Coloring Voronoi cells

Mathieu Dutour Sikirić
Rudjer Bošković Institute, Croatia
Joint work with D. Madore, F. Vallentin and P. Moustrou

September 21, 2020

I. Introduction

Lattice and Voronoi polytope

- A subgroup $L=\mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{n} \subset \mathbb{R}^{n}$ is a lattice if $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right) \neq 0$.
- The Voronoi polytope is defined as

$$
\mathcal{V}=\left\{x \in \mathbb{R}^{n} \text { s.t. }\|x\| \leq\|x-v\| \text { for } v \in L-\{0\}\right\}
$$

- The translates $v+\mathcal{V}$ tile \mathbb{R}^{n}.
- The vectors v defining a facet of \mathcal{V} are named relevant. The set of relevant vectors is named $\operatorname{Vor}(L)$.
- Voronoi Theorem: A vector u is relevant if and only if it can not be written as $u=v+w$ with $\langle v, w\rangle \geq 0$.

Problem statement: Coloring lattices

- Given a lattice L, the problem that we consider is choosing a color on each element of L such that if $v-w$ is a relevant vector then v and w have different colors. The minimal number is named $\chi(L)$.
- For the root lattice A_{2} just three colors suffice:

- Questions:
- What is χ for remarkable lattices? (Leech, root lattices, ...)
- How does χ vary when the lattice is perturbed?
- What are the possible χ in a fixed dimension n ?
- How does the maximum value of χ depend on n ?
- Is there always a periodic tiling realizing $\chi(L)$?

II. Tools of the trade

Generalities on chromatic numbers

Finite graphs:

- Given $c>2$ the problem of checking if graphs on n-vertices are colorable with c colors is NP-hard.
- For each $g>0$ and $c>0$ there exist graph with girth at least g and coloring number at least c.
- It is difficult to use graph symmetries since a graph can have many symmetries but colorings with no symmetries.

Lattice case:

- No general algorithm
- If we find a sublattice Λ such that Λ has no relevant vectors and L / Λ can be colored by c colors then $\chi(L) \leq c$.
- Lattice $2 L$ does not contain relevant vectors and so $\chi(L) \leq 2^{n}$.
- If $L=L_{1} \oplus \perp L_{2}$ then $\chi(L)=\max \left(\chi\left(L_{1}\right), \chi\left(L_{2}\right)\right)$.

Satisfiability for testing coloring

- Given a graph on n vertices, can it be colored with c colors?
- We defined a number of Boolean $B_{v, i}$ with v a vertex and $1 \leq i \leq c$ a color.
- We have following constraints:

1. For vertex v adjacent to w we want for any i to have $\overline{B_{v, i}} \wedge \overline{B_{w, i}}$
2. For any vertex v and colors $i<j$ we should have $\overline{B_{v, i}} \wedge \overline{B_{v, j}}$
3. For any vertex v we want $B_{v, 1} \wedge B_{v, 2} \wedge \cdots \wedge B_{v, c}$

- This kind of satisfiability problem can be resolved for example with minisat.
- Computational situation:
- It is NP problem, so cannot work for very large problems.
- Proving UNSAT is much harder than SAT.
- Sometimes fails with $n=100$ and works with $n=1.6 e 4$.
- Remark: Satisfaction Modulo Theories (SMT) is a foundation of modern computer technology (see Z3).

Lower bounds on chromatic number

Fractional chromatic number

- Denote by \mathcal{I}_{G} the set of all independent sets of G.
- The fractional chromatic number of G is the solution of the following linear program:

$$
\min \left\{\sum_{I \in \mathcal{I}_{G}} \lambda_{I}: \lambda_{I} \in \mathbb{R}_{\geq 0} \text { for } I \in \mathcal{I}_{G}, \sum_{I \in \mathcal{I}_{G} \text { with } v \in I} \lambda_{I} \geq 1 \text { for } v \in V\right\}
$$

- It is still NP-hard, but reasonably fast since we can use symmetries.

