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Graph homomorphism

Definition

A graph homomorphism between two graphs G and H is a mapping
f : V (G)→ V (H) such that for every edge uv ∈ E(G), f (u)f (v) ∈ E(H).

• That means that graph homomorphisms are adjacency-preserving
mappings between the vertex sets of two graphs.



Signed graphs

Signed graphs were first studied by König and Harary and an intensive research
has begun with several papers of Zaslavsky in the 1980s.

Definition (Signed graph)

A signed graph is a graph G , with possible loops and multiple edges (at most
two loops per vertex and at most two edges between a pair of vertices),
together with a mapping σ : E(G)→ {+,−}, assigning a sign (+ or −) to
each edge of G , so that different loops at a vertex have different signs, and
similarly for multiple edges between the same two vertices. We denote such a
signed graph by (G , σ), and call G its underlying graph and σ its signature.

Figure: An example of a signed graph.



Switching operation

Definition (Switching and switching equivalence)

The switching operation can be applied to any vertex of a signed graph. It
results in multiplying signs of all its incident edges by −1. We further say that
two graphs are switching-equivalent if we can obtain one from the other by a
sequence of switchings.

Figure: An example of switching-equivalent graphs.
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Signs of cycles

Definition (Negative and positive cycles)

The sign of a cycle is the product of the signs of its edges. We distinguish
between a negative cycle and a positive cycle.

Figure: A negative cycle on the left and a positive cycle on the right.



Balancedness

Definition (Balanced and anti-balanced graph)

We say that a signed graph is balanced if every cycle in the graph is positive
and anti-balanced if every cycle in the graph is negative.

• It is known that a signed graph is balanced if and only if it is
switching-equivalent to a signed graph with all edges positive. Analogously
for anti-balanced graphs.

Figure: A balanced graph on the left. A non-balanced graph on the right.
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Homomorphism of signed graphs

Finally the main definition of the talk — homomorphism of signed graphs.

Definition

We say that a mapping f : V (G)→ V (H) is a homomorphism of the signed
graph (G , σ) to the signed graph (H, π), written as f : (G , σ)→ (H, π), if
there exists a signed graph (G , σ′), switching equivalent to (G , σ), such that
whenever uv is a positive edge in (G , σ′), then (H, π) contains a positive edge
joining f (u) and f (v), and whenever uv is a negative edge in (G , σ′), then
(H, π) contains a negative edge joining f (u) and f (v).

• Note that without the possibility of switching we get homomorphisms of
2-edge-coloured graphs.

Problem

Let (H, π) be a fixed signed graph. The problem S-Hom((H, π)) is defined as
follows:

Input: A signed graph (G , σ).
Question: Is there a homomorphism of (G , σ) to (H, π)?
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Signed core and dichotomy for S-Hom((H, π))

One of the most important results is settling the dichotomy of S-Hom((H, π))
by Brewster and Siggers, conjectured by Brewster, Foucaud, Hell and Naserasr.

To state the result of Brewster and Siggers, we give a definition of s-core.

Definition (Signed core)

A signed graph (G , σ) is a signed core (or s-core) if every homomorphism
f : (G , σ)→ (G , σ) is a bijection.

Theorem (Brewster, Siggers, published in Discrete Mathematics, 2018)

The problem S-Hom((H, π)) is polynomial if (H, π) has an s-core with at most
2 edges and NP-complete otherwise.
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List variant of the problem

Problem

Let (H, π) be a fixed signed graph. The List-S-Hom((H, π)) problem is
defined as follows:

Input: A signed graph (G , σ) with lists L(v) ⊆ V (H) for every
v ∈ V (G).

Question: Does there exist a homomorphism f from (G , σ) to
(H, π) such that f (v) ∈ L(v) for every v ∈ V (G)?

• It is clear that every NP-complete case of S-Hom((H, π)) remains
NP-complete for List-S-Hom((H, π)) so we can focus on signed graphs
(H, π) whose s-cores have at most two edges.

There are, however, many complex signed graphs with this
property.
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Our goals, results and an outline of the talk

The dichotomy conjecture for CSP was proved by Bulatov and Zhuk. Our
problem can be formulated as CSP and therefore, we know that there is a
dichotomy in terms of complexity. However, here we are interested in
graph-theoretic classifications instead of algebraic ones.

