Packing stars in fullerenes

Tomislav Došlić Faculty of Civil Engineering, University of Zagreb

Zagreb, September 2020

Joint work with Meysam Taheri-Dehkordi and Gholam Hossein Fath-Tabar of Kashan, Iran.

Joint work with Meysam Taheri-Dehkordi and Gholam Hossein Fath-Tabar of Kashan, Iran.

T. Došlić, M. Taheri-Dehkordi, G. H. Fath-Tabar, Packing stars in fullerenes, *Journal of Mathematical Chemistry*, to appear.

A packing of a graph H in a graph G is a collection of vertex-disjoints subgraphs of G such that each component is isomorphic to H.

A packing of a graph H in a graph G is a collection of vertex-disjoints subgraphs of G such that each component is isomorphic to H.

A packing of H in G is perfect if it is a spanning subgraph of G.

A packing of a graph H in a graph G is a collection of vertex-disjoints subgraphs of G such that each component is isomorphic to H.

A packing of H in G is perfect if it is a spanning subgraph of G.

Any matching in G can be viewed as a packing of K_2 in G.

A packing of a graph H in a graph G is a collection of vertex-disjoints subgraphs of G such that each component is isomorphic to H.

A packing of H in G is perfect if it is a spanning subgraph of G.

Any matching in G can be viewed as a packing of K_2 in G.

Stars

A star S_n is a complete bipartite graph $K_{1,n-1}$ with one of the classes of size 1.

Stars

A star S_n is a complete bipartite graph $K_{1,n-1}$ with one of the classes of size 1.

Stars

A star S_n is a complete bipartite graph $K_{1,n-1}$ with one of the classes of size 1.

In this talk, a star means a copy of $K_{1,3}$, unless stated otherwise.

Fullerenes

A fullerene is a polyhedral molecule consisting only of carbon atoms and containing only pentagonal and hexagonal faces.

Fullerenes

A fullerene is a polyhedral molecule consisting only of carbon atoms and containing only pentagonal and hexagonal faces.

More fullerenes

Fullerene graphs

A fullerene graph is a planar, 3-regular and 3-connected graph, twelve of whose faces are pentagons and any remaining faces are hexagons.

Fullerene graphs

A fullerene graph is a planar, 3-regular and 3-connected graph, twelve of whose faces are pentagons and any remaining faces are hexagons.

36:14 (1 D2d 0.0)

36:15 (2 C_{6v} 11.6)

Hexagonal lattice

Hexagonal lattice

Necessary conditions for fullerenes

Proposition

If there exists a perfect packing of stars in a fullerene graph G, then

- the number of vertices of G must be divisible by 4, and
- -1 must be an eigenvalue of A(G).

Lemma

A vertex u in a fullerene graph G shared by two pentagons cannot be the center of a star in a perfect packing of stars in G.

Lemma

A vertex u in a fullerene graph G shared by two pentagons cannot be the center of a star in a perfect packing of stars in G.

Main lemma

Star-forbidden graphs

A graph F is H-forbidden in a class \mathcal{G} if no graph $G \in \mathcal{G}$ having F as a subgraph has a perfect H-packing.

Star-forbidden graphs

A graph F is H-forbidden in a class \mathcal{G} if no graph $G \in \mathcal{G}$ having F as a subgraph has a perfect H-packing.

Proposition

Following graphs are star-forbidden in fullerene graphs:

Proposition

 C_{20} : I_h does not have a perfect star-packing.

Proposition

 C_{20} : I_h does not have a perfect star-packing.

Proposition

Narrow nanotubes C_{10n} and C_{12n} do not have perfect star-packings.

Proposition

 C_{20} : I_h does not have a perfect star-packing.

Proposition

Narrow nanotubes C_{10n} and C_{12n} do not have perfect star-packings.

Proposition

Let G be a fullerene graph on less than 40 vertices. Then G does not have a perfect star-packing.

Proposition

 C_{20} : I_h does not have a perfect star-packing.

Proposition

Narrow nanotubes C_{10n} and C_{12n} do not have perfect star-packings.

Proposition

Let G be a fullerene graph on less than 40 vertices. Then G does not have a perfect star-packing.

Proposition

Buckyball C_{60} : I_h does not have a perfect star-packing.

Finally something positive

Finally something positive

Proposition

 C_{40} : D_{5h} is the unique smallest fullerene having a perfect star-packing.