Subgraph

- For H an induced subgraph of G we have $\chi(G) \geq \chi(H)$.

Spectral lower bounds

- The advantage of spectral lower bounds is that they are computable in polynomial time.
- But they may not be very good lower bounds.

Spectral lower bounds

- Hoffman lower bound: If the eigenvalues of A are $\mu_{1} \geq \cdots \geq \mu_{n}$ then $\chi(G) \geq 1+\frac{\mu_{1}}{-\mu_{n}}$.
For regular d-graphs, $\mu_{1}=d$ and μ_{n} can be computed as an extremal problem. Numerically, it can be computed by the inflation method.
- Inertia lower bound: Denote n_{+}, n_{-}the number of positive, negative eigenvalues. We have $\chi(G) \geq 1+\max \left(\frac{n_{+}}{n_{-}}, \frac{n_{-}}{n_{+}}\right)$.
- Ando/Lin lower bound: Denote $S_{+}=\sum_{\mu>0} \mu^{2}$, $S_{-}=\sum_{\mu<0} \mu^{2}$ we have $\chi(G) \geq 1+\frac{S_{+}}{S_{-}}$.
- Elphick/Wocjan lower bound: For all $1 \leq m \leq n$ we have

$$
\chi(G) \geq 1+\frac{\sum_{i=1}^{m} \mu_{i}}{-\sum_{i=1}^{m} \mu_{n+1-i}}
$$

There are lower bounds that use the diagonal degree matrix.

III. Special lattices

Case of the Leech and E_{8} lattice

- Def: The Leech lattice Λ is the unique even unimodular lattice of dimension 24 without roots.
- The length of vectors of the Leech lattice are $4,6,8, \ldots$,
- The length of the relevant vectors of Λ are 4 and 6 .
- There exist a copy of $\sqrt{2} \Lambda$ embedded into Λ. It does not contain relevant vectors. Thus $\chi(\Lambda) \leq(\sqrt{2})^{24}=4096$.
- If there were a better coloring then one of the color class would have density greater than $\frac{1}{4096}$. This color class would give a better packing than Leech lattice. By Cohn, Kumar, Miller, Radchenko, Viazovska, The sphere packing problem in dimension 24 this is impossible.
- Def: The root lattices are the lattices for which $\operatorname{Vor}(L)$ is the set of shortest vectors.
- The irreducible root lattices are $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$.
- The same method works for the root lattice E_{8}.

Empty sphere and Delaunay polytopes

- Def: A sphere $S(c, r)$ of center c and radius r in an n-dimensional lattice L is said to be an empty sphere if:
(i) $\|v-c\| \geq r$ for all $v \in L$,
(ii) the set $S(c, r) \cap L$ contains $n+1$ affinely independent points.
- Def: A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

- Delaunay polytopes define a tessellation of the Euclidean space \mathbb{R}^{n}
- Each Delaunay polytope define a natural induced subgraph.

The root lattices A_{n}

- Def: The root lattice A_{n} is defined as

$$
\mathrm{A}_{n}=\left\{x \in \mathbb{Z}^{n+1} \text { such that } \sum_{i=1}^{n+1} x_{i}=0\right\}
$$

- Its relevant vectors are $e_{i}-e_{j}$ for $1 \leq i, j \leq n+1$.
- The preferred basis is $\left(v_{i}=e_{i+1}-e_{i}\right)_{1 \leq i \leq n}$.
- An index $n+1$ sublattice is defined by

$$
v=\sum_{i=1}^{n} \alpha_{i} v_{i} \in \mathrm{~A}_{n} \text { such that } \sum_{i=1}^{n} \alpha_{i} \equiv 0 \quad(\bmod n+1)
$$

and has no relevant vectors. So, $\chi\left(\mathrm{A}_{n}\right) \leq n+1$.

- The Delaunay polytopes of A_{n} are for $1 \leq k \leq n$:

$$
J(n, k)=\left\{x \in\{0,1\}^{n+1} \text { s.t. } \sum_{i} x_{i}=k\right\}-k e_{1}
$$

- $J(n, 1)$ is a n-dimensional simplex. So $\chi\left(\mathrm{A}_{n}\right)=n+1$.

