For a given r, find (infinitely many) graphs G for which

$$W(G) = W(G - v_1) = W(G - v_2) = \dots = W(G - v_r)$$

for some distinct vertices $v_1, \ldots, v_r \in V(G)$.

Some open problems

Well.... Šoltes's problem is still open!

• Are there k-regular connected graphs G other than C_{11} for which the equality W(G) = W(G - v) holds for at least one vertex $v \in V(G)$?

• For a given r, find (infinitely many) graphs G for which

$$W(G) = W(G - v_1) = W(G - v_2) = \dots = W(G - v_r)$$

for some distinct vertices $v_1, \ldots, v_r \in V(G)$.

Some open problems

Well.... Šoltes's problem is still open!

- Are there k-regular connected graphs G other than C_{11} for which the equality W(G) = W(G v) holds for at least one vertex $v \in V(G)$?
- For a given r, find (infinitely many) graphs G for which

$$W(G) = W(G - v_1) = W(G - v_2) = \dots = W(G - v_r)$$

for some distinct vertices $v_1, \ldots, v_r \in V(G)$.

End of slides

Thank you!

End of slides

Thank you!