Finally something positive

Proposition

 $C_{40}: D_{5h}$ is the unique smallest fullerene having a perfect star-packing.

Proposition

There are only three fullerene graphs on at most 60 vertices having a perfect star-packing: C_{40} : D_{5h} , C_{48} : D_6 , and C_{56} : 649.

 $C_{40}: D_{5h}$

P0 and P1 packings

A star-packing in a fullerene graph G is of type P0 if no center of a star lies on a pentagon. Otherwise it is of type P1.

P0 and P1 packings

A star-packing in a fullerene graph G is of type P0 if no center of a star lies on a pentagon. Otherwise it is of type P1.

$C_{80}: I_h$

 $C_{80}: I_h$

Proposition

 C_{80} : I_h is the unique smallest fullerene having a perfect star-packing of type P0.

 $C_{80}: I_h$

Proposition

 C_{80} : I_h is the unique smallest fullerene having a perfect star-packing of type P0.

Theorem

A fullerene graph F_{8m} on 4m vertices has a perfect star-packing of type P0 if and only if it arises from a fullerene graph F_{2m} via chamfering transformation.

 $C_{80}: I_h$

Proposition

 C_{80} : I_h is the unique smallest fullerene having a perfect star-packing of type P0.

Theorem

A fullerene graph F_{8m} on 4m vertices has a perfect star-packing of type P0 if and only if it arises from a fullerene graph F_{2m} via chamfering transformation.

Corollary

The fraction of fullerenes that have a perfect star-packing is bounded away from zero.

Chamfering transformation

Chamfering transformation

(k, 6)-fullerene graphs

A (k, 6)-fullerene graph is a planar, 3-regular and 3-connected graph, with only k-gonal and hexagonal faces.

(k, 6)-fullerene graphs exist only for k = 3, 4, 5.

(k, 6)-fullerene graphs

A (k, 6)-fullerene graph is a planar, 3-regular and 3-connected graph, with only k-gonal and hexagonal faces.

(k, 6)-fullerene graphs exist only for k = 3, 4, 5.

Theorem

All (3, 6)-fullerene graphs have perfect star-packings.

• (Perfect) *k*-codes

- (Perfect) *k*-codes
- *k*-independence

- (Perfect) k-codes
- *k*-independence
- Efficient domination

- (Perfect) k-codes
- *k*-independence
- Efficient domination
- Perfect pseudo-matchings

- (Perfect) k-codes
- *k*-independence
- Efficient domination
- Perfect pseudo-matchings

Perfect pseudo-matchings in fullerenes

Perfect pseudo-matchings in fullerenes

Theorem

Every fullerene graph on n vertices has a perfect pseudo-matching of size at most $\frac{n}{2}-2.$

Perfect pseudo-matchings in fullerenes

Theorem

Every fullerene graph on n vertices has a perfect pseudo-matching of size at most $\frac{n}{2}-2.$

Problem

Find the smallest size of a perfect pseudo-matching for a given fullerene graph.

Theorem

Let *G* be a fullerene graph on 14n vertices arising from a fullerene graph on 2n vertices *via* the **capra** septupling transformation. Then there is a perfect packing of $S(K_{1,3})$ in *G*.

Theorem

Let *G* be a fullerene graph on 14n vertices arising from a fullerene graph on 2n vertices *via* the **capra** septupling transformation. Then there is a perfect packing of $S(K_{1,3})$ in *G*.

Theorem

A fullerene graph G has a perfect $\{C_5, C_6\}$ -packing if and only if it is a leapfrog fullerene.

• Existence of perfect star-packings in fullerenes on 8n + 4 vertices.

- Existence of perfect star-packings in fullerenes on 8n + 4 vertices.
- Perfect star-packings in (4, 6)-fullerenes.

- Existence of perfect star-packings in fullerenes on 8n + 4 vertices.
- Perfect star-packings in (4, 6)-fullerenes.
- Other packings in classical and generalized fullerenes.

- Existence of perfect star-packings in fullerenes on 8n + 4 vertices.
- Perfect star-packings in (4, 6)-fullerenes.
- Other packings in classical and generalized fullerenes.
- Enumerative aspects.

- Existence of perfect star-packings in fullerenes on 8n + 4 vertices.
- Perfect star-packings in (4, 6)-fullerenes.
- Other packings in classical and generalized fullerenes.
- Enumerative aspects.

Thank you!