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Joint work with Meysam Taheri-Dehkordi and Gholam Hossein Fath-Tabar of
Kashan, Iran.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Joint work with Meysam Taheri-Dehkordi and Gholam Hossein Fath-Tabar of
Kashan, Iran.

T. Došlić, M. Taheri-Dehkordi, G. H. Fath-Tabar, Packing stars in fullerenes,
Journal of Mathematical Chemistry, to appear.
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Packings

A packing of a graph H in a graph G is a collection of vertex-disjoints subgraphs
of G such that each component is isomorphic to H .
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A packing of a graph H in a graph G is a collection of vertex-disjoints subgraphs
of G such that each component is isomorphic to H .

A packing of H in G is perfect if it is a spanning subgraph of G.
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Packings

A packing of a graph H in a graph G is a collection of vertex-disjoints subgraphs
of G such that each component is isomorphic to H .

A packing of H in G is perfect if it is a spanning subgraph of G.

Any matching in G can be viewed as a packing of K2 in G.
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Packings

A packing of a graph H in a graph G is a collection of vertex-disjoints subgraphs
of G such that each component is isomorphic to H .

A packing of H in G is perfect if it is a spanning subgraph of G.

Any matching in G can be viewed as a packing of K2 in G.
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Stars

A star Snis a complete bipartite graph K1,n−1 with one of the classes of size 1.
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Stars

A star Snis a complete bipartite graph K1,n−1 with one of the classes of size 1.

SSSS
2 3 4 5

In this talk, a star means a copy of K1,3, unless stated otherwise.
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Fullerenes

A fullerene is a polyhedral molecule consisting only of carbon atoms and
containing only pentagonal and hexagonal faces.
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A fullerene is a polyhedral molecule consisting only of carbon atoms and
containing only pentagonal and hexagonal faces.
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More fullerenes



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Fullerene graphs

A fullerene graph is a planar, 3-regular and 3-connected graph, twelve of whose
faces are pentagons and any remaining faces are hexagons.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Fullerene graphs

A fullerene graph is a planar, 3-regular and 3-connected graph, twelve of whose
faces are pentagons and any remaining faces are hexagons.
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Hexagonal lattice
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Hexagonal lattice
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Necessary conditions for fullerenes

Proposition

If there exists a perfect packing of stars in a fullerene graph G, then

• the number of vertices of G must be divisible by 4, and

• -1 must be an eigenvalue of A(G).
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Main lemma

Lemma

A vertex u in a fullerene graph G shared by two pentagons cannot be the center
of a star in a perfect packing of stars in G.
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Main lemma

Lemma

A vertex u in a fullerene graph G shared by two pentagons cannot be the center
of a star in a perfect packing of stars in G.

u
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Main lemma
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Main lemma

u
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Star-forbidden graphs

A graph F is H-forbidden in a class G if no graph G ∈ G having F as a
subgraph has a perfect H-packing.
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Star-forbidden graphs

A graph F is H-forbidden in a class G if no graph G ∈ G having F as a
subgraph has a perfect H-packing.

Proposition

Following graphs are star-forbidden in fullerene graphs:

P
3

H
6

H H H
5 4,44,2,2
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Negative results
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Negative results

Proposition

C20 : Ih does not have a perfect star-packing.
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Negative results

Proposition

C20 : Ih does not have a perfect star-packing.

Proposition

Narrow nanotubes C10n and C12n do not have perfect star-packings.
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Negative results

Proposition

C20 : Ih does not have a perfect star-packing.

Proposition

Narrow nanotubes C10n and C12n do not have perfect star-packings.

Proposition

Let G be a fullerene graph on less than 40 vertices. Then G does not have a
perfect star-packing.
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Negative results

Proposition

C20 : Ih does not have a perfect star-packing.

Proposition

Narrow nanotubes C10n and C12n do not have perfect star-packings.

Proposition

Let G be a fullerene graph on less than 40 vertices. Then G does not have a
perfect star-packing.

Proposition

Buckyball C60 : Ih does not have a perfect star-packing.
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Finally something positive
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Finally something positive

Proposition

C40 : D5h is the unique smallest fullerene having a perfect star-packing.
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Finally something positive

Proposition

C40 : D5h is the unique smallest fullerene having a perfect star-packing.