The root lattices D_{n}

- The Delaunay polytopes of the lattice \mathbb{Z}^{n} are translations of $[0,1]^{n}$.
- Def: The root lattice D_{n} is

$$
\mathrm{D}_{n}=\left\{x \in \mathbb{Z}^{n} \text { such that } \sum_{i=1}^{n} x_{i} \equiv 0 \quad(\bmod 2)\right\}
$$

- The Delaunay polytopes are
- The cross polytope $\beta_{n}=\operatorname{conv}\left\{e_{1} \pm e_{i}\right.$ for $\left.1 \leq i \leq n\right\}$
- The half cube

$$
\frac{1}{2} H_{n}=\operatorname{conv}\left\{x \in\{0,1\}^{n} \text { s.t. } \sum_{i=1}^{n} x_{i} \equiv 0(\bmod 2)\right\}
$$

- Thm: For all n we have $\chi\left(D_{n}\right)=\chi\left(\frac{1}{2} H_{n}\right)$ and for $n \leq 11$:

n	4	5	6	7	8	9	10	11
$\chi\left(\frac{1}{2} H_{n}\right)$	4	8	8	8	8	13^{*}	$[13,15]$	$[15,18]$

*: J.I. Kokkala and P.R.J. Östergård, The chromatic number of the square of the 8-cube, Math. Comp. 87 (2018), 2551-2561.

The root lattice E_{6}

- The Delaunay polytopes of E_{6} are the Schläfli polytope Sch and -Sch.
- It has 27 vertices, 51840 symmetries. The lattice E_{6} is laminated on D_{5} and Sch is formed of three layers:
- One vertex
- 16 vertices in the half cube $\frac{1}{2} H_{5}$
- 10 vertices in the cross polytope β_{5}
- Maximum independent sets have size 3 and form just 1 orbit.
- Sch has chromatic number 9: There are two orbits of colorings, one orbit of size 160 and another of size 40 (use libexact). Thus $\chi\left(\mathrm{E}_{6}\right) \geq 9$.
- Thm: $\chi\left(\mathrm{E}_{6}\right)=9$. Take a coloring in the orbit of size 40. For each triple take the difference of vectors in it. The spanned lattice is of index 9 and has no relevant vectors.
- Conj: All 9-colorings of E_{6} are of this form.

The root lattice E_{7}

- The Delaunay polytopes of E_{7} is the Gosset polytope Gos and an orbit of simplices.
- Gos has 56 vertices, 2903040 symmetries. Some laminations:

E_{6}	D_{6}	A_{6}
$\begin{array}{lll} 1 & \circ & \text { point } \\ 27 & \text { Sch } \\ 27 & & - \text { Sch } \\ 1 & \circ & \text { point } \end{array}$	$\begin{aligned} & 12=\beta_{6} \\ & 16=\frac{1}{2} H_{6} \\ & 12=\beta_{6} \end{aligned}$	$\begin{aligned} & 7=J(6,1) \\ & 21=J(6,2) \\ & 21=-J(6,2) \\ & 7 \\ & 7 \end{aligned}=-J(6,1)$

- Maximum independent sets have size 2 or 4 and form 2 orbits.
- Gos has chromatic number 14: There are 40457 orbits of colorings (use libexact and symmetries). Thus $\chi\left(\mathrm{E}_{7}\right) \geq 14$.
- The lattice E_{7} is laminated on A_{6} and we have $\chi\left(A_{6}\right)=7$.
- Thm: $\chi\left(E_{7}\right)=14$. We color the odd layers of A_{6} by $\{1, \ldots, 7\}$ and the even layers by $\{8, \ldots, 14\}$.

