List homomorphism problems for signed graphs

Jan Bok ${ }^{1}$, Richard Brewster ${ }^{2}$, Tomás Feder, Pavol Hell ${ }^{3}$ and Nikola Jedličková ${ }^{1}$
${ }_{2}^{1}$ Charles University, Prague, Czech Republic
${ }^{2}$ Thompson Rivers University, Kamloops, Canada
${ }^{3}$ Simon Fraser University, Burnaby, Canada

22th September 2020
CroCoDays, Zagreb, Croatia

Graph homomorphism

Definition

A graph homomorphism between two graphs G and H is a mapping $f: V(G) \rightarrow V(H)$ such that for every edge $u v \in E(G), f(u) f(v) \in E(H)$.

- That means that graph homomorphisms are adjacency-preserving mappings between the vertex sets of two graphs.

I

Signed graphs

Signed graphs were first studied by König and Harary and an intensive research has begun with several papers of Zaslavsky in the 1980s.

Definition (Signed graph)

A signed graph is a graph G, with possible loops and multiple edges (at most two loops per vertex and at most two edges between a pair of vertices), together with a mapping $\sigma: E(G) \rightarrow\{+,-\}$, assigning a sign (+ or -) to each edge of G, so that different loops at a vertex have different signs, and similarly for multiple edges between the same two vertices. We denote such a signed graph by (G, σ), and call G its underlying graph and σ its signature.

Figure: An example of a signed graph.

Switching operation

Definition (Switching and switching equivalence)

The switching operation can be applied to any vertex of a signed graph. It results in multiplying signs of all its incident edges by -1 . We further say that two graphs are switching-equivalent if we can obtain one from the other by a sequence of switchings.

Figure: An example of switching-equivalent graphs.

Switching operation

Definition (Switching and switching equivalence)

The switching operation can be applied to any vertex of a signed graph. It results in multiplying signs of all its incident edges by -1 . We further say that two graphs are switching-equivalent if we can obtain one from the other by a sequence of switchings.

Figure: An example of switching-equivalent graphs.

Signs of cycles

Definition (Negative and positive cycles)

The sign of a cycle is the product of the signs of its edges. We distinguish between a negative cycle and a positive cycle.

Figure: A negative cycle on the left and a positive cycle on the right.

Balancedness

Definition (Balanced and anti-balanced graph)
We say that a signed graph is balanced if every cycle in the graph is positive and anti-balanced if every cycle in the graph is negative.

Balancedness

Definition (Balanced and anti-balanced graph)

We say that a signed graph is balanced if every cycle in the graph is positive and anti-balanced if every cycle in the graph is negative.

- It is known that a signed graph is balanced if and only if it is switching-equivalent to a signed graph with all edges positive. Analogously for anti-balanced graphs.

Figure: A balanced graph on the left. A non-balanced graph on the right.

Homomorphism of signed graphs

Finally the main definition of the talk - homomorphism of signed graphs.

Homomorphism of signed graphs

Finally the main definition of the talk - homomorphism of signed graphs.

Definition

We say that a mapping $f: V(G) \rightarrow V(H)$ is a homomorphism of the signed graph (G, σ) to the signed graph (H, π), written as $f:(G, \sigma) \rightarrow(H, \pi)$, if there exists a signed graph (G, σ^{\prime}), switching equivalent to (G, σ), such that whenever $u v$ is a positive edge in $\left(G, \sigma^{\prime}\right)$, then (H, π) contains a positive edge joining $f(u)$ and $f(v)$, and whenever $u v$ is a negative edge in $\left(G, \sigma^{\prime}\right)$, then (H, π) contains a negative edge joining $f(u)$ and $f(v)$.

Homomorphism of signed graphs

Finally the main definition of the talk - homomorphism of signed graphs.

Definition

We say that a mapping $f: V(G) \rightarrow V(H)$ is a homomorphism of the signed graph (G, σ) to the signed graph (H, π), written as $f:(G, \sigma) \rightarrow(H, \pi)$, if there exists a signed graph $\left(G, \sigma^{\prime}\right)$, switching equivalent to (G, σ), such that whenever $u v$ is a positive edge in $\left(G, \sigma^{\prime}\right)$, then (H, π) contains a positive edge joining $f(u)$ and $f(v)$, and whenever $u v$ is a negative edge in $\left(G, \sigma^{\prime}\right)$, then (H, π) contains a negative edge joining $f(u)$ and $f(v)$.

- Note that without the possibility of switching we get homomorphisms of 2-edge-coloured graphs.

Problem

Let (H, π) be a fixed signed graph. The problem $\operatorname{S-Hom}((H, \pi))$ is defined as follows:

InPut: A signed graph (G, σ).
Question: Is there a homomorphism of (G, σ) to (H, π) ?

Signed core and dichotomy for S-Hom $((H, \pi))$

One of the most important results is settling the dichotomy of $\operatorname{S-HOM}((H, \pi))$ by Brewster and Siggers, conjectured by Brewster, Foucaud, Hell and Naserasr.

