Acyclic, star and injective colouring of *H*-free graphs

Jan Bok¹, Nikola Jedličková¹, Barnaby Martin², Daniël Paulusma², Siani Smith²

¹ Charles University, Prague, Czech Republic
² Durham University, Durham, UK

22th September 2020

3rd CroCoDays, Zagreb, Croatia

Definition

An acyclic k-colouring of a graph G is a proper k-colouring such that the graph induced by the vertices of any two colour classes is a forest.

In other words, at least 3 different colours are assigned to the vertices of any cycle.

Definition

A star k-colouring of a graph G is a proper k-colouring such that the union of any two colour classes induces a star forest.

In other words any cycle and any path on four vertices is assigned at least 3 different colours.

Definition

An injective k-colouring of a graph G is a proper k-colouring such that the union of any two colour classes induces a disjoint union of edges and vertices.

In other words any path on 3 vertices is assigned 3 different colours.

For a given graph G and its colourings:

injective k-colourings \subseteq star k-colourings \subseteq acyclic k-colourings.

We distinguish whether the number of colours is a part of the input or not.

Problem: ACYCLIC (STAR/INJECTIVE) k-COLOURING
Input: A graph G.
Question: Does there exist an acyclic (star/injective) colouring of G with at most k colours?

Problem: ACYCLIC (STAR/INJECTIVE) COLOURING
Input: A graph G and an integer k.
Question: Does there exist an acyclic (star/injective) colouring of G with at most k colours?

H-free graphs

Definition

A graph G is said to be H-free for some graph H if G has no induced subgraph isomorphic to H.

Figure: An example of a triangle-free (or K_3 -free) graph.

Classical colouring problem for H-free graphs

- The problem was extensively studied for COLOURING and *k*-COLOURING problems.
- For *k*-COLOURING, there is not a complete complexity dichotomy yet.
- For COLOURING, there is a dichotomy.

Theorem (Král' et al. (2001))

The problem COLOURING is polynomial-time solvable for H-free graphs if H is an induced subgraph of P_4 or $P_3 + P_1$ and NP-complete otherwise.

Based on our joint paper accepted to ESA 2020 conference and its journal version (about to be submitted).

- In a similar way, we combine new and known results to show that each of the three problems are NP-complete for claw-free graphs and C_p-free graphs when k is fixed.
- We then study the remaining open cases to obtain complete complexity dichotomies for each problem when k is fixed and almost complete complexity classifications when k is part of the input.

Let H be a graph. For the class of H-free graphs it holds that:

- (i) ACYCLIC COLOURING is polynomial-time solvable if H ⊆_i P₄ and NP-complete if H is not a forest or H ⊇_i 19P₁, 3P₃, P₁₁ or 2P₅;
- (ii) For every $k \ge 3$, ACYCLIC k-COLOURING is polynomial-time solvable if H is a linear forest and NP-complete otherwise.

Let H be a graph. For the class of H-free graphs it holds that:

- (i) STAR COLOURING is polynomial-time solvable if H ⊆_i P₄ and NP-complete for any H ≠ 2P₂.
- (ii) For every $k \ge 3$, STAR k-COLOURING is polynomial-time solvable if H is a linear forest and NP-complete otherwise.

Let H be a graph. For the class of H-free graphs it holds that:

- (i) INJECTIVE COLOURING is polynomial-time solvable if H ⊆_i P₄ or H ⊆_i P₁ + P₃ or H ⊆_i 3P₁ + P₂ and NP-complete if H is not a forest or 2P₂ ⊆_i H or 6P₁ ⊆_i H.
- (ii) For every $k \ge 4$, INJECTIVE k-COLOURING is polynomial-time solvable if H is a linear forest and NP-complete otherwise.

