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Abstract
In 2001 Sir M. F. Atiyah formulated a conjecture
(C1) and later with P. Sutcliffe two stronger
conjectures (C2) and (C3). These conjectures,
inspired by physics (spin-statistics theorem of
quantum mechanics), are geometrically defined
for any configuration of points in the Euclidean
three space. The conjecture (C1) is proved for
n = 3, 4 and for general n only for some special
configurations (M. F. Atiyah, M. Eastwood and
P. Norbury, D. D-- joković).

Here we shall explain some new conjectures
for symmetric functions which imply (C2)
and (C3) for almost collinear configurations.
Computations up to n = 6 are performed with
a help of Maple and J. Stembridge’s package SF

for symmetric functions. For n = 4 we have also
verified the conjectures (C2) and (C3) for some
infinite families of tetrahedra.

Introduction

In the case of type (A) configurations of points
(all but one point are collinear, [6]) D-- oković ar-
rived at a matrix Mn+1 =

1 λ1 0 · · · 0 0
0 1 λ2 · · · 0 0
0 0 1 0 0
...

...
...

. . .
...

...
0 0 1 λn

(−1)nen (−1)n−1en−1 · · · · · · −e1 1


where 0 < λ1 < λ2 . . . < λn are real numbers

and ek = ek(λ1, . . . , λn), 1 ≤ k ≤ n, is the k–th
elementary symmetric function of λ1, λ2, . . . , λn.
Inequality [detMn+1(λ1, . . . , λn)]n−1 ≥
≥
∏n
k=1 detMn(λ1, . . . , λk−1, λk+1, . . . , λn)

is equivalent to conjecture (C3) in this case.
For n = 2 this inequality takes the form

1 + λ2e1(λ1, λ2) + λ1λ2e2(λ1, λ2) ≥
≥ (1 + λ2e1(λ2))(1 + λ1e1(λ1)

that reduces to (λ2 − λ1)λ1 ≥ 0, so it is true.
Even for n = 3 the inequality is quite messy
thanks to non-symmetric character of both sides.
Let us start with the case n = 2. Take a look at
the following inequality

1+X1(ξ1+ξ2)+X1X2ξ1ξ2 ≥ (1+X1ξ1)(1+X2ξ2)

which is true if X1 ≥ X2 ≥ 0 and ξ1, ξ2 ≥ 0. If
we set X1 = ξ1 = λ2, X2 = ξ2 = λ1 then we get
the original inequality.
Now, let ξ1, . . . , ξn, X1, . . . , Xn, n ≥ 1 be two sets
of commuting indeterminates. For any l, 1 ≤ l ≤
n and any sequences 1 ≤ i1 ≤ · · · ≤ il ≤ n, 1 ≤
j1 ≤ · · · ≤ jl ≤ n we define polynomials

ΨI
J = Ψi1,...,il

j1,...,jl
∈ Q[ξ1, . . . , ξn, X1, . . . , Xn]

as follows:

ΨI
J :=

l∑
k=0

ek(ξj1 , ξj2 , . . . , ξjl)Xi1Xi2 · · ·Xik ,

where l ≥ 1, Ψ∅∅ := 1 (j = 0) and ek is the k-th
elementary symmetric function.

Polynomials Ψ12···n
12···n

In particular we have

Ψi
j = 1 + ξjXi,

Ψi1i2
j1j2

= 1 + (ξj1 + ξj2)Xi1 + ξj1ξj2Xi1Xi2 ,

Ψi1i2i3
j1j2j3

= 1 + (ξj1 + ξj2 + ξj3)Xi1+

+ (ξj1ξj2 + ξj1ξj3 + ξj2ξj3)Xi1Xi2+
+ ξj1ξj2ξj3Xi1Xi2Xi3 .

Let us formulate a conjecture which implies the
strongest Atiyah–Sutcliffe’s conjecture for type
(A) configurations of points ([6]).
Conjecture 1. For any n ≥ 1, let
X1 ≥ X2 ≥ . . . ≥ Xn ≥ 0, ξ1, ξ2, . . . , ξn ≥ 0, be
any nonnegative real numbers. Then

Ln :=
(
Ψ12···n

12···n
)n−1 ≥ n∏

k=1

Ψ12···k̂···n
12···k̂···n =: Rn

where 12 · · · k̂ · · ·n denotes the sequence
12 · · · (k− 1)(k+ 1) · · ·n. The equality obviously
holds true iff X1 = X2 = · · · = Xn.

Let Ψ̂12...k...n
12...k...n := ξk(X2 − X1) + Ψ12...n

12...n be ob-

tained from Ψ12...n
12...n by replacing only one term

ξkX1 by ξkX2, hence Ψ̂12...k...n
12...k...n are still posi-

tive. Let L̂n :=
∏n
k=2 Ψ̂12...k...n

12...k...n. Since clearly

Ln ≥ L̂n, our stronger conjecture reads as
Conjecture 2. L̂n ≥ Rn (n ≥ 1)
with equality iff X2 = X3 = · · · = Xn.

