Resonance graphs of kinky benzenoid systems are daisy cubes

Petra Žigert Pleteršek

Faculty of Chemistry and Chemical Engineering & Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

2nd CroCo-days Zagreb, September 27-28, 2018

A (1) > A (2) > A

Outline

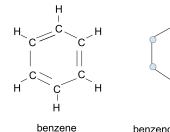
- ∢ ≣ →

Benzenoid systems

Benzenoid systems are 2-connected planar graphs such that every interior face is a hexagon.

4 3 b

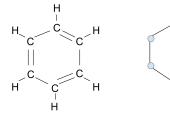
Molecule of benzene



benzenoid system

Petra Žigert Pleteršek Resonance graphs of kinky benzenoid systems are daisy cubes

Molecule of benzene



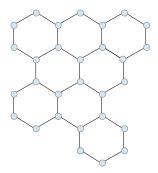
benzene

benzenoid system

Petra Žigert Pleteršek Resonance graphs of kinky benzenoid systems are daisy cubes

Cata- and pericondensed benzenoid systems



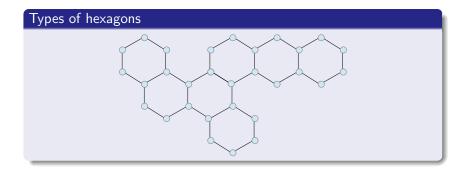


catacondensed b.s.

pericondensed b.s.

🗇 🕨 🔺 🖻 🕨 🔺 🖻

Catacondensed benzenoid systems



🗇 🕨 🔺 🖻 🕨 🔺 🖻

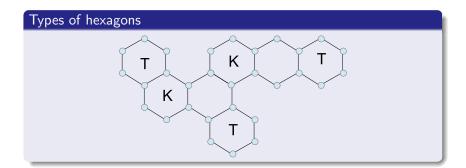
Catacondensed benzenoid systems

Types of hexagons

T ... terminal hexagon

- ∢ ≣ ▶

Catacondensed benzenoid systems

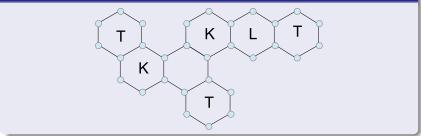


- T ... terminal hexagon
- K ... a kink (or an angularly connected hexagon)

A > < > > < >

Catacondensed benzenoid systems

Types of hexagons

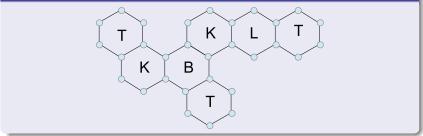


- ${\sf T}$... terminal hexagon
- K ... a kink
- L ... linear hexagon

→ Ξ →

Catacondensed benzenoid systems

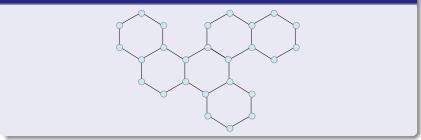
Types of hexagons



- T ... terminal hexagon
- K ... a kink
- L ... linear hexagon
- B ... branched hexagon

< ∃⇒

Kinky benzenoid systems



э

Perfect matchings

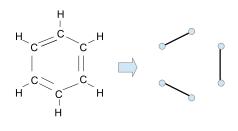
• a **1-factor** of a benzenoid system *B* is a spanning subgraph of *B* such that every vertex has degree one

Perfect matchings

- a **1-factor** of a benzenoid system *B* is a spanning subgraph of *B* such that every vertex has degree one
- edges of 1-factor form an independent set of edges M(B) called perfect matchings (chemicaly known as Kekulé structures)

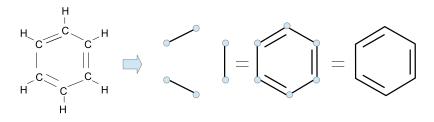
・ 同 ト ・ 三 ト ・ 三

Kekulé structure VS 1-factor (perfect matching)



Kekule structure 1-factor

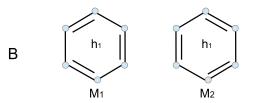
Kekulé structure VS 1-factor (perfect matching)



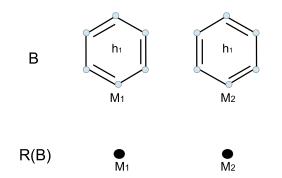
Kekule structure

1-factor

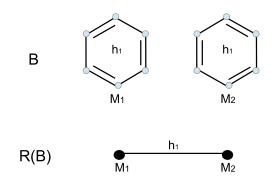
Resonance graph of benzene



Resonance graph of benzene



Resonance graph of benzene



・ 同 ト ・ 三 ト ・ 三

Definition of the resonance graph R(B)

vertices of R(B) ... perfect matchings of B

Petra Žigert Pleteršek Resonance graphs of kinky benzenoid systems are daisy cubes