Let H be a graph. For the class of H-free graphs it holds that:

- (i) INJECTIVE COLOURING is polynomial-time solvable if H ⊆_i P₄ or H ⊆_i P₁ + P₃ or H ⊆_i 3P₁ + P₂ and NP-complete if H is not a forest or 2P₂ ⊆_i H or 6P₁ ⊆_i H.
- (ii) For every $k \ge 4$, INJECTIVE k-COLOURING is polynomial-time solvable if H is a linear forest and NP-complete otherwise.

I will further focus in more detail on acyclic colouring.

Acyclic colouring of *H*-free graphs

Girth

Lemma

For every $g \ge 3$, ACYCLIC k-COLOURING is NP-complete for graphs of girth at least g.

- We reduce from ACYCLIC *k*-COLOURING, which is known to be NP-complete in general.
- We replace every edge in G by a suitable acyclically k-colourable graph F of high girth with F + xy not being an acyclically k-colourable graph.
- Let G be an instance of ACYCLIC k-COLOURING. We pick an edge $uv \in E(G)$. In G uv we "glue" F by identifying u with x and y with v. We then prove that G has an acyclic k-colouring if and only if G' has an acyclic k-colouring.
- We repeat the construction for each edge of *G* to get a graph with high girth.
- Since we do not know how to construct *F* (there is just an existential result), we have to carefully distinguish between all the possible cases of acyclic colouring of *F*.

Claws

Lemma

For every $k \geq 3$, ACYCLIC k-COLOURING is NP-complete for line graphs.

- We shall make use of a result by Alon and Zaks.
- They have proved that deciding if a graph has an acyclic 3-edge colouring is NP-complete.
- We generalise this to acyclic k-edge colouring.

• Since we can translate edge colouring of a graph into vertex colouring of its line graph and $K_{1,3}$ is one of the forbidden induced subgraphs of the class of line graphs, we get the lemma.

Lemma

ACYCLIC COLOURING is NP-complete for (19P₁, 3P₃, 2P₅, P₁₁)-free graphs.

• We reduce from 3-COLOURING with maximum degree 4 which is known to be NP-complete by Garey and Johnson.

A (general) polynomial result

Definition (BB-condition)

We say that a colouring c of a graph G satisfies the balance biclique condition (BB-condition) if c uses at least k + 1 colours to colour G, where k is the order of a largest biclique that is contained in G as a (not necessarily induced) subgraph.

Theorem

Let H be a linear forest, and let π be a colouring property that can be expressed in MSO₂, such that every colouring with property π satisfies the BB-condition. Then, for every integer $k \ge 1$, k-COLOURING(π) is linear-time solvable for H-free graphs.

A (general) polynomial result

Definition (BB-condition)

We say that a colouring c of a graph G satisfies the balance biclique condition (BB-condition) if c uses at least k + 1 colours to colour G, where k is the order of a largest biclique that is contained in G as a (not necessarily induced) subgraph.

Theorem

Let H be a linear forest, and let π be a colouring property that can be expressed in MSO_2 , such that every colouring with property π satisfies the BB-condition. Then, for every integer $k \ge 1$, k-COLOURING(π) is linear-time solvable for H-free graphs.

Long story short...

Corollary

Let H be a linear forest. For every $k \ge 1$, ACYCLIC k-COLOURING, STAR k-COLOURING and INJECTIVE k-COLOURING are polynomial-time solvable for H-free graphs.

For every $k \ge 3$, ACYCLIC k-COLOURING is polynomial-time solvable if H is a linear forest and NP-complete otherwise.

- First suppose that H contains an induced cycle C_p as its largest induced cycle.
 - If p = 3, then we use the result of Coleman and Cai, who proved that for every k ≥ 3, ACYCLIC k-COLOURING is NP-complete for bipartite graphs.
 - If $p \ge 4$, set g = p + 1 and use the lemma on girth.
- Now assume *H* has no cycle so *H* is a forest. If *H* has a vertex of degree at least 3, then *H* has an induced $K_{1,3}$. As every line graph is $K_{1,3}$ -free, we can use the lemma on claws.
- Otherwise H is a linear forest and we use the general polynomial result.

