Some Distance-Based Topological Indices of Partial Cubes

Niko Tratnik

Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

September 28, 2018 Zagreb, Croatia

伺 ト く ヨ ト く ヨ ト

The Wiener index and the Szeged index

- The Wiener index
- The Szeged index

2 Partial cubes

- Basic definitions
- The Szeged index of partial cubes
- The edge-hyper-Wiener index of partial cubes

3 The Steiner hyper-Wiener index

- The Steiner distance
- Median and modular graphs
- The cut method

The Wiener index The Szeged index

The Wiener index

The Wiener index

The Wiener index of a connected graph G is defined as

$$W(G) = \sum_{\{u,v\}\subseteq V(G)} d_G(u,v) = \frac{1}{2} \sum_{u\in V(G)} \sum_{v\in V(G)} d_G(u,v).$$

Its history goes back to 1947, when H. Wiener used the distances in the molecular graphs of alkanes to calculate their boiling points.

The Wiener index of a vertex-weighted graph

The Wiener index of (G, w) is defined as

$$W(G,w) = \sum_{\{u,v\}\subseteq V(G)} w(u)w(v)d_G(u,v).$$

The Wiener index The Szeged index

The Szeged index

Let G be a connected graph and e = uv an edge of G. We will use the following notation:

$$N_1(e|G) = \{x \in V(G) \mid d_G(x, u) < d_G(x, v)\},\$$

$$N_2(e|G) = \{x \in V(G) \mid d_G(x,v) < d_G(x,u)\}.$$

I. Gutman; 1994

The **Szeged index** of a connected graph G is defined as

$$Sz(G) = Sz_{v}(G) = \sum_{e \in E(G)} |N_1(e|G)| \cdot |N_2(e|G)|.$$

The Wiener index The Szeged index

The Szeged index of a weighted graph

The Szeged index of a vertex-edge-weighted graph

$$Sz(G, w, w') = \sum_{e \in E(G)} w'(e)n_1(e|G)n_2(e|G),$$

where for i = 1, 2,

$$n_i(e|G) = \sum_{x \in N_i(e|G)} w(x).$$

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Hypercubes

Hypercube

The **hypercube** Q_n of dimension *n* is defined in the following way: all vertices of Q_n are binary strings of length *n* and two vertices of Q_n are adjacent if the corresponding strings differ in precisely one position.

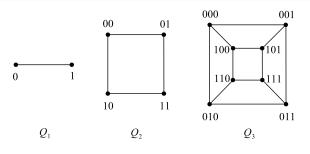


Figure: Hypercubes.

Niko Tratnik Some Distance-Based Topological Indices of Partial Cubes

(E)

Partial cubes

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Definition

A subgraph H of G is called an **isometric subgraph** if for each $u, v \in V(H)$ it holds $d_H(u, v) = d_G(u, v)$. Any isometric subgraph of a hypercube is called a **partial cube**.

同 ト イ ヨ ト イ ヨ ト

Partial cubes

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Definition

A subgraph H of G is called an **isometric subgraph** if for each $u, v \in V(H)$ it holds $d_H(u, v) = d_G(u, v)$. Any isometric subgraph of a hypercube is called a **partial cube**.

Partial cubes constitute a large class of graphs with a lot of applications and includes, for example, many families of chemical graphs (benzenoid systems, trees, phenylenes, cyclic phenylenes, polyphenyles).

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Relation Θ

Definition

Two edges $e_1 = u_1v_1$ and $e_2 = u_2v_2$ of graph G are in relation Θ , $e_1\Theta e_2$, if

$$d_G(u_1, u_2) + d_G(v_1, v_2) \neq d_G(u_1, v_2) + d_G(v_1, u_2).$$

Note that this relation is also known as Djoković-Winkler relation.

The relation Θ is reflexive and symmetric, but not necessarily transitive. We denote its transitive closure (i.e. the smallest transitive relation containing Θ) by Θ^* .

