Mathematical model for determining octanol-water partition coefficient of alkanes

Jelena Sedlar

University of Split, Croatia

2nd Croatian Combinatorial Days, Zagreb, Croatia

September 27-28, 2018

Chemical molecules are the subject of the study of chemistry and they consist of:

- atoms,
- bonds.

Image: Image:

3

Chemical molecules are the subject of the study of chemistry and they consist of:

- atoms,
- bonds.

Graph theoretical model of a molecule is a graph in which:

- atoms are represented by vertices,
- bonds are represented by edges.

The example of molecules represented by a graph can be:

3

The example of molecules represented by a graph can be:

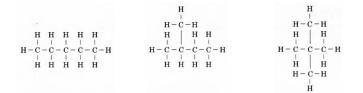
• isomers of pentane,

3

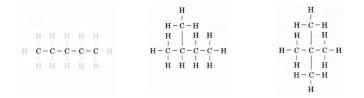
The example of molecules represented by a graph can be:

The example of molecules represented by a graph can be:

The example of molecules represented by a graph can be:



The example of molecules represented by a graph can be:



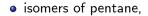
The example of molecules represented by a graph can be:

The example of molecules represented by a graph can be:

• isomers of pentane,

- < A

The example of molecules represented by a graph can be:



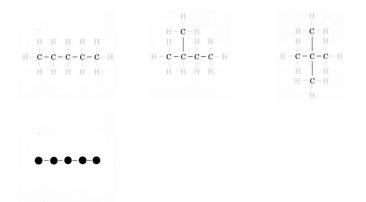
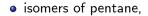


Image: Image:

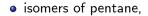
The example of molecules represented by a graph can be:

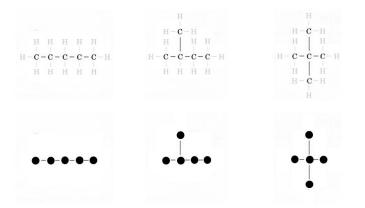




- < A

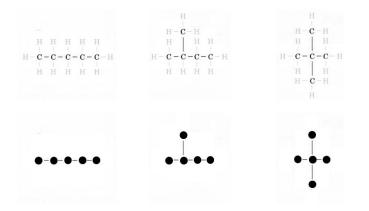
The example of molecules represented by a graph can be:





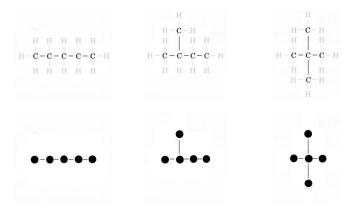
The example of molecules represented by a graph can be:

- isomers of pentane,
- isomers of octanes,



The example of molecules represented by a graph can be:

- isomers of pentane,
- isomers of octanes,
- isomers of nonanes,...



Chemical properties of the molecules which are of interest to people are various, for example:

- boiling point,
- melting point,
- heat capacities,
- density,
- heat of vaporization,
- enthalpy of formation,
- motor octane number,
- molar refraction,

- total surface area,
- octanol-water partition coefficient,
- molar volume,
- entropy,
- acentric factor.

Chemical properties of molecules are usually presented in a table.

Molecule	Entropy	AcenFac	HVAP	DHVAP
n-octane	111.70	0.39790	73.19	9.915
2-methyl-heptane	109.80	0.37792	70.30	9.484
3-methyl-heptane	111.30	0.37100	71.30	9.521
4-methyl-heptane	109.30	0.37150	70.91	9.483
3-ethyl-hexane	109.40	0.36247	71.70	9.476
2,2-dimethyl-hexane	103.40	0.33943	67.70	8.915
2,3-dimethyl-hexane	108.00	0.34825	70.20	9.272
2,4-dimethyl-hexane	107.00	0.34422	68.50	9.029
2,5-dimethyl-hexane	105.70	0.35683	68.60	9.051
3,3-dimethyl-hexane	104.70	0.32260	68.50	8.973
3,4-dimethyl-hexane	106.60	0.34035	70.20	9.316
2-methyl-3-ethyl-pentane	106.10	0.33243	69.70	9.209
3-methyl-3-ethyl-pentane	101.50	0.30690	69.30	9.081
2,2,3-trimethyl-pentane	101.30	0.30082	67.30	8.826
2,2,4-trimethyl-pentane	104.10	0.30537	64.87	8.402
2,3,3-trimethyl-pentane	102.10	0.29318	68.10	8.897
2,3,4-trimethyl-pentane	102.40	0.31742	68.37	9.014
2,2,3,3-tetramethylbutane	93.06	0.25529	66.20	8.410

Obtaining chemical properties of the molecules can be done:

э

Obtaining chemical properties of the molecules can be done:

• experimentally in a laboratory - expensive;

Obtaining chemical properties of the molecules can be done:

- experimentally in a laboratory expensive;
- mathematically cheap.

