Coloring Voronoi cells

Mathieu Dutour Sikirić

Rudjer Bošković Institute, Croatia

Joint work with D. Madore, F. Vallentin and P. Moustrou

September 21, 2020

I. Introduction

Lattice and Voronoi polytope

- A subgroup $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n \subset \mathbb{R}^n$ is a lattice if $det(v_1, \dots, v_n) \neq 0$.
- ► The Voronoi polytope is defined as

$$V = \{x \in \mathbb{R}^n \text{ s.t. } ||x|| \le ||x - v|| \text{ for } v \in L - \{0\}\}$$

- ▶ The translates v + V tile \mathbb{R}^n .
- The vectors v defining a facet of \mathcal{V} are named relevant. The set of relevant vectors is named Vor(L).
- **Voronoi Theorem**: A vector u is relevant if and only if it can not be written as u = v + w with $\langle v, w \rangle \geq 0$.

Problem statement: Coloring lattices

- ▶ Given a lattice L, the problem that we consider is choosing a color on each element of L such that if v-w is a relevant vector then v and w have different colors. The minimal number is named $\chi(L)$.
- \triangleright For the root lattice A_2 just three colors suffice:

- Questions:
 - What is χ for remarkable lattices? (Leech, root lattices, ...)
 - \blacktriangleright How does χ vary when the lattice is perturbed?
 - What are the possible χ in a fixed dimension n?
 - \blacktriangleright How does the maximum value of χ depend on n?
 - ls there always a periodic tiling realizing $\chi(L)$?

II. Tools of the trade

Generalities on chromatic numbers

Finite graphs:

- ▶ Given c > 2 the problem of checking if graphs on n-vertices are colorable with c colors is NP-hard.
- For each g > 0 and c > 0 there exist graph with girth at least g and coloring number at least c.
- ▶ It is difficult to use graph symmetries since a graph can have many symmetries but colorings with no symmetries.

Lattice case:

- ► No general algorithm
- If we find a sublattice Λ such that Λ has no relevant vectors and L/Λ can be colored by c colors then $\chi(L) \leq c$.
- Lattice 2L does not contain relevant vectors and so $\chi(L) \leq 2^n$.
- ▶ If $L = L_1 \oplus_{\perp} L_2$ then $\chi(L) = \max(\chi(L_1), \chi(L_2))$.

Satisfiability for testing coloring

- Given a graph on n vertices, can it be colored with c colors?
- We defined a number of Boolean $B_{v,i}$ with v a vertex and $1 \le i \le c$ a color.
- ▶ We have following constraints:
 - 1. For vertex v adjacent to w we want for any i to have $\overline{B_{v,i}} \wedge \overline{B_{w,i}}$
 - 2. For any vertex v and colors i < j we should have $\overline{B_{v,i}} \wedge \overline{B_{v,j}}$
 - 3. For any vertex v we want $B_{v,1} \wedge B_{v,2} \wedge \cdots \wedge B_{v,c}$
- This kind of satisfiability problem can be resolved for example with minisat.
- Computational situation:
 - ▶ It is NP problem, so cannot work for very large problems.
 - Proving UNSAT is much harder than SAT.
 - Sometimes fails with n = 100 and works with n = 1.6e4.
- ▶ Remark: Satisfaction Modulo Theories (SMT) is a foundation of modern computer technology (see Z3).

Lower bounds on chromatic number

Fractional chromatic number

- ▶ Denote by \mathcal{I}_G the set of all independent sets of G.
- ► The fractional chromatic number of *G* is the solution of the following linear program:

$$\min\left\{\sum_{I\in\mathcal{I}_G}\lambda_I:\lambda_I\in\mathbb{R}_{\geq 0}\text{ for }I\in\mathcal{I}_G,\sum_{I\in\mathcal{I}_G\text{ with }v\in I}\lambda_I\geq 1\text{ for }v\in V\right\}$$
 It is still NP-hard, but reasonably fast since we can use

Subgraph

▶ For H an induced subgraph of G we have $\chi(G) \ge \chi(H)$.

Spectral lower bounds

symmetries.

- The advantage of spectral lower bounds is that they are computable in polynomial time.
 - But they may not be very good lower bounds.

