# Packing stars in fullerenes 

Tomislav Došlić<br>Faculty of Civil Engineering, University of Zagreb

Zagreb, September 2020

Joint work with Meysam Taheri-Dehkordi and Gholam Hossein Fath-Tabar of Kashan, Iran.

Joint work with Meysam Taheri-Dehkordi and Gholam Hossein Fath-Tabar of Kashan, Iran.
T. Došlić, M. Taheri-Dehkordi, G. H. Fath-Tabar, Packing stars in fullerenes, Journal of Mathematical Chemistry, to appear.

## Packings

A packing of a graph $H$ in a graph $G$ is a collection of vertex-disjoints subgraphs of $G$ such that each component is isomorphic to $H$.

## Packings

A packing of a graph $H$ in a graph $G$ is a collection of vertex-disjoints subgraphs of $G$ such that each component is isomorphic to $H$.

A packing of $H$ in $G$ is perfect if it is a spanning subgraph of $G$.

## Packings

A packing of a graph $H$ in a graph $G$ is a collection of vertex-disjoints subgraphs of $G$ such that each component is isomorphic to $H$.

A packing of $H$ in $G$ is perfect if it is a spanning subgraph of $G$.

Any matching in $G$ can be viewed as a packing of $K_{2}$ in $G$.

## Packings

A packing of a graph $H$ in a graph $G$ is a collection of vertex-disjoints subgraphs of $G$ such that each component is isomorphic to $H$.

A packing of $H$ in $G$ is perfect if it is a spanning subgraph of $G$.

Any matching in $G$ can be viewed as a packing of $K_{2}$ in $G$.


G


G

## Stars

A star $S_{n}$ is a complete bipartite graph $K_{1, n-1}$ with one of the classes of size 1 .

## Stars

A star $S_{n}$ is a complete bipartite graph $K_{1, n-1}$ with one of the classes of size 1 .


## Stars

A star $S_{n}$ is a complete bipartite graph $K_{1, n-1}$ with one of the classes of size 1 .


In this talk, a star means a copy of $K_{1,3}$, unless stated otherwise.

## Fullerenes

A fullerene is a polyhedral molecule consisting only of carbon atoms and containing only pentagonal and hexagonal faces.

## Fullerenes

A fullerene is a polyhedral molecule consisting only of carbon atoms and containing only pentagonal and hexagonal faces.


## More fullerenes



## Fullerene graphs

A fullerene graph is a planar, 3 -regular and 3 -connected graph, twelve of whose faces are pentagons and any remaining faces are hexagons.

## Fullerene graphs

A fullerene graph is a planar, 3 -regular and 3 -connected graph, twelve of whose faces are pentagons and any remaining faces are hexagons.


## Hexagonal lattice

## Hexagonal lattice



## Necessary conditions for fullerenes

## Proposition

If there exists a perfect packing of stars in a fullerene graph $G$, then

- the number of vertices of $G$ must be divisible by 4, and
- -1 must be an eigenvalue of $A(G)$.


## Main lemma

## Lemma

A vertex $u$ in a fullerene graph $G$ shared by two pentagons cannot be the center of a star in a perfect packing of stars in $G$.

## Main lemma

## Lemma

A vertex $u$ in a fullerene graph $G$ shared by two pentagons cannot be the center of a star in a perfect packing of stars in $G$.


## Main lemma

## Main lemma



## Star-forbidden graphs

A graph $F$ is $H$-forbidden in a class $\mathcal{G}$ if no graph $G \in \mathcal{G}$ having $F$ as a subgraph has a perfect $H$-packing.

## Star-forbidden graphs

A graph $F$ is $H$-forbidden in a class $\mathcal{G}$ if no graph $G \in \mathcal{G}$ having $F$ as a subgraph has a perfect $H$-packing.

## Proposition

Following graphs are star-forbidden in fullerene graphs:

$\mathrm{P}_{3}$

$\mathrm{H}_{6}$

$\mathrm{H}_{5}$

$\mathrm{H}_{4,2,2}$

$\mathrm{H}_{4,4}$

## Negative results

## Negative results

## Proposition

$C_{20}: I_{h}$ does not have a perfect star-packing.

## Negative results

## Proposition

$C_{20}: I_{h}$ does not have a perfect star-packing.

## Proposition

Narrow nanotubes $C_{10 n}$ and $C_{12 n}$ do not have perfect star-packings.

## Negative results

## Proposition

$C_{20}: I_{h}$ does not have a perfect star-packing.

## Proposition

Narrow nanotubes $C_{10 n}$ and $C_{12 n}$ do not have perfect star-packings.

## Proposition

Let $G$ be a fullerene graph on less than 40 vertices. Then $G$ does not have a perfect star-packing.

## Negative results

## Proposition

$C_{20}: I_{h}$ does not have a perfect star-packing.

## Proposition

Narrow nanotubes $C_{10 n}$ and $C_{12 n}$ do not have perfect star-packings.

## Proposition

Let $G$ be a fullerene graph on less than 40 vertices. Then $G$ does not have a perfect star-packing.

## Proposition

Buckyball $C_{60}: I_{h}$ does not have a perfect star-packing.

## Finally something positive

## Finally something positive

## Proposition

$C_{40}: D_{5 h}$ is the unique smallest fullerene having a perfect star-packing.