- 4 同 6 4 日 6 4 日 6

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Relation Θ and partial cubes

Well known facts:

A connected graph G is a partial cube if and only if G is bipartite and $\Theta = \Theta^*$.

→ 3 → 4 3

A D

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Relation Θ and partial cubes

Well known facts:

A connected graph G is a partial cube if and only if G is bipartite and $\Theta = \Theta^*$.

Let *E* be a Θ -class of a partial cube *G*. Then *G* – *E* has exactly two connected components, i.e. $\langle N_1(e|G) \rangle$ and $\langle N_2(e|G) \rangle$ where $e \in E$.

伺下 イヨト イヨト

Basic definitions

The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Example: benzenoid systems

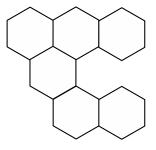


Figure: A benzenoid system.

< 1 →

→ Ξ →

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Example: benzenoid systems

An **elementary cut** of a benzenoid system is a line segment that starts at the center of a boundary edge of a benzenoid system, goes orthogonal to it and ends at the first next boundary edge. Obviously, an elementary cut coincides with a Θ -class.

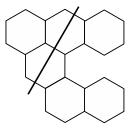


Figure: A benzenoid system with an elementary cut (Θ -class).

Basic definitions The Szeged index of partial cubes

Example: C_4C_8 systems

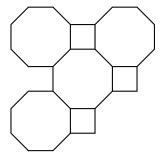


Figure: A C_4C_8 system.

Niko Tratnik Some Distance-Based Topological Indices of Partial Cubes

- 4 回 🕨 🔺 臣 🕨 🔺 臣

э

The Wiener index and the Szeged index Partial cubes The Steiner hyper-Wiener index The edge-hyper-Wiener index of partial cubes The edge-hyper-H

Coarser partition

Let $\mathcal{E} = \{E_1, \ldots, E_r\}$ be the Θ^* -partition of the set E(G). Then we say that a partition $\{F_1, \ldots, F_k\}$ of E(G) is **coarser** than \mathcal{E} if each set F_i is the union of one or more Θ^* -classes of G.

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Example

• The edge set of a benzenoid system can be naturally partitioned into sets F_1 , F_2 , and F_3 of edges of the same direction. Obviously, $\{F_1, F_2, F_3\}$ is a partition coarser than Θ -partition.

同 ト イ ヨ ト イ ヨ ト

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Example

- The edge set of a benzenoid system can be naturally partitioned into sets F_1 , F_2 , and F_3 of edges of the same direction. Obviously, $\{F_1, F_2, F_3\}$ is a partition coarser than Θ -partition.
- The edge set of a C₄C₈ system can be naturally partitioned into sets F₁, F₂, F₃, and F₄ of edges of the same direction. Obviously, {F₁, F₂, F₃, F₄} is a partition coarser than Θ-partition.

Quotient graphs

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Definition

Suppose *G* is a connected graph and $F \subseteq E(G)$. The **quotient graph** G/F is a graph whose vertices are connected components of the graph G - F, such that two components C_1 and C_2 are adjacent in G/F if some vertex in C_1 is adjacent to a vertex of C_2 in *G*.

Basic definitions

The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Example: benzenoid systems

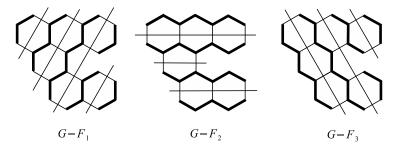


Figure: Graphs $G - F_1$, $G - F_2$, and $G - F_3$.