(日) (同) (三) (三)

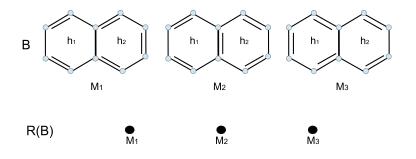
Definition of the resonance graph R(B)

vertices of R(B) ... perfect matchings of B

 M_1M_2 is an edge in R(B) ... $M_1 \oplus M_2$ is a hexagon of B

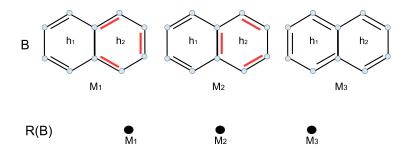
・ロト ・同ト ・ヨト ・ヨト

Resonance graph of naphtalene



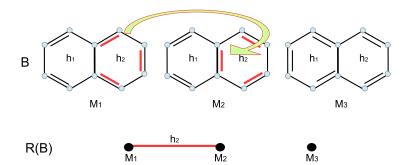
・ 同 ト ・ 三 ト ・ 三

Resonance graph of naphtalene



・ 同 ト ・ 三 ト ・ 三

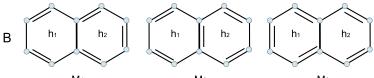
Resonance graph of naphtalene



A (1) > (1) > (1)

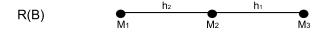
Benzenoid systems Resonance graphs Daisy cubes

Resonance graph of naphtalene

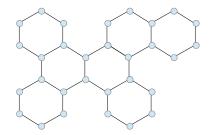


Μз

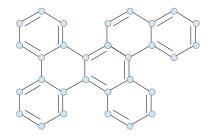
A (1) > (1) > (1)



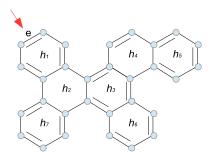
The binary coding procedure [Klavžar et al. (2001)]



The binary coding procedure



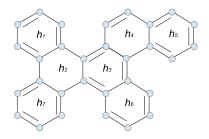
The binary coding procedure



< 17 ▶

→ 3 → 4 3

The binary coding procedure



ℓ(M)=1010101

Figure: The binary label of perfect matching M.

An example - fibonaccene

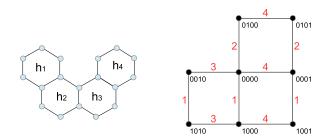
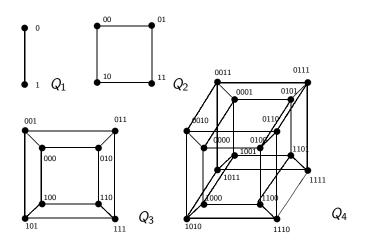


Figure: The resonance graph is isomorphic to the Fibonacci cube Γ_4 .

< ∃ >

-

Hypercubes Q_1, Q_2, Q_3, Q_4



Petra Žigert Pleteršek Resonance graphs of kinky benzenoid systems are daisy cubes

< ロ > < 同 > < 回 > < 回 >

э

Daisy cubes

Let \leq be a partial order on $\{0,1\}^n$ defined with

$$u_1 \ldots u_n \leq v_1 \ldots v_n$$
 if $u_i \leq v_i, \forall i \in [n]$.

A > < > > < >

Daisy cubes

Let
$$\leq$$
 be a partial order on $\{0,1\}^n$ defined with

$$u_1 \ldots u_n \leq v_1 \ldots v_n$$
 if $u_i \leq v_i, \forall i \in [n]$.

For example:

$000 \leq 010 \leq 011 \leq 111$

э

Daisy cubes

[Klavžar, Mollard (2018)]

Let \leq be a partial order on $\{0,1\}^n$ defined with

$$u_1 \ldots u_n \leq v_1 \ldots v_n$$
 if $u_i \leq v_i, \forall i \in [n]$.

For $X \subseteq \{0,1\}^n$ we define the graph $Q_n(X)$ as the subgraph of Q_n with $Q_n(X) = \langle \{u \in \{0,1\}^n; u \le x \text{ for some } x \in X\} \rangle$ and say that $Q_n(X)$ is a *daisy cube* (generated by X).

The vertex sets of daisy cubes are also known as hereditary or downwards closed sets.