More generally, we conjecture that the difference
L̂n −Rn is a polynomial in the differences X2 −
X3, X3−X4, . . ., Xn−1−Xn with coefficients in
Z≥0[X1, . . . , Xn, ξ1, . . . , ξn].
We have some monotonicity properties:
Theorem 3. Let for 1 ≤ r ≤ n
∆r := ∂XrΨ1...n

1...n · Ψ1...k̂...n
1...k̂...n

− Ψ1...n
1...n · ∂XrΨ1...k̂...n

1...k̂...n
,

Then we have the following explicit formulas
(i) for any r, 1 ≤ r < k(≤ n) we have ∆r =
ξk

∑
0≤i<r≤j≤n

s
(k)

(2i1j−i−1)
X2

1 · · ·X2
i Xi+1 · · · X̂k · · ·Xj+

+
∑

0≤i<r,k≤j<n
eie

(k)
j

X
2
1 · · ·X

2
i Xi+1 · · · X̂r · · · X̂k · · ·Xj(Xk − Xj+1)

(ii) for any r, (1 ≤)k < r ≤ n we have ∆r =

−

 ∑
0≤i<r≤j≤n

s
(k)

(2i1j−i−1)
X

2
1 · · ·X

2
i Xi+1 · · · X̂k · · · X̂r · · ·Xj+

+
∑

0≤i<k,r≤j<n
e
(k)
i

ejX
2
1 · · ·X

2
i Xi+1 · · · X̂k · · · X̂r · · ·Xj(Xj+1 −Xk)


where s

(k)
λ denotes the λ–th Schur function of

ξ1, . . . , ξk−1, ξk+1, . . . , ξn (ξk omitted).

Corollary 4. Let X1 ≥ · · · ≥ Xn ≥ 0,
ξ1, . . . , ξn ≥ 0 be as before. Then

(i) for any r, 1 ≤ r < k (≤ n) we have

Ψ1...n
1...n

Ψ1...k̂...n
1...k̂...n

≥
Ψ1... r+1 r+1 ...n

1... r r+1 ...n

Ψ1... r+1 r+1 ...k̂...n

1... r r+1 ...k̂...n

(ii) for any r, (1 ≤) k < r (≤ n) we have

Ψ1...n
1...n

Ψ1...k̂...n
1...k̂...n

≥
Ψ1... r−1 r−1 ...n

1... r−1 r ...n

Ψ1...k̂... r−1 r−1 ...n

1...k̂... r−1 r ...n

Conjecture 5. Let X1 ≥ · · · ≥ Xn ≥ 0,
ξ1, . . . ξn ≥ 0. Then the following inequality for
symmetric functions in ξ1, . . . , ξn

n−1∏
k=1

Ψ1 2...k k ...n
1 2...k k+1...n ≥

n∏
k=1

Ψ1 2 ... n−1
1 2...k̂...n

holds true. (Implies the strongest (C3) for type
(A) configurations; checked up to n = 5 by using
MAPLE and symmetric function package of J.
Stembridge.)

Lemma 6. For any k, (1 ≤ k ≤ n), we have

Ψ1...k...n
1...k̂...n

=

n−1∑
j=0

ajξ
n−1−j
k

where

an−1 = 1 +X1e1 +X1X2e2 + . . .+X1 · · ·Xn−1en−1,
an−2 = −X1 −X1X2e1 − . . .−X1 · · ·Xn−1en−2,
· · ·
a0 = (−1)n−1X1 · · ·Xn−1,

i.e. an−1−j = (−1)j
n−1∑
i=j

X1 · · ·Xiei−j

It follows that the right hand side

Rn =

n∏
k=1

Ψ1 2 ... k ... n−1

1 2 ... k̂ ... n
=

n∏
k=1

(
n−1∑
j=0

ajξ
n−1−j
k

)
can be understood as a resultant Rn = Res(f, g)
of the following two polynomials

f(x) =
n−1∑
j=0

ajx
n−1−j

g(x) =
n∏
i=1

(x− ξi) =
n∑
j=0

(−1)jejx
n−j

Using Sylvester formula we get a matrix ∆n

with entries

δij =



i−j∑
k=0

(−1)
i+j

X1 · · ·Xi−kej−k, n − 1 ≥ i ≥ j ≥ 0

n∑
k=0

(−1)
j−i

X1 · · ·Xj−i+kej−i+k+1, n − 1 ≥ j > i ≥ 0

By elementary operations we get

∆n = det(δ′ij)1≤i,j≤n−1

where

δ
′
ij =



n−1∑
k=j+1

(−1)
i+j+1

X1 · · ·Xk−1(Xk −Xi)ek+1, for i < j

Ψ
1 ... i i ... n−1
1 2 ... n , for i = j

j−1∑
k=0

(−1)
i+j

X1 · · ·Xi−k−2(Xi−k−1 −Xi)ek, for i > j

Corollary 7. The conjecture 5 is equivalent to
a Hadamard type inequality for the (non Hermi-
tian) matrix (δ′ij)1≤i,j≤n−1, i.e.

det(δ′ij) ≤
n−1∏
i=1

δ′ii.
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