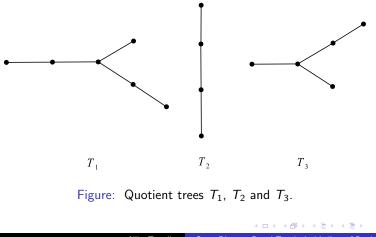
・ロト ・回ト ・ヨト ・ヨト

3

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Example: benzenoid systems

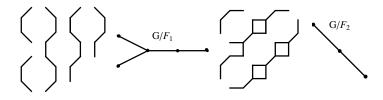
The quotient graphs $G/F_1 = T_1$, $G/F_2 = T_2$, and $G/F_3 = T_3$ are trees.



Niko Tratnik Some Distance-Based Topological Indices of Partial Cubes

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cub

Example: C_4C_8 systems



 G/F_3

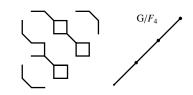


Figure: Quotient trees.

<ロ> <同> <同> < 同> < 同>

э

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Weighted quotient graphs

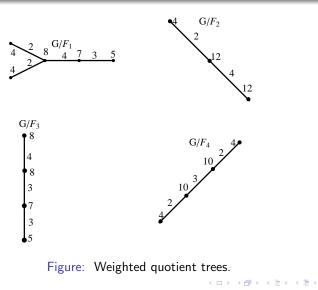
Let $\{F_1, \ldots, F_k\}$ be a partition coarser than the Θ^* -partition. We define:

- for $x \in V(G/F_i)$, let $w_i(x)$ be the number of vertices in the connected component x of $G F_i$,
- Gor xy ∈ E(G/F_i), let w'_i(xy) be the number of edges in F_i with one end-point in x and another in y.

Basic definitions

The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Example: C_4C_8 systems



э

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

The Wiener index

Theorem (S. Klavžar, M. J. Nadjafi-Arani; 2014)

Let G be a connected graph. If $\{F_1, \ldots, F_k\}$ is a partition coarser than the Θ^* -partition, then

$$W(G) = \sum_{i=1}^{k} W(G/F_i, w_i).$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

The Szeged index of partial cubes

Lemma (M. Črepnjak, N. Tratnik; 2017)

Let G be a partial cube. If $\{F_1, \ldots, F_k\}$ is a partition coarser than the Θ -partition, then G/F_i is a partial cube for each i, $1 \le i \le k$.

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

The Szeged index of partial cubes

Lemma (M. Črepnjak, N. Tratnik; 2017)

Let G be a partial cube. If $\{F_1, \ldots, F_k\}$ is a partition coarser than the Θ -partition, then G/F_i is a partial cube for each i, $1 \le i \le k$.

Theorem (M. Črepnjak, N. Tratnik; 2017)

Let G be a partial cube. If $\{F_1, \ldots, F_k\}$ is a partition coarser than the Θ -partition, then

$$Sz(G) = \sum_{i=1}^{k} Sz(G/F_i, w_i, w'_i).$$

(人間) ト く ヨ ト く ヨ ト

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

The cut method on benzenoid systems

Theorem (V. Chepoi, S. Klavžar; 1997)

If G is a benzenoid system, then

$$W(G) = W(T_1, w_1) + W(T_2, w_2) + W(T_3, w_3),$$

 $Sz(G) = Sz(T_1, w_1, w'_1) + Sz(T_2, w_2, w'_2) + Sz(T_3, w_3, w'_3),$

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

The cut method for other indices

Theorem (A. Kelenc, S. Klavžar, N. Tratnik; 2015)

If G is a benzenoid system, then

$$\widehat{W}_{e}(G) = \sum_{i=1}^{3} \left(\widehat{W}_{e}(T_{i}, w_{i}') + W_{v}(T_{i}, w_{i}) + W_{ve}(T_{i}, w_{i}, w_{i}') \right).$$

Theorem (N. Tratnik; 2017)

If G is a benzenoid system, then

$$Sz_{e}(G) = \sum_{i=1}^{3} \left(Sz_{v}(T_{i}, w_{i}, w_{i}') + Sz_{e}(T_{i}, w_{i}') + Sz_{ve}(T_{i}, w_{i}, w_{i}') \right),$$

$$PI(G) = \sum_{i=1}^{3} \left(PI_{e}(T_{i}, w_{i}') + PI_{v}(T_{i}, w_{i}, w_{i}') \right).$$