Spectral lower bounds

- ▶ Hoffman lower bound: If the eigenvalues of A are $\mu_1 \geq \cdots \geq \mu_n$ then $\chi(G) \geq 1 + \frac{\mu_1}{-\mu_n}$. For regular d-graphs, $\mu_1 = d$ and μ_n can be computed as an extremal problem. Numerically, it can be computed by the inflation method.
- ▶ Inertia lower bound: Denote n_+ , n_- the number of positive, negative eigenvalues. We have $\chi(G) \ge 1 + \max\left(\frac{n_+}{n_-}, \frac{n_-}{n_+}\right)$.
- ▶ Ando/Lin lower bound: Denote $S_+ = \sum_{\mu>0} \mu^2$, $S_- = \sum_{\mu<0} \mu^2$ we have $\chi(G) \ge 1 + \frac{S_+}{S_-}$.
- **Elphick/Wocjan lower bound**: For all $1 \le m \le n$ we have

$$\chi(G) \ge 1 + \frac{\sum_{i=1}^{m} \mu_i}{-\sum_{i=1}^{m} \mu_{n+1-i}}$$

There are lower bounds that use the diagonal degree matrix.

III. Special lattices

Case of the Leech and E₈ lattice

- Def: The Leech lattice Λ is the unique even unimodular lattice of dimension 24 without roots.
- ▶ The length of vectors of the Leech lattice are 4, 6, 8, ...,
- ▶ The length of the relevant vectors of Λ are 4 and 6.
- There exist a copy of $\sqrt{2}\Lambda$ embedded into Λ . It does not contain relevant vectors. Thus $\chi(\Lambda) \leq (\sqrt{2})^{24} = 4096$.
- ▶ If there were a better coloring then one of the color class would have density greater than ¹/₄₀₉₆. This color class would give a better packing than Leech lattice. By Cohn, Kumar, Miller, Radchenko, Viazovska, The sphere packing problem in dimension 24 this is impossible.
- ▶ Def: The root lattices are the lattices for which Vor(L) is the set of shortest vectors.
- ▶ The irreducible root lattices are A_n , D_n , E_6 , E_7 , E_8 .
- ▶ The same method works for the root lattice E₈.

Empty sphere and Delaunay polytopes

- Def: A sphere S(c, r) of center c and radius r in an n-dimensional lattice L is said to be an empty sphere if:
 - (i) $||v-c|| \ge r$ for all $v \in L$,
 - (ii) the set $S(c,r) \cap L$ contains n+1 affinely independent points.
- ▶ Def: A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

- ▶ Delaunay polytopes define a tessellation of the Euclidean space \mathbb{R}^n
- Each Delaunay polytope define a natural induced subgraph.

The root lattices A_n

 \triangleright Def: The root lattice A_n is defined as

$$\mathsf{A}_n = \left\{ x \in \mathbb{Z}^{n+1} \text{ such that } \sum_{i=1}^{n+1} x_i = 0 \right\}$$

- ▶ Its relevant vectors are $e_i e_j$ for $1 \le i, j \le n + 1$.
- ▶ The preferred basis is $(v_i = e_{i+1} e_i)_{1 \le i \le n}$.
- ▶ An index n + 1 sublattice is defined by

$$v = \sum_{i=1}^{n} \alpha_i v_i \in A_n$$
 such that $\sum_{i=1}^{n} \alpha_i \equiv 0 \pmod{n+1}$

and has no relevant vectors. So, $\chi(A_n) \leq n+1$.

▶ The Delaunay polytopes of A_n are for $1 \le k \le n$:

$$J(n,k) = \left\{ x \in \{0,1\}^{n+1} \text{ s.t. } \sum_{i} x_i = k \right\} - ke_1$$

▶ J(n,1) is a n-dimensional simplex. So $\chi(A_n) = n+1$.

The root lattices D_n

- ▶ The Delaunay polytopes of the lattice \mathbb{Z}^n are translations of $[0,1]^n$.
- ightharpoonup Def: The root lattice D_n is

$$D_n = \left\{ x \in \mathbb{Z}^n \text{ such that } \sum_{i=1}^n x_i \equiv 0 \pmod{2} \right\}$$

- ► The Delaunay polytopes are
 - ▶ The cross polytope $\beta_n = \text{conv} \{e_1 \pm e_i \text{ for } 1 \leq i \leq n\}$
 - ► The half cube

$$\frac{1}{2}H_n = \text{conv}\left\{x \in \{0,1\}^n \text{ s.t. } \sum_{i=1}^n x_i \equiv 0 \pmod{2}\right\}$$

▶ Thm: For all *n* we have $\chi(D_n) = \chi(\frac{1}{2}H_n)$ and for $n \le 11$:

	n	4	5	6	7	8	9	10	11
ĺ	$\chi(\frac{1}{2}H_n)$	4	8	8	8	8	13*	[13, 15]	[15, 18]

*: J.I. Kokkala and P.R.J. Ostergård, *The chromatic number of the square of the* 8-*cube*, Math. Comp. **87** (2018), 2551–2561.