Proposition

There are only three fullerene graphs on at most 60 vertices having a perfect
star-packing: C40 : D5h, C48 : D6, and C56 : 649.
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C40 : D5h
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P0 and P1 packings

A star-packing in a fullerene graph G is of type P0 if no center of a star lies on a
pentagon. Otherwise it is of type P1.
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P0 and P1 packings

A star-packing in a fullerene graph G is of type P0 if no center of a star lies on a
pentagon. Otherwise it is of type P1.

P
0

P
1
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C80 : Ih
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C80 : Ih

Proposition

C80 : Ih is the unique smallest fullerene having a perfect star-packing of type P0.
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C80 : Ih

Proposition

C80 : Ih is the unique smallest fullerene having a perfect star-packing of type P0.

Theorem

A fullerene graph F8m on 4m vertices has a perfect star-packing of type P0 if and
only if it arises from a fullerene graph F2m via chamfering transformation.
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C80 : Ih

Proposition

C80 : Ih is the unique smallest fullerene having a perfect star-packing of type P0.

Theorem

A fullerene graph F8m on 4m vertices has a perfect star-packing of type P0 if and
only if it arises from a fullerene graph F2m via chamfering transformation.

Corollary

The fraction of fullerenes that have a perfect star-packing is bounded away from
zero.
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Chamfering transformation
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Chamfering transformation
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(k, 6)-fullerene graphs

A (k, 6)-fullerene graph is a planar, 3-regular and 3-connected graph, with only
k-gonal and hexagonal faces.

(k, 6)-fullerene graphs exist only for k = 3, 4, 5.
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(k, 6)-fullerene graphs

A (k, 6)-fullerene graph is a planar, 3-regular and 3-connected graph, with only
k-gonal and hexagonal faces.

(k, 6)-fullerene graphs exist only for k = 3, 4, 5.

Theorem

All (3, 6)-fullerene graphs have perfect star-packings.
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Context
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Context

• (Perfect) k-codes
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Perfect pseudo-matchings in fullerenes
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Perfect pseudo-matchings in fullerenes

Theorem

Every fullerene graph on n vertices has a perfect pseudo-matching of size at
most n

2
− 2.
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Perfect pseudo-matchings in fullerenes

Theorem

Every fullerene graph on n vertices has a perfect pseudo-matching of size at
most n

2
− 2.

Problem

Find the smallest size of a perfect pseudo-matching for a given fullerene graph.
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Packing other small graphs in fullerenes



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Packing other small graphs in fullerenes

Theorem

Let G be a fullerene graph on 14n vertices arising from a fullerene graph on 2n
vertices via the capra septupling transformation. Then there is a perfect packing
of S(K1,3) in G.
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Packing other small graphs in fullerenes

Theorem

Let G be a fullerene graph on 14n vertices arising from a fullerene graph on 2n
vertices via the capra septupling transformation. Then there is a perfect packing
of S(K1,3) in G.

Theorem

A fullerene graph G has a perfect {C5, C6}-packing if and only if it is a leapfrog
fullerene.
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Packing other small graphs in fullerenes
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Open problems
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Open problems

• Existence of perfect star-packings in fullerenes on 8n + 4 vertices.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Open problems

• Existence of perfect star-packings in fullerenes on 8n + 4 vertices.

• Perfect star-packings in (4, 6)-fullerenes.
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Open problems

• Existence of perfect star-packings in fullerenes on 8n + 4 vertices.

• Perfect star-packings in (4, 6)-fullerenes.

• Other packings in classical and generalized fullerenes.
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Open problems

• Existence of perfect star-packings in fullerenes on 8n + 4 vertices.

• Perfect star-packings in (4, 6)-fullerenes.

• Other packings in classical and generalized fullerenes.

• Enumerative aspects.
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Open problems

• Existence of perfect star-packings in fullerenes on 8n + 4 vertices.

• Perfect star-packings in (4, 6)-fullerenes.

• Other packings in classical and generalized fullerenes.

• Enumerative aspects.

• · · ·
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Thank you!