Niko Tratnik Some Distance-Based Topological Indices of Partial Cubes

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

The edge-hyper-Wiener index

Definition (M. Randić; 1993 and Iranmanesh et. al.; 2011)

The **hyper-Wiener index** and the **edge-hyper-Wiener index** of *G* are defined as:

$$WW(G) = \frac{1}{2} \sum_{\{u,v\}\subseteq V(G)} d_G(u,v) + \frac{1}{2} \sum_{\{u,v\}\subseteq V(G)} d_G(u,v)^2,$$
$$WW_e(G) = \frac{1}{2} \sum_{\{e,f\}\subseteq E(G)} d_G(e,f) + \frac{1}{2} \sum_{\{e,f\}\subseteq E(G)} d_G(e,f)^2.$$

A cut method for the hyper-Wiener index of partial cubes was developed by S. Klavžar in 2000.

- 4 同 6 4 日 6 4 日 6

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Additional notation

If G is a partial cube with Θ -classes E_1, \ldots, E_d , we denote by U_k and U'_k the connected components of the graph $G - E_k$. For any $k \neq l$ set

$$\begin{split} m_{kl}^{11} &= |E(U_k) \cap E(U_l)|, \\ m_{kl}^{10} &= |E(U_k) \cap E(U_l')|, \\ m_{kl}^{01} &= |E(U_k') \cap E(U_l)|, \\ m_{kl}^{00} &= |E(U_k') \cap E(U_l')|. \end{split}$$

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

The cut method for the edge-hyper-Wiener index

Theorem (N. Tratnik; 2018)

Let G be a partial cube and let d be the number of its Θ -classes. Then

$$WW_e(G) = 2W_e(G) + \sum_{k=1}^{d-1} \sum_{l=k+1}^{d} \left(m_{kl}^{11} m_{kl}^{00} + m_{kl}^{10} m_{kl}^{01} \right) - \binom{|E(G)|}{2}.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Basic definitions The Szeged index of partial cubes The edge-hyper-Wiener index of partial cubes

Benzenoid systems

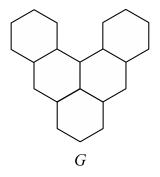


Figure: Benzenoid system G.

Niko Tratnik Some Distance-Based Topological Indices of Partial Cubes

The Wiener index and the Szeged index Partial cubes
The Steiner hyper-Wiener index
The Steiner hyper-Wiener index
The edge-hyper-Wiener index of partial cubes

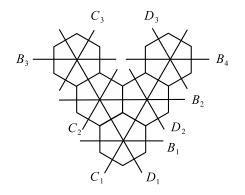


Figure: Elementary cuts of *G*.

<ロ> <同> <同> < 同> < 同>

э

Table: Contributions of pairs of elementary cuts.

Pair	$f(\cdot, \cdot)$						
B_1, B_2	28	B_1, C_3	4	B_4, C_2	14	C_2, D_1	40
B_1, B_3	4	B_2, C_1	36	B_4, C_3	4	C_2, D_2	49
B_1, B_4	4	B_2, C_2	42	C_1, C_2	42	C_2, D_3	14
B_2, B_3	16	B_2, C_3	16	C_1, C_3	12	C_3, D_1	14
B_2, B_4	16	B_3, C_1	12	C_2, C_3	32	C_3, D_2	14
B_3, B_4	4	B_3, C_2	32	C_1, D_1	25	C_3, D_3	4
B_1, C_1	14	B_3, C_3	20	C_1, D_2	40		
B_1, C_2	14	B_4, C_1	5	C_1, D_3	14		

 $WW_e(G) = 2 \cdot 1026 + 884 - 300 = 2636$

イロト イポト イヨト イヨト

3

The Steiner distance Median and modular graphs The cut method

The Steiner distance

Definition (Chartrand et. al.; 1989)

For a connected graph G and an non-empty set $S \subseteq V(G)$, the **Steiner distance** among the vertices of S, denoted by $d_G(S)$ or simply by d(S), is the minimum size among all connected subgraphs whose vertex sets contain S.