To state the result of Brewster and Siggers, we give a definition of s-core.
Definition (Signed core)
A signed graph (G, σ) is a signed core (or s-core) if every homomorphism $f:(G, \sigma) \rightarrow(G, \sigma)$ is a bijection.

Signed core and dichotomy for S-Ном $((H, \pi))$

One of the most important results is settling the dichotomy of $\operatorname{S-HOM}((H, \pi))$ by Brewster and Siggers, conjectured by Brewster, Foucaud, Hell and Naserasr.

To state the result of Brewster and Siggers, we give a definition of s-core.
Definition (Signed core)
A signed graph (G, σ) is a signed core (or s-core) if every homomorphism $f:(G, \sigma) \rightarrow(G, \sigma)$ is a bijection.

Theorem (Brewster, Siggers, published in Discrete Mathematics, 2018)
The problem $\operatorname{S-Hom}((H, \pi))$ is polynomial if (H, π) has an s-core with at most 2 edges and NP-complete otherwise.

List variant of the problem

Problem

Let (H, π) be a fixed signed graph. The List-S-Hom $((H, \pi))$ problem is defined as follows:

InPut: A signed graph (G, σ) with lists $L(v) \subseteq V(H)$ for every $v \in V(G)$.
Question: Does there exist a homomorphism f from (G, σ) to (H, π) such that $f(v) \in L(v)$ for every $v \in V(G)$?

List variant of the problem

Problem

Let (H, π) be a fixed signed graph. The List-S-Hom $((H, \pi))$ problem is defined as follows:

InPut: A signed graph (G, σ) with lists $L(v) \subseteq V(H)$ for every $v \in V(G)$.
Question: Does there exist a homomorphism f from (G, σ) to (H, π) such that $f(v) \in L(v)$ for every $v \in V(G)$?

- It is clear that every NP-complete case of $\operatorname{S-Hom}((H, \pi))$ remains NP-complete for $\operatorname{List-S-HOM}((H, \pi))$ so we can focus on signed graphs (H, π) whose s-cores have at most two edges.

List variant of the problem

Problem

Let (H, π) be a fixed signed graph. The List-S-Hom $((H, \pi))$ problem is defined as follows:

InPut: A signed graph (G, σ) with lists $L(v) \subseteq V(H)$ for every $v \in V(G)$.
Question: Does there exist a homomorphism from (G, σ) to (H, π) such that $f(v) \in L(v)$ for every $v \in V(G)$?

- It is clear that every NP-complete case of $\operatorname{S-Hom}((H, \pi))$ remains NP-complete for $\operatorname{List-S-HOM}((H, \pi))$ so we can focus on signed graphs (H, π) whose s-cores have at most two edges.

There are, however, many complex signed graphs with this property.

Our goals, results and an outline of the talk

The dichotomy conjecture for CSP was proved by Bulatov and Zhuk. Our problem can be formulated as CSP and therefore, we know that there is a dichotomy in terms of complexity. However, here we are interested in graph-theoretic classifications instead of algebraic ones.

Our goals, results and an outline of the talk

The dichotomy conjecture for CSP was proved by Bulatov and Zhuk. Our problem can be formulated as CSP and therefore, we know that there is a dichotomy in terms of complexity. However, here we are interested in graph-theoretic classifications instead of algebraic ones.

We have a full dichotomy for the following cases of target graphs (H, π) :

1. there are no bicoloured edges in (H, π),
2. the graph H is an irreflexive tree, and
3. the graph H is a reflexive tree.

No bicoloured edges

Bi-arc graphs

Definition

Let C be a circle with two specified points p and q on C. A bi-arc is an ordered pair of arcs (N, S) on C such that N contains p but not q, and S contains q but not p. A graph H is a bi-arc graph if there exists a family of bi-arcs $\left\{\left(N_{x}, S_{x}\right): x \in V(H)\right\}$ such that, for every $x, y \in V(H)$, not necessarily distinct, the following holds:

- if x and y are adjacent, then neither N_{x} intersects S_{y} nor N_{y} intersects S_{x};
- if x and y are not adjacent, then N_{x} intersects S_{y} and N_{y} intersects S_{x}.

No bicoloured edges: a dichotomy

Theorem

Suppose (H, π) is a connected signed graph without bicoloured edges. If the underlying graph H is a bi-arc graph, and (H, π) is balanced or anti-balanced, then the problem List-S-Hom $((H, \pi))$ is polynomial-time solvable. Otherwise, the problem is NP-complete.

Irreflexive trees

Irreflexive trees: NP-complete cases I

Lemma

If (H, π) contains the forbidden induced subgraph F_{1} (see below) in the underlying graph, then List-S-Hom $((H, \pi))$ is NP-complete.

Figure: The forbidden induced subgraph F_{1} in the underlying graph.

Irreflexive trees: NP-complete cases II

Lemma

If (H, π) contains one of the forbidden induced subgraphs from the figure below, then List-S-Hom $((H, \pi))$ is NP-complete.

Figure: Forbidden induced subgraphs.