Hoffman lower bounds for lattices

- The Hoffman lower bounds can be expressed on infinite graphs.
- Let us denote μ a measure on $\operatorname{Vor}(L)$ with $\mu(v)=\mu(-v)$. We have

$$
\chi(L) \geq 1-\frac{\sup _{x \in \mathbb{R}^{n}} \sum_{u \in \operatorname{Vor}(L)} \mu(u) e^{2 \pi i u \cdot x}}{\inf _{x \in \mathbb{R}^{n}} \sum_{u \in \operatorname{Vor}(L)} \mu(u) e^{2 \pi i u \cdot x}}
$$

- If we choose $\mu(u)=\frac{1}{|\operatorname{Vor}(L)|}$ then we have

$$
\chi(L) \geq 1-|\operatorname{Vor}(L)|\left(\inf _{x \in \mathbb{R}^{n}} \sum_{u \in \operatorname{Vor}(L)} e^{2 \pi i u \cdot x}\right)^{-1}
$$

- The proof method uses Harmonic analysis and Fourier analysis. Expressing other spectral bounds on infinite graphs would be hard.

Hoffman lower bounds for root lattices

- The character of the adjoint representation corresponding to the group is expressed as

$$
\operatorname{ch}_{a d}^{L}(g)=\operatorname{dim}(L)+\sum_{u \in \operatorname{Vor}(L)} e^{2 \pi i u \cdot x}
$$

- The critical values of the characters (see Serre, 2004) were computed by algebraic methods and this gives:

$$
\begin{aligned}
& \text { Crit ch } \mathrm{E}_{\mathrm{E}_{6}}^{\mathrm{E}_{6}}=\{-3,-2,6,14,78\} \\
& \text { Crit } \mathrm{ch}_{{ }_{7 d}}^{\mathrm{E}}=\left\{-7,-3,-2,1, \frac{17}{5}, 5,25,133\right\} \\
& \text { Crit ch } \mathrm{E}_{\mathrm{ad}}^{8}=\left\{-8,-4,-\frac{104}{27},-\frac{57}{16},-3,-2,0,5,24,248\right\}
\end{aligned}
$$

- This gives $\chi\left(\mathrm{E}_{6}\right) \geq 9, \chi\left(\mathrm{E}_{7}\right) \geq 10$ and $\chi\left(\mathrm{E}_{8}\right) \geq 16$.
- We have Crit $\mathrm{ch}_{a d}^{\mathrm{A}_{n}}=\{-1, n(n+2)\}$.
- Also Critch ${ }_{a d}^{\mathrm{D}_{n}}$ is known.

The dual root lattices

- For a lattice $L \subset \mathbb{R}^{n}$ the dual lattice L^{*} is

$$
L^{*}=\left\{x \in \mathbb{R}^{n} \text { s.t. }\langle x, y\rangle \in \mathbb{Z} \text { for } y \in L\right\}
$$

- $\chi\left(\mathrm{A}_{n}^{*}\right)=n+1$ since the Delaunay polytopes are simplices and A_{n} is an index $n+1$ sublattice without relevant vectors.
- $\chi\left(\mathrm{D}_{n}^{*}\right)=4$ since $\mathrm{D}_{n}^{*}=\mathbb{Z}^{n} \cup\left((1 / 2)^{n}+\mathbb{Z}^{n}\right)$
- Thm: We have $\chi\left(\mathrm{E}_{n}^{*}\right)=16$ for $n=6,7,8$.
- Lower bound is obtained by the fractional chromatic method applied to a sufficient set of vectors around the origin.
- Explicit coloring for E_{6}^{*} is obtained by finding an adequate sublattice.
- For E_{7}^{*} we could not find an index 16 sublattice that works.
- Instead we consider $\mathrm{E}_{7}^{*} / 4 \mathrm{E}_{7}^{*}$ and color the 16384 points with 16 colors with minisat in 2 minutes. Note that computing spectral lower bounds for this graph did not finish in 2 hours.