Obtaining chemical properties of the molecules can be done:

- experimentally in a laboratory expensive;
- mathematically cheap.

Mathematical model for obtaining chemical properties is based on:

• deriving topological index of a graph which correlates well with the chemical property of a molecule.

Obtaining chemical properties of the molecules can be done:

- experimentally in a laboratory expensive;
- mathematically cheap.

Mathematical model for obtaining chemical properties is based on:

• deriving topological index of a graph which correlates well with the chemical property of a molecule.

Wiener index of a graph is the first and maybe the best studied example, it is defined as

$$W(G) = \sum_{u,v \in V(G)} d(u,v)$$

and correlates well with a boiling point of paraffines.

In 1972 a paper [1] was published, in which approximate formulas for the total π -electron energy (*E*) were derived.

[1] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π —electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.

In 1972 a paper [1] was published, in which approximate formulas for the total π -electron energy (*E*) were derived.

[1] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π —electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.

In the formulas for the total π -electron energy the following terms ocured:

In 1972 a paper [1] was published, in which approximate formulas for the total π -electron energy (*E*) were derived.

[1] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π —electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.

In the formulas for the total π -electron energy the following terms ocured:

the first Zagreb index

$$M_1(G) = \sum_{v \in V(G)} \deg(v)^2$$

In 1972 a paper [1] was published, in which approximate formulas for the total π -electron energy (*E*) were derived.

[1] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π —electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.

In the formulas for the total π -electron energy the following terms ocured:

the first Zagreb index

$$M_1(G) = \sum_{v \in V(G)} \deg(v)^2$$

• the Forgotten index

$$F(G) = \sum_{v \in V(G)} \deg(v)^3$$

The predictive ability of the F-index was tested in [2]:

- using a dataset of octane isomers,
- found at http://www.moleculardescriptors.eu/dataset/dataset.htm,
- concurring with a suggestion of the International Academy of Mathematical Chemistry.

[2] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.

The predictive ability of the F-index was tested in [2]:

- using a dataset of octane isomers,
- found at http://www.moleculardescriptors.eu/dataset/dataset.htm,
- concurring with a suggestion of the International Academy of Mathematical Chemistry.

[2] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.

The result of the test showed that both F and M_1 have similar predictive ability, i.e. both:

The predictive ability of the F-index was tested in [2]:

- using a dataset of octane isomers,
- found at http://www.moleculardescriptors.eu/dataset/dataset.htm,
- concurring with a suggestion of the International Academy of Mathematical Chemistry.

[2] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.

The result of the test showed that both F and M_1 have similar predictive ability, i.e. both:

correlate well with entropy and acentric factor;

The predictive ability of the F-index was tested in [2]:

- using a dataset of octane isomers,
- found at http://www.moleculardescriptors.eu/dataset/dataset.htm,
- concurring with a suggestion of the International Academy of Mathematical Chemistry.

[2] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.

The result of the test showed that both F and M_1 have similar predictive ability, i.e. both:

- correlate well with entropy and acentric factor;
- correlate badly with all other properties.

The example of correlation of F and M_1 with (log of) octanol-water partition coefficient is presented below (from [2]).

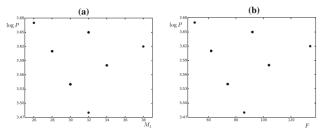


Fig. 1 Logarithm of the octanol-water partition coefficient (*P*) plotted versus the first Zagreb and the forgotten indices, a log *P* versus M_1 ; correlation coefficient is 0.079, b log *P* versus *F*; correlation coefficient is 0.0055

In order to improve the predictive ability of these indices, a simple linear model is devised (in [2]):

 $M_1 + \lambda F$

where λ (-20 $\leq \lambda \leq$ 20) is fitting parameter.

In order to improve the predictive ability of these indices, a simple linear model is devised (in [2]):

 $M_1 + \lambda F$

where λ (-20 $\leq \lambda \leq$ 20) is fitting parameter.

The model gave:

In order to improve the predictive ability of these indices, a simple linear model is devised (in [2]):

 $M_1 + \lambda F$

where λ (-20 $\leq \lambda \leq$ 20) is fitting parameter.