The root lattice E_6

- ► The Delaunay polytopes of E₆ are the Schläfli polytope Sch and -Sch.
- ▶ It has 27 vertices, 51840 symmetries. The lattice E₆ is laminated on D₅ and Sch is formed of three layers:
 - One vertex
 - ▶ 16 vertices in the half cube $\frac{1}{2}H_5$
 - ▶ 10 vertices in the cross polytope β_5
- Maximum independent sets have size 3 and form just 1 orbit.
- Sch has chromatic number 9: There are two orbits of colorings, one orbit of size 160 and another of size 40 (use libexact). Thus $\chi(\mathsf{E}_6) \geq 9$.
- ▶ Thm: $\chi(E_6) = 9$. Take a coloring in the orbit of size 40. For each triple take the difference of vectors in it. The spanned lattice is of index 9 and has no relevant vectors.
- ightharpoonup Conj: All 9-colorings of E_6 are of this form.

The root lattice E_7

- ► The Delaunay polytopes of E₇ is the Gosset polytope Gos and an orbit of simplices.
- ► Gos has 56 vertices, 2903040 symmetries. Some laminations:

		E ₆	D_6	A ₆
1	0	point	β_6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
27 -		- Sch	$16 - \frac{1}{2}H_6$	$\int 21 - J(6,2)$
27 -		- − <i>Sch</i>		21 - J(6,2)
1	0	point	β_6	$7 \longrightarrow -J(6,1)$

- ▶ Maximum independent sets have size 2 or 4 and form 2 orbits.
- ▶ Gos has chromatic number 14: There are 40457 orbits of colorings (use libexact and symmetries). Thus $\chi(E_7) \ge 14$.
- ▶ The lattice E_7 is laminated on A_6 and we have $\chi(A_6) = 7$.
- Thm: $\chi(E_7) = 14$. We color the odd layers of A₆ by $\{1, \ldots, 7\}$ and the even layers by $\{8, \ldots, 14\}$.

Hoffman lower bounds for lattices

- ► The Hoffman lower bounds can be expressed on infinite graphs.
- Let us denote μ a measure on Vor(L) with $\mu(v) = \mu(-v)$. We have

$$\chi(L) \geq 1 - \frac{\sup_{x \in \mathbb{R}^n} \sum_{u \in Vor(L)} \mu(u) e^{2\pi i u \cdot x}}{\inf_{x \in \mathbb{R}^n} \sum_{u \in Vor(L)} \mu(u) e^{2\pi i u \cdot x}}$$

If we choose $\mu(u) = \frac{1}{|Vor(L)|}$ then we have

$$\chi(L) \ge 1 - |Vor(L)| \left(\inf_{x \in \mathbb{R}^n} \sum_{u \in Vor(L)} e^{2\pi i u \cdot x} \right)^{-1}$$

► The proof method uses Harmonic analysis and Fourier analysis. Expressing other spectral bounds on infinite graphs would be hard.

Hoffman lower bounds for root lattices

► The character of the adjoint representation corresponding to the group is expressed as

$$\mathsf{ch}^L_{\mathit{ad}}(g) = \mathit{dim}(L) + \sum_{u \in \mathit{Vor}(L)} \mathsf{e}^{2\pi i u \cdot x}$$

► The critical values of the characters (see Serre, 2004) were computed by algebraic methods and this gives:

$$\begin{array}{lcl} \textit{Crit} \; \mathsf{ch}^{\mathsf{E}_6}_{\textit{ad}} & = & \{-3, -2, 6, 14, 78\} \\ \textit{Crit} \; \mathsf{ch}^{\mathsf{E}_7}_{\textit{ad}} & = & \left\{-7, -3, -2, 1, \frac{17}{5}, 5, 25, 133\right\} \\ \textit{Crit} \; \mathsf{ch}^{\mathsf{E}_8}_{\textit{ad}} & = & \left\{-8, -4, -\frac{104}{27}, -\frac{57}{16}, -3, -2, 0, 5, 24, 248\right\} \end{array}$$

- ▶ This gives $\chi(\mathsf{E}_6) \ge 9$, $\chi(\mathsf{E}_7) \ge 10$ and $\chi(\mathsf{E}_8) \ge 16$.
- We have *Crit* $ch_{ad}^{A_n} = \{-1, n(n+2)\}.$
- Also *Crit* ch $_{2d}^{D_n}$ is known.

