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GRAPH COLORING

A (proper) coloring of a graph G is a mapping ¢ : V(G) — C such
that for every uv € E(G) : p(u) # ¢(v).

G is k-colorable if there is a (proper) coloring of G with |C| = k.
Minimum k such that G is k-colorable is denote by x(G).

Here we color with {1,2, ..., k} instead of arbitrary C.
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A proper coloring of a graph G embedded on some surface, where
(1) colors are natural numbers, and
(2) every face has a unique vertex colored with its maximal color,

is called a (facial) unique-maximum coloring or FUM-coloring.

The minimum number k such that G admits a FUM-coloring with
colors {1,2,...,k} is called the FUM chromatic number of G,

denoted by xfum(G).

Example: xtm(Ks) = x(Ks) and xrum(Q3) # x(Q3) -
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THEOREM (WENDLAND 2016)
If G is a plane graph, then xfum(G) < 5.
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THEOREM (FABRICI AND GORING 2015)
If G is a plane graph, then xfm(G) < 6.

Color some vertices of G by colors 5 and 6 such that each face
contains unique 6 or (no 6 and unique 5).

Color rest by 4-color theorem with {1,2,3,4}.
Wendland: Make the rest triangle-free and use Grotzsch's theorem.
Just {4,5} U {1,2,3} colors needed in total.
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CONJECTURE (FABRICI AND GORING)
If G is a plane graph, then xfum(G) < 4.
THEOREM (ANDOVA, LIDICKY, LUZAR, S.)

If G is a plane subcubic graph, then Xfum(G) < 4.

THEOREM (ANDOVA, LIDICKY, LUZAR, S.)
If G is an outerplane graph, then xt,m(G) < 4.

Both results are tight.
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TIGHT EXAMPLE

For the following graph G, xfum(G) > 3.
Suppose for contradiction yfum(G) = 3:

Notice G is subcubic, bipartite, 2-connected, and outerplane.
Also, G can have arbitrarily large girth.
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1. GRAPHS ON SURFACES

For a surface X, we define the facial unique-maximum chromatic
number of X,

Xfum(z) - glj)é Xfum(G)u
as the maximum of ., (G) over all graphs G embedded into X.
Our construction and the result of Wendland implies that

Xfum(SO) - 57

where S is the sphere.

PROBLEM
Determine Xtum(X) for surfaces ¥ of higher genus.
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2. WEAKENING THE UNIQUENESS CONDITION

We can study a variation of this coloring, where
(1) colors are natural numbers, and
(2’) every face has at most k vertices colored with its maximal color.

Let call this coloring by a facial k-unique-maximum coloring or
k-FUM-coloring for short. And, denote this chromatic number by

Xk—fum(G)-

CONJECTURE
If G is a plane graph, then xo-tum(G) < 4.

CONJECTURE
There exists large k such that for every plane graph G, it holds

Xk-fum(G) < 4.
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We now introduce a variation of Fabrici and Goring's Conjecture
with maximum degree and connectivity conditions added.
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3. THE CASE A =4

We now introduce a variation of Fabrici and Goring's Conjecture
with maximum degree and connectivity conditions added.

THEOREM (ANDOVA, LIDICKY, LUZAR, S.)
If G is a plane subcubic graph, then Xfum(G) < 4.

CONJECTURE
If G is a connected plane graph with maximum degree 4, then

Xfum(G) < 4.

Notice that we constructed a counterexample of maximum degree
five.
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