The model gave:

 insignificant improvement for all physico-chemical properties but the octanol-water partition coefficient;

In order to improve the predictive ability of these indices, a simple linear model is devised (in [2]):

 $M_1 + \lambda F$

where λ (-20 $\leq \lambda \leq$ 20) is fitting parameter.

The model gave:

- insignificant improvement for all physico-chemical properties but the octanol-water partition coefficient;
- a major improvement for the octanol-water partition coefficient.

Introduction

The correlation coefficient is the best for $\lambda = -0.14$.

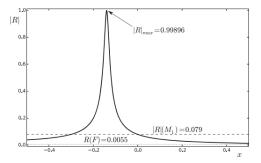


Fig. 2 Solid line shows the variation of the absolute value of the correlation coefficient with λ ; the dashed and dotted lines pertain to the correlation coefficients of log P versus M_1 and F, respectively

Introduction

The experimental and calculated values of (log of) the octanol-water partition coefficient for $\lambda = -0.14$.

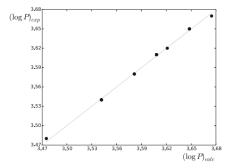


Fig. 3 Experimental versus calculated log P of octanes

The questions that arise are the following:

э

Introduction

The questions that arise are the following:

is

$$M_1 - 0.14 F$$

a good model for (log of) the octanol-water partition coefficient of all alkanes (and not just octanes);

Introduction

The questions that arise are the following:

is

$$M_1 - 0.14 F$$

a good model for (log of) the octanol-water partition coefficient of all alkanes (and not just octanes);

• can a coefficient $\lambda = -0.14$ be derived from the structure of the molecule?

The elimination of a free factor λ .

The elimination of a free factor λ . Note that for octanes (n = 8) we have

$$\lambda = -0.14 =$$

The elimination of a free factor λ . Note that for octanes (n = 8) we have

$$\lambda = -0.14 = \{n = 8\} \approx$$

The elimination of a free factor λ . Note that for octanes (n = 8) we have -1

$$\lambda = -0.14 = \{n = 8\} \approx -\frac{1}{n-1}$$

The elimination of a free factor λ . Note that for octanes (n = 8) we have

$$\lambda = -0.14 = \{n = 8\} \approx -\frac{1}{n-1}$$

so maybe

$$M_1(G) - \frac{1}{n-1}F(G)$$

would be a more appropriate term for modeling the octanol-water partition coefficient.

Lanzhou index Lzh(G) of a graph G is defined by

$$Lz(G) = (n-1)(M_1(G) - \frac{1}{n-1}F(G)) = = (n-1)M_1(G) - F(G).$$

Lanzhou index Lzh(G) of a graph G is defined by

$$Lz(G) = (n-1)(M_1(G) - \frac{1}{n-1}F(G)) = = (n-1)M_1(G) - F(G).$$

Practical formula for Lanzhou index obtained by inserting the formulas for $M_1(G)$ and F(G) is

$$Lz(G) = \sum_{u \in V} d^2(u)(n-1-d(u)) =$$

Lanzhou index Lzh(G) of a graph G is defined by

$$Lz(G) = (n-1)(M_1(G) - \frac{1}{n-1}F(G)) = = (n-1)M_1(G) - F(G).$$

Practical formula for Lanzhou index obtained by inserting the formulas for $M_1(G)$ and F(G) is

$$Lz(G) = \sum_{u \in V} d^2(u)(n-1-d(u)) = \sum_{u \in V} d^2(u)\bar{d}(u).$$

Lanzhou index Lzh(G) of a graph G is defined by

$$Lz(G) = (n-1)(M_1(G) - \frac{1}{n-1}F(G)) = = (n-1)M_1(G) - F(G).$$

Practical formula for Lanzhou index obtained by inserting the formulas for $M_1(G)$ and F(G) is

$$Lz(G) = \sum_{u \in V} d^2(u)(n-1-d(u)) = \sum_{u \in V} d^2(u)\bar{d}(u).$$

We also define

$$\overline{Lz}(G) = \sum_{u \in V} \overline{d}^2(u)\overline{d}(u).$$

Justification of the introduced index.

Justification of the introduced index. Note that:

3

Justification of the introduced index. Note that:

• for octanes models $M_1 - 0.14 \ F$ and $M_1 - \frac{1}{n-1} \ F$ are equivalent,

3

Justification of the introduced index. Note that:

- for octanes models $M_1 0.14 \ F$ and $M_1 \frac{1}{n-1} \ F$ are equivalent,
- the performance has to be checked on another group of alkanes (nonanes, dekanes,...).

