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Stars

A star S,is a complete bipartite graph £ ,,_; with one of the classes of size 1.

In this talk, a star means a copy of K 3, unless stated otherwise.
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Fullerene graphs

A fullerene graph is a planar, 3-regular and 3-connected graph, twelve of whose
faces are pentagons and any remaining faces are hexagons.
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Necessary conditions for fullerenes

Proposition
If there exists a perfect packing of stars in a fullerene graph G, then
e the number of vertices of G must be divisible by 4, and

e -1 must be an eigenvalue of A(G).
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A graph F'is H-forbidden in a class G if no graph G € G having F' as a
subgraph has a perfect H-packing.

Proposition

Following graphs are star-forbidden in fullerene graphs:
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P3 H6 Hs H4,2,2 H4,4
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Negative results

Proposition

Csy @ I), does not have a perfect star-packing.

Proposition

Narrow nanotubes C,, and ()5, do not have perfect star-packings.

Proposition

Let G be a fullerene graph on less than 40 vertices. Then G does not have a
perfect star-packing.

Proposition

Buckyball C, : I, does not have a perfect star-packing.
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Finally something positive

Proposition

Cyo : D5, is the unique smallest fullerene having a perfect star-packing.

Proposition

There are only three fullerene graphs on at most 60 vertices having a perfect
Star'paCking: 040 : D5h: 048 : D6, and 056 : 649.



Cao : Dsp




PO and P1 packings

A star-packing in a fullerene graph G is of type PO if no center of a star lies on a
pentagon. Otherwise it is of type P1.



PO and P1 packings

A star-packing in a fullerene graph G is of type PO if no center of a star lies on a
pentagon. Otherwise it is of type P1.



Cso : I



Cso : 1y,

Proposition

Cygo : I, is the unique smallest fullerene having a perfect star-packing of type P0.



Cso : 1y,

Proposition

Cygo : I, is the unique smallest fullerene having a perfect star-packing of type P0.

Theorem

A fullerene graph F%,, on 4m vertices has a perfect star-packing of type PO if and
only if it arises from a fullerene graph Fs,, via chamfering transformation.



Cso : 1y,

Proposition

Cygo : I, is the unique smallest fullerene having a perfect star-packing of type P0.

Theorem

A fullerene graph F%,, on 4m vertices has a perfect star-packing of type PO if and
only if it arises from a fullerene graph Fs,, via chamfering transformation.

Corollary

The fraction of fullerenes that have a perfect star-packing is bounded away from
zero.



Chamfering transformation



Chamfering transformation




(k,6)-fullerene graphs

A (k. 6)-fullerene graph is a planar, 3-regular and 3-connected graph, with only
k-gonal and hexagonal faces.
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(k,6)-fullerene graphs

A (k. 6)-fullerene graph is a planar, 3-regular and 3-connected graph, with only
k-gonal and hexagonal faces.

(k, 6)-fullerene graphs exist only for k = 3, 4, 5.

Theorem

All (3, 6)-fullerene graphs have perfect star-packings.
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Perfect pseudo-matchings in fullerenes

Theorem

Every fullerene graph on n vertices has a perfect pseudo-matching of size at
most = — 2.
2

Problem

Find the smallest size of a perfect pseudo-matching for a given fullerene graph.
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Packing other small graphs in fullerenes

Theorem

Let G be a fullerene graph on 14n vertices arising from a fullerene graph on 2n
vertices via the capra septupling transformation. Then there is a perfect packing
of S(Kl’g) in G.

Theorem

A fullerene graph G has a perfect {C5, Cs }-packing if and only if it is a leapfrog
fullerene.
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Thank you!



