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Parallelogram Polyominoes

A polyomino is a set of unit squares of the plane, considered
up to global translation.
A parallelogram polyomino (PP) is a connected polyomino
whose boundary is the union of two North-East paths.
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It is well-known that the number of PPs with half-perimeter
n+ 1 is the Catalan number Catn = 1

n+1

(
2n
n

)
.

These are recurring objects in combinatorics, and also occur as
simple models in statiscal physics.



Parallelogram Polyominoes

We want to count polyominoes by: number of rows (height),
number of columns (width), and total number of unit squares
(area)

PP (x, y, q) =
∑

p∈PP

xheight(p)ywidth(p)qarea(p)
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(area)
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∑

p∈PP
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Introduce the series

Theorem[Bousquet-Mélou, Viennot ’92]

PP (x, y, q) = −xN̂(x, y, q)

N(x, y, q)



Encoding of polyominoes

Let p be a PP with n columns. Let b1, . . . , bn be the number
of cells of each column from left to right.
For i = 2, . . . , n, let ai be the number of common rows
between the i− 1th and ith column.

b1, . . . , b6 = 4, 5, 5, 4, 1, 4

a2, . . . , a6 = 3, 5, 4, 1, 1



Encoding of polyominoes

Let p be a PP with n columns. Let b1, . . . , bn be the number
of cells of each column from left to right.
For i = 2, . . . , n, let ai be the number of common rows
between the i− 1th and ith column.

b1, . . . , b6 = 4, 5, 5, 4, 1, 4

a2, . . . , a6 = 3, 5, 4, 1, 1

By convention set a1 = 1. So one can encode a PP of width n
by a sequence

1 = a1 ≤ b1 ≥ a2 ≤ b2 · · · ≥ an ≤ bn.
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certain number of commutations ab = ba, bd = db, etc... We
then call heap of pieces any word on the alphabet P up to the
allowed commutations.
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Heaps

Fix a set of pieces P = {a, b, c, . . .} for which we impose a
certain number of commutations ab = ba, bd = db, etc... We
then call heap of pieces any word on the alphabet P up to the
allowed commutations.

In our cases pieces are segments of integers
[i, j] = {i, i+ 1, · · · , j}.
Two segments commute iff they are disjoint.

Such a heap can then be
represented by letting the
pieces drop one by one when
reading the word.

[9,11][7][9,11][2,4][13,14][3,7][6,8]

1 2 3 4 5 6 7 8 9 101112131415



PPs and heaps

Recall that to a PP we associated sequences ai and bi.

Bousquet-Mélou and Viennot showed if one stacks the
segments [an, bn], . . . , [a1, b1], this constitutes a bijection
between PPs and semi-pyramids, i.e. heaps with a unique
maximal element, which is of the form [1, b].
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It is easily shown that our statistics on polyominoes can be
transported on heaps easily.

Then Viennot’s inversion lemma helps us count numerous
families of heaps. The idea is to consider trivial heaps, that is
when all segments of the heaps are disjoint. The alternating
series of trivial heaps is given precisely by N(x, y, q).

Furthermore, when multiplied by this series, cancellations
occur in the series counting semi-pyramids: what is left is a
series counting certain trivial heaps, which can be expressed as
N̂(x, y, q), and that completes the proof.

We want to adapt this proof to the case of periodic
parallelogram polyominoes.



Periodic PP

A periodic PP (PPP) is a PP that one “extends periodically”:
this can be encoded by an integer c not larger than the height
of the first or last columns, which represents the overlap
between these columns in the periodic extension.
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Periodic PP

A periodic PP (PPP) is a PP that one “extends periodically”:
this can be encoded by an integer c not larger than the height
of the first or last columns, which represents the overlap
between these columns in the periodic extension.

PPP (x, y, q) :=
∑

p∈PPP

xheight’(p)ywidth(p)qarea(p)

Theorem[Biagioli, Jouhet, N. ’17]

PPP (x, y, q) = −y ∂yN(x, y, q)

N(x, y, q)

c = 5



Proof

1 2 3 4 5 6 7

If one defines a1 = c, one gets a sequence

a1 ≤ b1 ≥ a2 ≤ b2 · · · ≥ an ≤ bn≥ a1.



Proof

1 2 3 4 5 6 7

By stacking the segments [ai, bi], one shows that PPPs are in
bijection with heaps of segments with a special condition
between minima and maxima (special heaps).

If one defines a1 = c, one gets a sequence

a1 ≤ b1 ≥ a2 ≤ b2 · · · ≥ an ≤ bn≥ a1.
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