Justification of the introduced index. Note that:

- for octanes models $M_1 0.14 \ F$ and $M_1 \frac{1}{n-1} \ F$ are equivalent,
- the performance has to be checked on another group of alkanes (nonanes, dekanes,...).

This was done for nonanes aaaand...

Justification of the introduced index. Note that:

- for octanes models $M_1 0.14$ F and $M_1 \frac{1}{n-1}$ F are equivalent,
- the performance has to be checked on another group of alkanes (nonanes, dekanes,...).

This was done for nonanes aaaand...

	M_1	F	$M_1 - 0.140F$	Lz	\overline{Lz}
			-0.99876	-0.96693	0.16616
nonanes	-0.78729	-0.73379	-0.65970	-0.98869	0.82598

 Table 1. Comparison of correlation coefficients of five indices for the octanol-water partition coefficient of octane and nonane isomers.

Remark. Now that the new index is chemically justified, we can gladly do the math work. :-)

Remark. Now that the new index is chemically justified, we can gladly do the math work. :-)

The math work is finding:

- extremal graphs,
- extremal trees,
- extremal unicyclic graphs,

• ...

æ

・ロン ・四と ・ヨン ・ヨン

Proposition. Let G be a graph on n vertices. Then

$$0 \le Lz(G) \le \frac{4}{27}n(n-1)^3$$

The left bound is obtained if and only if G is either complete or empty graph. The right bound is obtained if and only if $n \equiv 1 \pmod{3}$ and G is r-regular with $r = \frac{2}{3}(n-1)$.

Proposition. Let G be a graph on n vertices. Then

$$0 \le Lz(G) \le \frac{4}{27}n(n-1)^3$$

The left bound is obtained if and only if G is either complete or empty graph. The right bound is obtained if and only if $n \equiv 1 \pmod{3}$ and G is r-regular with $r = \frac{2}{3}(n-1)$.

$$Lz(G) = \sum_{u \in V} d^2(u)(n-1-d(u))$$

Proposition. Let G be a graph on n vertices. Then

$$0 \le Lz(G) \le \frac{4}{27}n(n-1)^3$$

The left bound is obtained if and only if G is either complete or empty graph. The right bound is obtained if and only if $n \equiv 1 \pmod{3}$ and G is r-regular with $r = \frac{2}{3}(n-1)$.

$$Lz(G) = \sum_{u \in V} d^2(u)(n-1-d(u))$$

Trees

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

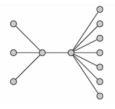
Trees

A **double star** $S_{k,l}$ is a tree obtained from K_2 by attaching k - 1 leaves to one of its vertices and l - 1 leaves to the other one.

3

Trees

A **double star** $S_{k,l}$ is a tree obtained from K_2 by attaching k-1 leaves to one of its vertices and l-1 leaves to the other one.



Trees

A **double star** $S_{k,l}$ is a tree obtained from K_2 by attaching k-1 leaves to one of its vertices and l-1 leaves to the other one.

A **balanced double star** BDS(n) on *n* vertices is a double star in which the difference between *k* and *l* is the smallest possible,

Trees

A **double star** $S_{k,l}$ is a tree obtained from K_2 by attaching k-1 leaves to one of its vertices and l-1 leaves to the other one.

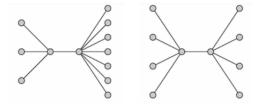


A **balanced double star** BDS(n) on *n* vertices is a double star in which the difference between *k* and *l* is the smallest possible, hence

$$BDS(n) = S_{n/2,n/2}$$
 or $BDS(n) = S_{(n-1)/2,(n+1)/2}$.

Trees

A **double star** $S_{k,l}$ is a tree obtained from K_2 by attaching k - 1 leaves to one of its vertices and l - 1 leaves to the other one.



A **balanced double star** BDS(n) on *n* vertices is a double star in which the difference between *k* and *l* is the smallest possible, hence

$$BDS(n) = S_{n/2,n/2}$$
 or $BDS(n) = S_{(n-1)/2,(n+1)/2}$.

Proposition. Let T_n be a tree on $n \ge 15$ vertices. Then

$$Lz(S_n) \leq Lz(T_n) \leq Lz(BDS(n)).$$

The lower bound is achieved if and only if $T_n = S_n$, while the upper bound is achieved if and only if $T_n = BDS(n)$.