## Finally something positive

## Proposition

$C_{40}: D_{5 h}$ is the unique smallest fullerene having a perfect star-packing.

## Proposition

There are only three fullerene graphs on at most 60 vertices having a perfect star-packing: $C_{40}: D_{5 h}, C_{48}: D_{6}$, and $C_{56}: 649$.

$$
C_{40}: D_{5 h}
$$



## $P 0$ and $P 1$ packings

A star-packing in a fullerene graph $G$ is of type $P 0$ if no center of a star lies on a pentagon. Otherwise it is of type P1.

## $P 0$ and $P 1$ packings

A star-packing in a fullerene graph $G$ is of type $P 0$ if no center of a star lies on a pentagon. Otherwise it is of type $P 1$.

$C_{80}: I_{h}$

$$
C_{80}: I_{h}
$$

## Proposition

$C_{80}: I_{h}$ is the unique smallest fullerene having a perfect star-packing of type $P 0$.

$$
C_{80}: I_{h}
$$

## Proposition

$C_{80}: I_{h}$ is the unique smallest fullerene having a perfect star-packing of type $P 0$.

## Theorem

A fullerene graph $F_{8 m}$ on $4 m$ vertices has a perfect star-packing of type $P 0$ if and only if it arises from a fullerene graph $F_{2 m}$ via chamfering transformation.

$$
C_{80}: I_{h}
$$

## Proposition

$C_{80}: I_{h}$ is the unique smallest fullerene having a perfect star-packing of type $P 0$.

## Theorem

A fullerene graph $F_{8 m}$ on $4 m$ vertices has a perfect star-packing of type $P 0$ if and only if it arises from a fullerene graph $F_{2 m}$ via chamfering transformation.

## Corollary

The fraction of fullerenes that have a perfect star-packing is bounded away from zero.

Chamfering transformation

## Chamfering transformation



## ( $k, 6$ )-fullerene graphs

A ( $k, 6$ )-fullerene graph is a planar, 3-regular and 3 -connected graph, with only $k$-gonal and hexagonal faces.
( $k, 6$ )-fullerene graphs exist only for $k=3,4,5$.

## ( $k, 6$ )-fullerene graphs

A ( $k, 6$ )-fullerene graph is a planar, 3-regular and 3 -connected graph, with only $k$-gonal and hexagonal faces.
( $k, 6$ )-fullerene graphs exist only for $k=3,4,5$.

## Theorem

All (3, 6)-fullerene graphs have perfect star-packings.

Context

## Context

- (Perfect) $k$-codes


## Context

- (Perfect) $k$-codes
- $k$-independence


## Context

- (Perfect) $k$-codes
- $k$-independence
- Efficient domination


## Context

- (Perfect) $k$-codes
- $k$-independence
- Efficient domination
- Perfect pseudo-matchings


## Context

- (Perfect) $k$-codes
- $k$-independence
- Efficient domination
- Perfect pseudo-matchings


Perfect pseudo-matchings in fullerenes

## Perfect pseudo-matchings in fullerenes

## Theorem

Every fullerene graph on $n$ vertices has a perfect pseudo-matching of size at most $\frac{n}{2}-2$.

## Perfect pseudo-matchings in fullerenes

## Theorem

Every fullerene graph on $n$ vertices has a perfect pseudo-matching of size at most $\frac{n}{2}-2$.

## Problem

Find the smallest size of a perfect pseudo-matching for a given fullerene graph.

## Packing other small graphs in fullerenes

## Packing other small graphs in fullerenes

## Theorem

Let $G$ be a fullerene graph on $14 n$ vertices arising from a fullerene graph on $2 n$ vertices via the capra septupling transformation. Then there is a perfect packing of $S\left(K_{1,3}\right)$ in $G$.

## Packing other small graphs in fullerenes

## Theorem

Let $G$ be a fullerene graph on $14 n$ vertices arising from a fullerene graph on $2 n$ vertices via the capra septupling transformation. Then there is a perfect packing of $S\left(K_{1,3}\right)$ in $G$.

## Theorem

A fullerene graph $G$ has a perfect $\left\{C_{5}, C_{6}\right\}$-packing if and only if it is a leapfrog fullerene.

## Packing other small graphs in fullerenes



Open problems

## Open problems

- Existence of perfect star-packings in fullerenes on $8 n+4$ vertices.


## Open problems

- Existence of perfect star-packings in fullerenes on $8 n+4$ vertices.
- Perfect star-packings in (4, 6)-fullerenes.


## Open problems

- Existence of perfect star-packings in fullerenes on $8 n+4$ vertices.
- Perfect star-packings in (4, 6)-fullerenes.
- Other packings in classical and generalized fullerenes.


## Open problems

- Existence of perfect star-packings in fullerenes on $8 n+4$ vertices.
- Perfect star-packings in (4, 6)-fullerenes.
- Other packings in classical and generalized fullerenes.
- Enumerative aspects.


## Open problems

- Existence of perfect star-packings in fullerenes on $8 n+4$ vertices.
- Perfect star-packings in (4, 6)-fullerenes.
- Other packings in classical and generalized fullerenes.
- Enumerative aspects.

Thank you!