Putting it together: k part of the input

Theorem

For the class of H-free graphs it holds that ACYCLIC COLOURING is polynomial-time solvable if $H \subseteq_i P_4$ and NP-complete if H is not a forest or $H \supseteq_i 19P_1, 3P_3, 2P_5$ or P_{11}

• Thanks to the previous theorem on ACYCLIC *k*-COLOURING, we may assume that *H* is a linear forest.

For the class of H-free graphs it holds that ACYCLIC COLOURING is polynomial-time solvable if $H \subseteq_i P_4$ and NP-complete if H is not a forest or $H \supseteq_i 19P_1, 3P_3, 2P_5$ or P_{11}

- Thanks to the previous theorem on ACYCLIC *k*-COLOURING, we may assume that *H* is a linear forest.
- If H ⊆_i P₄, then we use the result of Lyons that states that ACYCLIC COLOURING is polynomial-time solvable for P₄-free graphs (cographs).

For the class of H-free graphs it holds that ACYCLIC COLOURING is polynomial-time solvable if $H \subseteq_i P_4$ and NP-complete if H is not a forest or $H \supseteq_i 19P_1, 3P_3, 2P_5$ or P_{11}

- Thanks to the previous theorem on ACYCLIC *k*-COLOURING, we may assume that *H* is a linear forest.
- If H ⊆_i P₄, then we use the result of Lyons that states that ACYCLIC COLOURING is polynomial-time solvable for P₄-free graphs (cographs).
- If $H \supseteq_i 19P_1, 3P_3, 2P_5$ or P_{11} , then we use the lemma on linear forests.

Open problems

There are still many gaps to fill.

- Determine the complexity of ACYCLIC COLOURING for *H*-free graphs where *H* is a linear forest with $19P_1$, $3P_3$, P_{11} , or $2P_5$ not being an induced subgraph of *H*.
- For every $g \ge 4$, determine the complexity of INJECTIVE COLOURING and INJECTIVE k-COLOURING ($k \ge 4$) for graphs of girth at least g.
- For every g ≥ 4, determine the complexity of STAR k-COLOURING (k ≥ 4) for graphs of girth at least g.
- Determine the complexity of STAR COLOURING for $2P_2$ -free graphs.
- \bullet Determine the complexity of $\ensuremath{\operatorname{STAR}}$ COLOURING for split graphs.

We initiated a systematic complexity study and similar to the study of COLOURING we use the class of *H*-free graphs.

- 1. We give almost complete classifications for the computational complexity of ACYCLIC COLOURING, STAR COLOURING and INJECTIVE COLOURING for *H*-free graphs.
- 2. If the number of colours k is fixed, that is, not part of the input, we give full complexity classifications for each of the three problems for H-free graphs.

We conclude that for fixed k the three problems behave in the same way, but this is no longer true if k is part of the input.

We initiated a systematic complexity study and similar to the study of COLOURING we use the class of *H*-free graphs.

- 1. We give almost complete classifications for the computational complexity of ACYCLIC COLOURING, STAR COLOURING and INJECTIVE COLOURING for *H*-free graphs.
- 2. If the number of colours k is fixed, that is, not part of the input, we give full complexity classifications for each of the three problems for H-free graphs.

We conclude that for fixed k the three problems behave in the same way, but this is no longer true if k is part of the input.

https://arxiv.org/abs/2008.09415 bok@iuuk.mff.cuni.cz

We initiated a systematic complexity study and similar to the study of COLOURING we use the class of *H*-free graphs.

- 1. We give almost complete classifications for the computational complexity of ACYCLIC COLOURING, STAR COLOURING and INJECTIVE COLOURING for *H*-free graphs.
- 2. If the number of colours k is fixed, that is, not part of the input, we give full complexity classifications for each of the three problems for H-free graphs.

We conclude that for fixed k the three problems behave in the same way, but this is no longer true if k is part of the input.

https://arxiv.org/abs/2008.09415 bok@iuuk.mff.cuni.cz

Thank you!