The dual root lattices

▶ For a lattice $L \subset \mathbb{R}^n$ the dual lattice L^* is

$$L^* = \{x \in \mathbb{R}^n \text{ s.t. } \langle x, y \rangle \in \mathbb{Z} \text{ for } y \in L\}$$

- λ $\chi(A_n^*) = n+1$ since the Delaunay polytopes are simplices and λ_n is an index n+1 sublattice without relevant vectors.
- λ $\chi(\mathsf{D}_n^*) = 4$ since $\mathsf{D}_n^* = \mathbb{Z}^n \cup ((1/2)^n + \mathbb{Z}^n)$
- ▶ Thm: We have $\chi(E_n^*) = 16$ for n = 6, 7, 8.
- ► Lower bound is obtained by the fractional chromatic method applied to a sufficient set of vectors around the origin.
- Explicit coloring for E₆* is obtained by finding an adequate sublattice.
- ▶ For E₇ we could not find an index 16 sublattice that works.
- ▶ Instead we consider E₇*/4E₇* and color the 16384 points with 16 colors with minisat in 2 minutes. Note that computing spectral lower bounds for this graph did not finish in 2 hours.

IV. Gram matrix iso-Delaunay and iso-edge domains

Gram matrix and lattices

- ▶ Denote by S^n the vector space of real symmetric $n \times n$ matrices and $S^n_{>0}$ the convex cone of real symmetric positive definite $n \times n$ matrices.
- ► Take a basis $(v_1, ..., v_n)$ of a lattice L and associate to it the Gram matrix $G_v = (\langle v_i, v_i \rangle)_{1 < i,j < n} \in S_{>0}^n$.
- Example: take the hexagonal lattice generated by $v_1=(1,0)$ and $v_2=\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$

$$\begin{array}{c|c} \bullet & \\ \bullet & \bullet \\ \end{array} \qquad \begin{array}{c|c} \bullet & \\ \bullet & \\ \end{array} \qquad \begin{array}{c|c}$$

- ▶ This gives a parameter space of dimension n(n+1)/2.
- ► All programs for lattices (SVP, CVP, Arithmetic equivalence, etc.) use Gram matrices as input.

Iso-Delaunay domains

- ▶ Take a lattice L and select a basis v_1, \ldots, v_n .
- ▶ We want to assign the Delaunay polytopes of a lattice. Geometrically, this means that

are part of the same iso-Delaunay domain.

- Formally, an iso-Delaunay domain is a set of positive definite matrices corresponding to the same iso-Delaunay domains.
- ► A primitive iso-Delaunay domain is a domain of maximum dimension and this means that all Delaunay are simplices.

Equalities and inequalities for iso-Delaunay domains

- ▶ Take $M = G_v$ with $v = (v_1, ..., v_n)$ a basis of lattice L.
- ▶ If $V = (w_1, ..., w_N)$ with $w_i \in \mathbb{Z}^n$ are the vertices of a Delaunay polytope of empty sphere S(c, r) then:

$$||w_i - c||_M = r$$
 i.e. $w_i^T M w_i - 2 w_i^T M c + c^T M c = r^2$

Substracting one obtains

$$\left\{w_{i}^{T}Mw_{i}-w_{j}^{T}Mw_{j}\right\}-2\left\{w_{i}^{T}-w_{j}^{T}\right\}Mc=0$$

- ▶ Inverting matrices, one obtains $Mc = \psi(M)$ with ψ linear and so one gets linear equalities on M.
- Similarly $||w-c|| \ge r$ translates into a linear inequality on M: Take $V = (v_0, \ldots, v_n)$ a simplex $(v_i \in \mathbb{Z}^n)$, $w \in \mathbb{Z}^n$. If one writes $w = \sum_{i=0}^n \lambda_i v_i$ with $1 = \sum_{i=0}^n \lambda_i$, then one has

$$\|w - c\| \ge r \Leftrightarrow w^T M w - \sum_{i=0}^n \lambda_i v_i^T M v_i \ge 0$$

Plane representation of $S_{\geq 0}^2$

Iso-Delaunay domains in $S_{>0}^2$

Primitive and non-primitive iso-Delaunay domains in $S_{>0}^2$:

Enumeration results on iso-Delaunay domains

The equivalence used is the arithmetic equivalence $A \mapsto PAP^T$ for $P \in GL_n(\mathbb{Z})$ which corresponds to changing basis in the lattice.