- < 同 > < 三 > < 三 >

$Q_n(X) = \langle \{u \in \{0,1\}^n; u \leq x \text{ for some } x \in X\} \rangle$

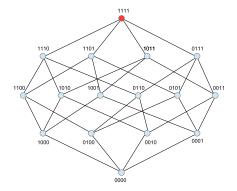


Figure: $X = \{1^n\} \Rightarrow Q_n(X) = Q_n$

《口》 《聞》 《臣》 《臣》 二臣

$Q_n(X) = \langle \{u \in \{0,1\}^n; u \leq x \text{ for some } x \in X\} \rangle$

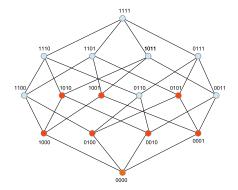


Figure: $X = \{u_1 \dots u_n; u_i \cdot u_{i+1} = 0, i \in [n-1]\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$Q_n(X) = \langle \{u \in \{0,1\}^n; u \leq x \text{ for some } x \in X\} \rangle$

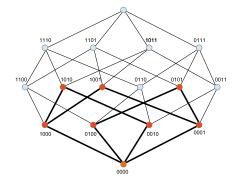


Figure: $X = \{u_1 \dots u_n; u_i \cdot u_{i+1} = 0, i \in [n-1]\} \Rightarrow Q_n(X) = \Gamma_n$ (a Fibonacci cube)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$Q_n(X) = \langle \{u \in \{0,1\}^n; u \leq x \text{ for some } x \in X\} \rangle$

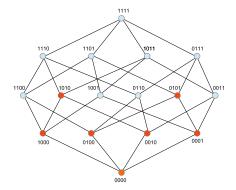


Figure: $X = \{u_1 \dots u_n; u_i \cdot u_{i+1} = 0, i \in [n-1], u_1 \cdot u_n = 0\}$

Petra Žigert Pleteršek Resonance graphs of kinky benzenoid systems are daisy cubes

$Q_n(X) = \langle \{u \in \{0,1\}^n; u \leq x \text{ for some } x \in X\} \rangle$

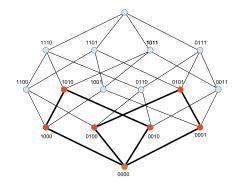


Figure:

 $X = \{u_1 \dots u_n; u_i \cdot u_{i+1} = 0, i \in [n-1], u_1 \cdot u_n = 0\} \Rightarrow Q_n(X) = \Lambda_n$ (a Lucas cube)

$Q_n(X) = \langle \{u \in \{0,1\}^n; u \leq x \text{ for some } x \in X\} \rangle$

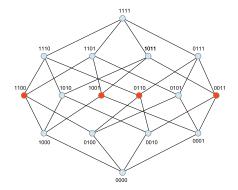


Figure: $X = \{110^{n-2}, 01100^{n-3}, \dots, 0^{n-2}11, 10^{n-2}1\}$

《曰》《聞》《臣》《臣》 [] 臣

$Q_n(X) = \langle \{u \in \{0,1\}^n; u \leq x \text{ for some } x \in X\} \rangle$

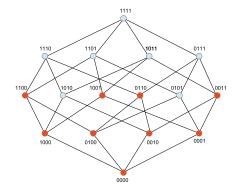


Figure: $X = \{110^{n-2}, 01100^{n-3}, \dots, 0^{n-2}11, 10^{n-2}1\}$

《曰》《聞》《臣》《臣》 [] 臣

$Q_n(X) = \langle \{u \in \{0,1\}^n; u \leq x \text{ for some } x \in X\} \rangle$

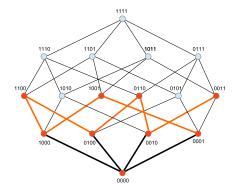
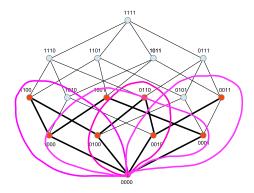


Figure: $X = \{110^{n-2}, 01100^{n-3}, \dots, 0^{n-2}11, 10^{n-2}1\} \Rightarrow Q_n(X) = BW_n$ (a bipartite wheel)

《曰》 《圖》 《言》 《言》 二言

A daisy cube



<ロ> <同> <同> < 回> < 回>

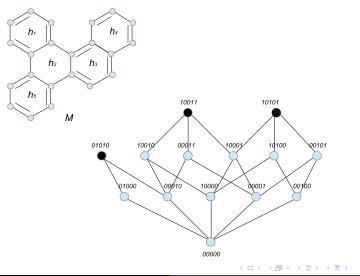
The main result

[P. Ž. P. (2018)]

The resonance graph of a kinky benzenoid system is a daisy cube.

Petra Žigert Pleteršek Resonance graphs of kinky benzenoid systems are daisy cubes

An example



æ

Problem-linear hexagons

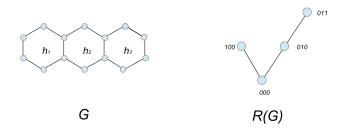


Figure: The resonance graph is not a daisy cube.

- ∢ ≣ ▶

THANKS FOR YOUR ATTENTION!

Petra Žigert Pleteršek Resonance graphs of kinky benzenoid systems are daisy cubes

<ロ> <同> <同> < 回> < 回>