Trees

It remains to consider the trees with less than 15 vertices.

3

Main results Trees

It remains to consider the trees with less than 15 vertices.

We say that a tree $T_n \neq BDS(n)$ is **excessive** if $Lz(T_n) > Lz(BDS(n))$.

It remains to consider the trees with less than 15 vertices.

We say that a tree $T_n \neq BDS(n)$ is excessive if $Lz(T_n) > Lz(BDS(n))$.

If $Lz(Tn) \ge Lz(BDS(n))$, we say that T_n is weakly excessive.

It remains to consider the trees with less than 15 vertices.

We say that a tree $T_n \neq BDS(n)$ is excessive if $Lz(T_n) > Lz(BDS(n))$.

If $Lz(Tn) \ge Lz(BDS(n))$, we say that T_n is weakly excessive.

It can be proved that:

It remains to consider the trees with less than 15 vertices.

We say that a tree $T_n \neq BDS(n)$ is excessive if $Lz(T_n) > Lz(BDS(n))$.

If $Lz(Tn) \ge Lz(BDS(n))$, we say that T_n is weakly excessive.

It can be proved that:

• number of excessive and of weakly excessive trees is finite,

It remains to consider the trees with less than 15 vertices.

We say that a tree $T_n \neq BDS(n)$ is excessive if $Lz(T_n) > Lz(BDS(n))$.

If $Lz(Tn) \ge Lz(BDS(n))$, we say that T_n is weakly excessive.

It can be proved that:

- number of excessive and of weakly excessive trees is finite,
- there are no excessive nor weakly excessive trees on more than 14 vertices.

n	t(n)	$t_{we}(n)$	$t_{ex}(n)$	$t_{max}(n)$	$Lz_{max}(n)$	Lz(BDS(n))
4	2	0	0	0	12	12
5	3	1	1	1	30	26
6	6	2	2	1	56	52
7	11	7	6	6	90	84
8	23	16	12	1	138	132
9	47	29	24	2	196	188
10	106	21	2	2	270	264
11	235	14	6	1	360	350
12	551	4	4	2	464	460
13	1301	9	2	2	588	582
14	3159	1	0	1	732	732

Table 2. Statistics of weakly excessive, excessive, and extremal trees, and maximum value of Lanzhou index for trees on $4 \le n \le 14$ vertices.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2

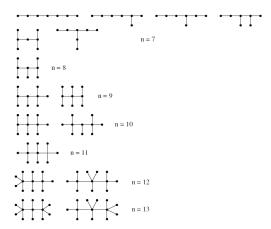


Figure 1. Excessive trees maximizing Lanzhou index.

イロト イポト イヨト イヨト 二日

Note that:

Note that:

• $\Delta = 3$ is the smallest interesting case,

Note that:

- $\Delta = 3$ is the smallest interesting case,
- for $\Delta =$ 4 we obtain the class of chemical trees.

Proposition. Let $n \ge 8$ be an integer and $T_n \in T_n^3$. Then

$$4n^{2} - 18n + 20 \le Lz(T_{n}) \le 5n^{2} - 27n - (n-7)\frac{1 - (-1)^{n}}{2}$$

The left inequality is sattisfied if and only if $T_n = P_n$. The right inequality is sattisfied for any tree without vertices of degree 2 if *n* is even, and for any tree with exactly one vertex of degree 2 if *n* is odd.

Proposition. Let $n \ge 8$ be an integer and $T_n \in T_n^4$. Then

$$4n^2 - 18n + 20 \le Lz(T_n) \le 6n^2 + O(n).$$

The left inequality is sattisfied if and only if $T_n = P_n$. The maximum value of $Lz(T_n)$ is achieved for any tree having the largest possible number of vertices of degree 4 for a given n.

Proposition. Let $n \ge 8$ be an integer and $T_n \in T_n^4$. Then

$$4n^2 - 18n + 20 \le Lz(T_n) \le 6n^2 + O(n).$$

The left inequality is sattisfied if and only if $T_n = P_n$. The maximum value of $Lz(T_n)$ is achieved for any tree having the largest possible number of vertices of degree 4 for a given n.

The details of the proofs can be seen in [3].

[3] D. Vukičević, Q. Li, J. Sedlar, T. Došlić: Lanzhou Index, MATCH Commun. Math. Comput. Chem. 80 (2018) 863-876.

In the end

Thank you for your attention!

æ