Dimension	Nr. iso-Delaunay domain	Nr. prim. iso-Delaunay domains	
1	1	1	
2	2	1	
3	5	1	
	Fedorov, 1885	Fedorov, 1885	
4	52	3	
	Delaunay & Shtogrin 1973	Voronoi, 1905	
5	110244	222	
	MDS, AG, AS & CW, 2016	Engel & Gr. 2002	

Iso-edge domain

- ▶ A parity class is a vector $v \in L \frac{1}{2}L$. There are $2^n 1$ up to translation by L. The middle of each edge of a Delaunay polytope is a parity class.
- ➤ A iso-edge domain is the assignation of an edge to each translation class.

- For the edge $[0, v_1]$ of center $v_1/2$ we have the inequalities $||v v_1/2|| > ||v_1/2||$ for $v \in L$.
- ▶ If we express in term of the basis (v_1, v_2) back into Gram matrices we obtain:

$$A[x-(1/2,0)] > A[(1/2,0)]$$
 for $x \in \mathbb{Z}^2$

► This defines an infinite set of inequalities but actually it reduces to a finite number

Implications on chromatic numbers

- A iso-Delaunay domain will be contained in an iso-edge domain. An iso-edge domain will contain a finite number of iso-Delaunay domains.
- Enumeration results:

n	prim.iso – edge	n	prim.iso — edge
2	1	4	3 Baranovski & Ryshkov 1973
3	1	5	76 Baranovski & Ryshkov 1973

- What matters for chromatic numbers is facets of Voronoi and so edges of Delaunay polytopes and so iso-Edge domains.
- ► The maximum chromatic number is attained in the generic case. When one goes to the boundary of an iso-Edge domain, some edges disappear and so the chromatic number decrease.
- ▶ For dimension $n \ge 6$ we do not know the full list.

principal domain

V. Lattices in

The principal domain

- A lattice Λ is in the principal domain if there are vectors $\{v_0, v_1, \dots, v_n\}$ such that
 - \triangleright $\{v_1, \ldots, v_n\}$ is a basis of Λ .
 - $v_0 + v_1 + \cdots + v_n = 0$
 - For i < j we have $v_i \cdot v_j \le 0$.
- The Delauney graph $D(\Lambda)$ of Λ is the graph with two vertices on (v_i) with two vertices adjacent if $v_i \cdot v_j < 0$.
- ▶ For such a lattice Λ , we have $\chi(\Lambda) \leq n+1$. More generally if (G_i) is the decomposition into biconnected components of $D(\Lambda)$ then

$$\chi(\Lambda) \leq 1 + \max_{i} |V(G_i)|$$

The chromatic number of Λ is at least the maximal length of a cycle in $D(\Lambda)$.

Three dimensional case

In dimension 3 all lattices are in the principal domain. Their lattice, Voronoi cell, Delaunay graph, and chromatic numbers:

Beyond dimension three, we have to consider lattices which are not in the principal domain.

VI. Exponential growth

Bounds

- We are interested in maximum chromatic number of lattices. Does it grow exponentially?
- ▶ We already know $\chi(L) \leq 2^n$.
- ▶ For $S \subset \{1, ..., n\}$ we define the cut metric

$$\delta_{\mathcal{S}}: \{1,\dots,n\}^2
ightarrow \mathbb{R} \ (x,y) \mapsto \left\{ egin{array}{ll} 1 & |S\cap\{x,y\}| = 1 \ 0 & ext{otherwise} \end{array}
ight.$$

- ► The polytope $CUT_n = conv(\delta_S, S \subset \{1, ..., n\})$ has 2^{n-1} vertices (since $\delta_S = \delta_{\{1,...,n\}-S\}}$) and they form a clique.
- ▶ The lattice $Latt_n$ spanned by the δ_S is the cut lattice * and CUT_n is a Delaunay polytope of it. So $\chi(Latt_n) \geq 2^{n-1}$ with dim $Latt_n = \frac{n(n-1)}{2}$.
 - *: M. Deza and V.P. Grishukhin, *Cut lattices and equiangular lines*, Europ. J. Combinatorics **17** (1996) 143–156.

Exponential growth

With high probability, the chromatic number of a random n-dimensional lattice grows exponentially in n. Moreover, there are n-dimensional lattices Λ_n with

$$\chi(\Lambda_n) \geq 2^{(0.0990\cdots-o(1))n}$$

- ▶ The proof is existential, it does not give those lattices.
- ▶ The probability refers to the density of the quotient $SL(n,\mathbb{R})/SL(n,\mathbb{Z})$ which is of finite covolume (but not cocompact).
- A quasi-linear factor can be added in front.
- ► The proof depends on some elementary argument and the Minkowski-Hlawka lower bounds on lattice packings.