Note that if H is a connected subgraph of G such that $S \subseteq V(H)$ and |E(H)| = d(S), then H is a tree.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

The Steiner distance Median and modular graphs The cut method

The Steiner k-Wiener index

Definition (X. Li, Y. Mao, I. Gutman; 2016)

Let G be a connected graph and k a positive integer such that $k \leq |V(G)|$. The **Steiner** k-Wiener index of G, denoted by $SW_k(G)$, is defined as

$$SW_k(G) = \sum_{\substack{S \subseteq V(G) \ |S|=k}} d(S).$$

The Steiner distance Median and modular graphs The cut method

The Steiner *k*-hyper Wiener index

Definition

Let G be a connected graph and k a positive integer such that $k \leq |V(G)|$. The **Steiner** k-hyper-Wiener index of G, denoted by $SWW_k(G)$, is defined as

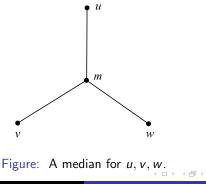
$$SWW_k(G) = rac{1}{2}\sum_{\substack{S\subseteq V(G)\|S|=k}} d(S) + rac{1}{2}\sum_{\substack{S\subseteq V(G)\|S|=k}} d(S)^2.$$

同 ト イ ヨ ト イ ヨ ト

The Steiner distance Median and modular graphs The cut method

Modular graphs

A **median** of a triple of vertices u, v, w of G is a vertex m that lies on a shortest u, v-path, on a shortest u, w-path, and on a shortest v, w-path. A graph is a **median graph** if every triple of its vertices has a unique median. Moreover, a graph is called a **modular graph** if every triple of vertices has at least one median.



Niko Tratnik Some Distance-Based Topological Indices of Partial Cubes

The Steiner distance Median and modular graphs The cut method

Lemma

Let G be a connected graph with at least three vertices. Three distinct vertices u, v, w have at least one median if and only if for the set $S = \{u, v, w\}$ it holds

$$2d(S) = d(u, v) + d(u, w) + d(v, w).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Steiner distance Median and modular graphs The cut method

Theorem (M. Kovše)

Let G be a modular graph with at least three vertices. Then

$$SW_3(G) = \frac{|V(G)| - 2}{2}W(G).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

The Steiner distance Median and modular graphs The cut method

The Steiner 3-hyper Wiener index of a modular graph

Theorem (N. Tratnik; 2018)

Let G be a modular graph with at least three vertices. Then

$$SWW_3(G) = \frac{|V(G)| - 2}{4}W(G) + \frac{|V(G)| - 2}{8}\overline{WW}(G) + \frac{1}{8}\widehat{WW}(G).$$

In the above theorem,

$$\overline{WW}(G) = \sum_{\{u,v\}\subseteq V(G)} d(u,v)^2,$$
$$\widehat{WW}(G) = \sum_{(u,v,w)\in O_3(G)} d(u,v)d(u,w),$$

where

$$O_3(G) = \{(u, v, w) \in V(G)^3 \mid u \neq v, u \neq w, v \neq w\}.$$

The Steiner distance Median and modular graphs The cut method

Additional notation

Let G be a partial cube with Θ -classes E_1, \ldots, E_d and denote by U_i and U'_i the connected components of the graph $G - E_i$. For $i \neq j$, set

$$\begin{split} n_{ij}^{00} &= |V(U_i) \cap V(U_j)|, \\ n_{ij}^{01} &= |V(U_i) \cap V(U_j')|, \\ n_{ij}^{10} &= |V(U_i') \cap V(U_j)|, \\ n_{ij}^{11} &= |V(U_i') \cap V(U_j')|. \end{split}$$