IV. Gram matrix iso-Delaunay and iso-edge domains

Gram matrix and lattices

- Denote by S^{n} the vector space of real symmetric $n \times n$ matrices and $S_{>0}^{n}$ the convex cone of real symmetric positive definite $n \times n$ matrices.
- Take a basis $\left(v_{1}, \ldots, v_{n}\right)$ of a lattice L and associate to it the Gram matrix $G_{v}=\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{1 \leq i, j \leq n} \in S_{>0}^{n}$.
- Example: take the hexagonal lattice generated by $v_{1}=(1,0)$ and $v_{2}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

- This gives a parameter space of dimension $n(n+1) / 2$.
- All programs for lattices (SVP, CVP, Arithmetic equivalence, etc.) use Gram matrices as input.

Iso-Delaunay domains

- Take a lattice L and select a basis v_{1}, \ldots, v_{n}.
- We want to assign the Delaunay polytopes of a lattice.

Geometrically, this means that

are part of the same iso-Delaunay domain.

- Formally, an iso-Delaunay domain is a set of positive definite matrices corresponding to the same iso-Delaunay domains.
- A primitive iso-Delaunay domain is a domain of maximum dimension and this means that all Delaunay are simplices.

Equalities and inequalities for iso-Delaunay domains

- Take $M=G_{v}$ with $v=\left(v_{1}, \ldots, v_{n}\right)$ a basis of lattice L.
- If $V=\left(w_{1}, \ldots, w_{N}\right)$ with $w_{i} \in \mathbb{Z}^{n}$ are the vertices of a Delaunay polytope of empty sphere $S(c, r)$ then:

$$
\left\|w_{i}-c\right\|_{M}=r \text { i.e. } w_{i}^{T} M w_{i}-2 w_{i}^{\top} M c+c^{T} M c=r^{2}
$$

- Substracting one obtains

$$
\left\{w_{i}^{T} M w_{i}-w_{j}^{T} M w_{j}\right\}-2\left\{w_{i}^{T}-w_{j}^{T}\right\} M c=0
$$

- Inverting matrices, one obtains $M c=\psi(M)$ with ψ linear and so one gets linear equalities on M.
- Similarly $\|w-c\| \geq r$ translates into a linear inequality on M : Take $V=\left(v_{0}, \ldots, v_{n}\right)$ a simplex $\left(v_{i} \in \mathbb{Z}^{n}\right), w \in \mathbb{Z}^{n}$. If one writes $w=\sum_{i=0}^{n} \lambda_{i} v_{i}$ with $1=\sum_{i=0}^{n} \lambda_{i}$, then one has

$$
\|w-c\| \geq r \Leftrightarrow w^{T} M w-\sum_{i=0}^{n} \lambda_{i} v_{i}^{T} M v_{i} \geq 0
$$

Plane representation of $S_{\geq 0}^{2}$

Iso-Delaunay domains in $S_{>0}^{2}$
Primitive and non-primitive iso-Delaunay domains in $S_{>0}^{2}$:

Enumeration results on iso-Delaunay domains

The equivalence used is the arithmetic equivalence $A \mapsto P A P^{T}$ for $P \in G L_{n}(\mathbb{Z})$ which corresponds to changing basis in the lattice.

Dimension	Nr. iso-Delaunay domain	Nr. prim. iso-Delaunay domains
1	1	1
2	2	1
3	5	1
	Fedorov, 1885	Fedorov, 1885
4	52	3
	Delaunay \& Shtogrin 1973	Voronoi, 1905
5	110244	222
	MDS, AG, AS \& CW, 2016	Engel \& Gr. 2002

Iso-edge domain

- A parity class is a vector $v \in L-\frac{1}{2} L$. There are $2^{n}-1$ up to translation by L. The middle of each edge of a Delaunay polytope is a parity class.
- A iso-edge domain is the assignation of an edge to each translation class.

