◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Baysian Statistics by Means of Heuristic Methods

Antonio Nuić

Department of Mathematics, Osijek

september 2018.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bayesian statistics

2 Monte Carlo method and approximation

• Monte Carlo method and approximation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Based on Bayes' rule that provides a rational method for updating beliefs in light of new information.

Bayesian methods provide:

- parameter estimates with good statistical properties;
- parsimonious descriptions of observed data;
- predictions for missing data and forecasts of future data;
- a computational framework for model estimation, selection and validation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- For each numerical value θ ∈ Θ, our prior distribution p(θ) describes our belief that θ represents the true population characteristics.
- **②** For each $\theta \in \Theta$ and $y \in \mathcal{Y}$, our sampling model $p(y|\theta)$ describes our belief that y would be the outcome of our study if we knew θ to be true. Once we obtain the data y, the last step is to update our beliefs about θ .
- For each numerical value of θ ∈ Θ, our posterior distribution p(θ|y) describes our belief that θ is the true value, having observed dataset y.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

Let X be random variable (or random vector) and x its observed value. Let $f(x|\theta)$ be its density function. Function of parameter θ :

$$L(\theta|x) := f(x|\theta)$$

, $\theta \in \Phi$ (1.2) is called likelihood function of statistic X based on observed value x.

Theorem

(Bayes' theorem) Let A and B be events in Ω and assume P(B) > 0. Then:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

This equation is called Bayes' formula.

Example

Assume we have a box that contains n white or black balls. Proportion of white balls is represented with random variable P. If the first drawn ball is white, what is the probability of $P = p_0$. To solve this we assume that all possible outcomes of P are equally likely. In other words, we choose uniform distribution on $\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\}$ as prior distribution of P. Then we derive posterior distribution of P by using Bayes' theorem and we have:

$$P(P = p_0 | \text{ given data}) = rac{p_0 \cdot rac{1}{n+1}}{rac{1}{2}} = rac{2p_0}{n+1}.$$

For n = 3: Prior distribution:

Posterior distribution:

(0	$\frac{1}{3}$	$\frac{2}{3}$	1	
($\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$)
(0	$\frac{1}{3}$	<u>2</u> 3	1)
	0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example

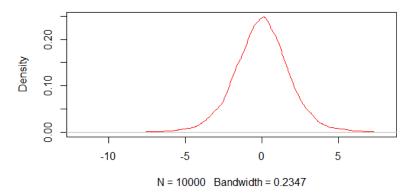
Out of 860 individuals y = 441 (51%) agree with supreme court ruling. Let θ be the population proportion agreeing with the ruling. Using a binomial sampling model and a uniform prior distribution, the posterior distribution of θ is beta(442, 420). Using the Monte Carlo algorithm, we can obtain samples of the log-odds $\gamma = \log \left[\frac{\theta}{1-\theta}\right]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

R code: a = 1; b = 1theta.prior.mc=rbeta (10000, a, b) gamma.prior.mc= log(theta.prior.mc/(1-theta.prior.mc)) n0 = 860 - 441; n1 = 441theta.post.mc=rbeta (10000, a + n1, b + n0) gamma.post.mc= log(theta.post.mc/(1?theta.post.mc))

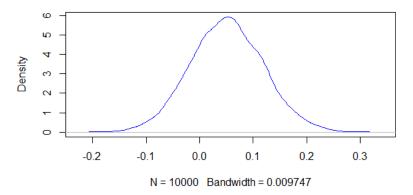
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

prior density of log-odds



Slika: Prior density function of log-odds

posterior density of log-odds



Slika: Posterior density function of log-odds

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- P.D.Hoff, A First Course in Bayesian Statistical Methods, Department of Statistics University of Washington, Springer 2009.
- P. Congdon *Applied Bayesian Modeling*, University of London, UK, John Wiley and Sons, 2003.

MacKay, D. J. C. (1999). *Introduction to Monte Carlo methods*. In Learning in Graphical Models, M. I. Jordan (ed), MIT Press, 1999.