Also, for $i \in \{1, \ldots, d\}$ let

$$n_i^0 = |V(U_i)|, \quad n_i^1 = |V(U_i')|,$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proposition (S. Klavžar, I. Gutman, B. Mohar; 1995)

Let G be a partial cube and let d be the number of its Θ -classes. Then

$$\mathcal{N}(G) = \sum_{i=1}^d n_i^0 n_i^1.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition (S. Klavžar, I. Gutman, B. Mohar; 1995)

Let G be a partial cube and let d be the number of its Θ -classes. Then

$$\mathcal{N}(G) = \sum_{i=1}^d n_i^0 n_i^1.$$

Proposition (S. Klavžar; 2000)

Let G be a partial cube and let d be the number of its Θ -classes. Then

$$\overline{WW}(G) = \sum_{i=1}^{d} n_i^0 n_i^1 + 2 \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} \left(n_{ij}^{00} n_{ij}^{11} + n_{ij}^{01} n_{ij}^{10} \right).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Steiner distance Median and modular graphs The cut method

Theorem (N. Tratnik; 2018)

Let G be a partial cube with at least three vertices and let d be the number of its $\Theta\text{-}classes.$ Then

$$\begin{split} \widehat{WW}(G) &= \sum_{i=1}^{d} \left(n_{i}^{0} n_{i}^{1} (n_{i}^{1} - 1) + n_{i}^{1} n_{i}^{0} (n_{i}^{0} - 1) \right) \\ &+ 2 \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} \left(3 n_{ij}^{00} n_{ij}^{01} n_{ij}^{10} + 3 n_{ij}^{00} n_{ij}^{01} n_{ij}^{11} \\ &+ 3 n_{ij}^{00} n_{ij}^{10} n_{ij}^{11} + 3 n_{ij}^{01} n_{ij}^{10} n_{ij}^{11} \\ &+ n_{ij}^{00} n_{ij}^{11} (n_{ij}^{11} - 1) + n_{ij}^{01} n_{ij}^{10} (n_{ij}^{10} - 1) \\ &+ n_{ij}^{10} n_{ij}^{01} (n_{ij}^{01} - 1) + n_{ij}^{11} n_{ij}^{00} (n_{ij}^{00} - 1) \right). \end{split}$$

- 4 同 6 4 日 6 4 日 6

3

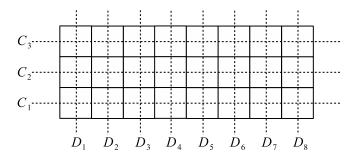


Figure: Grid graph $G_{9,4}$ with all the elementary cuts.

- 4 聞 と 4 臣 と 4 臣 と

э

Theorem (N. Tratnik; 2018)

Let $G_{m,n}$ be a grid graph such that $m, n \ge 3$. Then

$$SWW_{3}(G_{m,n}) = \frac{1}{360} (9m^{5}n^{3} + 15m^{4}n^{4} + 9m^{3}n^{5} + 15m^{4}n^{3} + 15m^{3}n^{4} - 30m^{4}n^{2} - 50m^{3}n^{3} - 30m^{2}n^{4} + 26m^{3}n - 45m^{3}n^{2} - 45m^{2}n^{3} + 45m^{2}n^{2} + 26mn^{3} + 30m^{2}n + 30mn^{2} - 20mn).$$

Moreover, for any $n \ge 3$ it holds

$$SWW_3(G_{2,n}) = \frac{1}{15}(3n^5 + 10n^4 - 25n^2 + 12n).$$

- 4 同 ト 4 ヨ ト 4 ヨ

The Steiner distance Median and modular graphs The cut method

THANK YOU!

E-mail: niko.tratnik@um.si, niko.tratnik@gmail.com

- 4 同 6 4 日 6 4 日 6

э