- For the edge $\left[0, v_{1}\right]$ of center $v_{1} / 2$ we have the inequalities $\left\|v-v_{1} / 2\right\| \geq\left\|v_{1} / 2\right\|$ for $v \in L$.
- If we express in term of the basis $\left(v_{1}, v_{2}\right)$ back into Gram matrices we obtain:

$$
A[x-(1 / 2,0)] \geq A[(1 / 2,0)] \text { for } x \in \mathbb{Z}^{2}
$$

- This defines an infinite set of inequalities but actually it reduces to a finite number

Implications on chromatic numbers

- A iso-Delaunay domain will be contained in an iso-edge domain. An iso-edge domain will contain a finite number of iso-Delaunay domains.
- Enumeration results:

n	\mid prim.iso - edge \mid	n	\mid prim.iso - edge \mid
2	1	4	3 Baranovski \& Ryshkov 1973
3	1	5	76 Baranovski \& Ryshkov 1973

- What matters for chromatic numbers is facets of Voronoi and so edges of Delaunay polytopes and so iso-Edge domains.
- The maximum chromatic number is attained in the generic case. When one goes to the boundary of an iso-Edge domain, some edges disappear and so the chromatic number decrease.
- For dimension $n \geq 6$ we do not know the full list.
V. Lattices in principal domain

The principal domain

- A lattice Λ is in the principal domain if there are vectors $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ such that
- $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of Λ.
- $v_{0}+v_{1}+\cdots+v_{n}=0$
- For $i<j$ we have $v_{i} \cdot v_{j} \leq 0$.
- The Delauney graph $D(\Lambda)$ of Λ is the graph with two vertices on $\left(v_{i}\right)$ with two vertices adjacent if $v_{i} \cdot v_{j}<0$.
- For such a lattice Λ, we have $\chi(\Lambda) \leq n+1$. More generally if $\left(G_{i}\right)$ is the decomposition into biconnected components of $D(\Lambda)$ then

$$
\chi(\Lambda) \leq 1+\max _{i}\left|V\left(G_{i}\right)\right|
$$

- The chromatic number of Λ is at least the maximal length of a cycle in $D(\Lambda)$.

Three dimensional case

In dimension 3 all lattices are in the principal domain. Their lattice, Voronoi cell, Delaunay graph, and chromatic numbers:

Beyond dimension three, we have to consider lattices which are not in the principal domain.

VI. Exponential growth

Bounds

- We are interested in maximum chromatic number of lattices. Does it grow exponentially?
- We already know $\chi(L) \leq 2^{n}$.
- For $S \subset\{1, \ldots, n\}$ we define the cut metric

$$
\begin{aligned}
\delta_{S}:\{1, \ldots, n\}^{2} & \rightarrow \mathbb{R} \\
(x, y) & \mapsto\left\{\begin{array}{cc}
1 & |S \cap\{x, y\}|=1 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- The polytope $\mathrm{CUT}_{n}=\operatorname{conv}\left(\delta_{S}, S \subset\{1, \ldots, n\}\right)$ has 2^{n-1} vertices (since $\delta_{S}=\delta_{\{1, \ldots, n\}-S}$) and they form a clique.
- The lattice $L^{2} t t_{n}$ spanned by the δ_{S} is the cut lattice * and CUT_{n} is a Delaunay polytope of it. So $\chi\left(\operatorname{Latt}_{n}\right) \geq 2^{n-1}$ with $\operatorname{dim} L a t t_{n}=\frac{n(n-1)}{2}$.
*: M. Deza and V.P. Grishukhin, Cut lattices and equiangular lines, Europ. J. Combinatorics 17 (1996) 143-156.

Exponential growth

With high probability, the chromatic number of a random n-dimensional lattice grows exponentially in n. Moreover, there are n-dimensional lattices Λ_{n} with

$$
\chi\left(\Lambda_{n}\right) \geq 2^{(0.0990 \cdots-o(1)) n}
$$

- The proof is existential, it does not give those lattices.
- The probability refers to the density of the quotient $\operatorname{SL}(n, \mathbb{R}) / \operatorname{SL}(n, \mathbb{Z})$ which is of finite covolume (but not cocompact).
- A quasi-linear factor can be added in front.
- The proof depends on some elementary argument and the Minkowski-Hlawka lower bounds on lattice packings.