Irreflexive trees: structure of polynomial cases

If H is an irreflexive 2-caterpillar with respect to the spine $P=v_{1} \ldots v_{k}$, the bicoloured edges of (H, π) form a connected subgraph, and there exists an integer d, with $1 \leq d \leq k$, such that:

- all edges on the path $v_{1} v_{2} \ldots v_{d}$ are bicoloured, and all edges on the path $v_{d} v_{d+1} \ldots v_{k}$ are blue,
- the edges of all subtrees rooted at $v_{1}, v_{2}, \ldots, v_{d-1}$ are bicoloured, except possibly edges incident to leaves, and
- the edges of all subtrees rooted at v_{d+1}, \ldots, v_{k} are all blue, then we call (H, π) a good 2-catterpillar and v_{d} is the dividing vertex.

Figure: An example of an irreflexive good 2-catterpillar.

Irreflexive trees: dichotomy

Lemma

Let (H, π) be an irreflexive tree. If (H, π) does not contain any of the forbidden induced subgraphs from the previous figures, then (H, π) is a good 2-catterpillar.

Figure: An example of an irreflexive good 2-catterpillar.

Irreflexive trees: dichotomy

Lemma

Let (H, π) be an irreflexive tree. If (H, π) does not contain any of the forbidden induced subgraphs from the previous figures, then (H, π) is a good 2-catterpillar.

Figure: An example of an irreflexive good 2-catterpillar.

Theorem

Let (H, π) be an irreflexive tree. If (H, π) is a good 2-catterpillar, then the problem List-S-Hom $((H, \pi))$ is polynomial. Otherwise it is NP-complete.

Reflexive trees

Reflexive trees: NP-complete cases I

Lemma

If (H, π) contains the forbidden induced subgraph F_{2} (see below) in the underlying graph, then List-S-Hom $((H, \pi))$ is NP-complete.

Figure: The forbidden induced subgraph F_{2} in the underlying graph.

Reflexive trees: NP-complete cases II

Lemma

If (H, π) contains one of the forbidden induced subgraphs from the figure below, then List-S-Ном $((H, \pi))$ is $N P$-complete.

Figure: Forbidden induced subgraphs. Dashed loops can be positive, negative or bicoloured.

Reflexive trees: structure of polynomial cases

We say that (H, π) is a good caterpillar with respect to the spine $v_{1} \ldots v_{k}$ if H is a catterpillar, if the bicoloured edges of (H, π) form a connected subgraph, the unicoloured non-loop edges all have the same colour c, and there exists an integer d, with $1 \leq d \leq k$, such that

- all edges on the path $v_{1} v_{2} \ldots v_{d}$ are bicoloured, and all edges on the path $v_{d} v_{d+1} \ldots v_{k}$ are unicoloured with colour c,
- all loops at the vertices v_{1}, \ldots, v_{d-1} and all non-loop edges of the subtrees rooted at these vertices are bicoloured,
- all loops at the vertices v_{d+1}, \ldots, v_{k} and all edges and loops of the subtrees rooted at these vertices are unicoloured with colour c,
- if v_{d} has a bicoloured loop, then all children of v_{d} with bicoloured loops are adjacent to v_{d} by bicoloured edges,
- if v_{d} has a unicoloured loop of colour c, then all children of v_{d} have unicoloured loops of colour c, and are adjacent to v_{d} by unicoloured edges,
- if $d<k$, then the loops of all children of v_{d} adjacent to v_{d} by unicoloured edges also have colour c.

Figure: Examples of good catterpillars.

Reflexive trees: dichotomy

Lemma

Let (H, π) be a reflexive tree. If (H, π) does not contain any of the forbidden induced subgraphs from the previous figures, then (H, π) is a good catterpillar.

Figure: Examples of good catterpillars.

Reflexive trees: dichotomy

Lemma

Let (H, π) be a reflexive tree. If (H, π) does not contain any of the forbidden induced subgraphs from the previous figures, then (H, π) is a good catterpillar.

Figure: Examples of good catterpillars.

Theorem

Let (H, π) be a reflexive tree. If (H, π) is a good catterpillar, then the problem $\operatorname{List-S-Hom}((H, \pi))$ is polynomial and NP-complete otherwise.

Conclusion

Conclusion

In the paper, we proved a full complexity dichotomy and described polynomial instances for the following cases of targets (H, π) :

- there are no bicoloured edges in (H, π),
- the graph H is an irreflexive tree, and
- the graph H is a reflexive tree.

Conclusion

In the paper, we proved a full complexity dichotomy and described polynomial instances for the following cases of targets (H, π) :

- there are no bicoloured edges in (H, π),
- the graph H is an irreflexive tree, and
- the graph H is a reflexive tree.

Conclusion

In the paper, we proved a full complexity dichotomy and described polynomial instances for the following cases of targets (H, π) :

- there are no bicoloured edges in (H, π),
- the graph H is an irreflexive tree, and
- the graph H is a reflexive tree.
https://arxiv.org/abs/2005.05547

Thank you for attention!