We have a full dichotomy for the following cases of target graphs (H, π):

1. there are no bicoloured edges in (H, π),

2. the graph H is an irreflexive tree, and

3. the graph H is a reflexive tree.
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No bicoloured edges



Bi-arc graphs

Definition

Let C be a circle with two specified points p and q on C . A bi-arc is an
ordered pair of arcs (N, S) on C such that N contains p but not q, and S
contains q but not p. A graph H is a bi-arc graph if there exists a family of
bi-arcs {(Nx , Sx) : x ∈ V (H)} such that, for every x , y ∈ V (H), not necessarily
distinct, the following holds:

• if x and y are adjacent, then neither Nx intersects Sy nor Ny intersects Sx ;

• if x and y are not adjacent, then Nx intersects Sy and Ny intersects Sx .

p

q

Nz Nx

Sz

Sx

Sy

Ny

x y z



No bicoloured edges: a dichotomy

Theorem

Suppose (H, π) is a connected signed graph without bicoloured edges. If the
underlying graph H is a bi-arc graph, and (H, π) is balanced or anti-balanced,
then the problem List-S-Hom((H, π)) is polynomial-time solvable. Otherwise,
the problem is NP-complete.



Irreflexive trees



Irreflexive trees: NP-complete cases I

Lemma

If (H, π) contains the forbidden induced subgraph F1 (see below) in the
underlying graph, then List-S-Hom((H, π)) is NP-complete.

Figure: The forbidden induced subgraph F1 in the underlying graph.



Irreflexive trees: NP-complete cases II

Lemma

If (H, π) contains one of the forbidden induced subgraphs from the figure
below, then List-S-Hom((H, π)) is NP-complete.

blue path

bicolored path

Figure: Forbidden induced subgraphs.



Irreflexive trees: structure of polynomial cases

If H is an irreflexive 2-caterpillar with respect to the spine P = v1 . . . vk , the
bicoloured edges of (H, π) form a connected subgraph, and there exists an
integer d , with 1 ≤ d ≤ k, such that:

• all edges on the path v1v2 . . . vd are bicoloured, and all edges on the path
vdvd+1 . . . vk are blue,

• the edges of all subtrees rooted at v1, v2, . . . , vd−1 are bicoloured, except
possibly edges incident to leaves, and

• the edges of all subtrees rooted at vd+1, . . . , vk are all blue,

then we call (H, π) a good 2-catterpillar and vd is the dividing vertex.

Figure: An example of an irreflexive good 2-catterpillar.



Irreflexive trees: dichotomy

Lemma

Let (H, π) be an irreflexive tree. If (H, π) does not contain any of the
forbidden induced subgraphs from the previous figures, then (H, π) is a good
2-catterpillar.

Figure: An example of an irreflexive good 2-catterpillar.

Theorem

Let (H, π) be an irreflexive tree. If (H, π) is a good 2-catterpillar, then the
problem List-S-Hom((H, π)) is polynomial. Otherwise it is NP-complete.
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Reflexive trees



Reflexive trees: NP-complete cases I

Lemma

If (H, π) contains the forbidden induced subgraph F2 (see below) in the
underlying graph, then List-S-Hom((H, π)) is NP-complete.

Figure: The forbidden induced subgraph F2 in the underlying graph.



Reflexive trees: NP-complete cases II

Lemma

If (H, π) contains one of the forbidden induced subgraphs from the figure
below, then List-S-Hom((H, π)) is NP-complete.

blue path blue path

blue path

bicolored path

Figure: Forbidden induced subgraphs. Dashed loops can be positive, negative or
bicoloured.



Reflexive trees: structure of polynomial cases

We say that (H, π) is a good caterpillar with respect to the spine v1 . . . vk if H
is a catterpillar, if the bicoloured edges of (H, π) form a connected subgraph,
the unicoloured non-loop edges all have the same colour c, and there exists an
integer d , with 1 ≤ d ≤ k, such that

• all edges on the path v1v2 . . . vd are bicoloured, and all edges on the path
vdvd+1 . . . vk are unicoloured with colour c,
• all loops at the vertices v1, . . . , vd−1 and all non-loop edges of the subtrees

rooted at these vertices are bicoloured,
• all loops at the vertices vd+1, . . . , vk and all edges and loops of the

subtrees rooted at these vertices are unicoloured with colour c,
• if vd has a bicoloured loop, then all children of vd with bicoloured loops

are adjacent to vd by bicoloured edges,
• if vd has a unicoloured loop of colour c, then all children of vd have

unicoloured loops of colour c, and are adjacent to vd by unicoloured edges,
• if d < k, then the loops of all children of vd adjacent to vd by unicoloured

edges also have colour c.

Figure: Examples of good catterpillars.



Reflexive trees: dichotomy

Lemma

Let (H, π) be a reflexive tree. If (H, π) does not contain any of the forbidden
induced subgraphs from the previous figures, then (H, π) is a good catterpillar.

Figure: Examples of good catterpillars.

Theorem

Let (H, π) be a reflexive tree. If (H, π) is a good catterpillar, then the problem
List-S-Hom((H, π)) is polynomial and NP-complete otherwise.
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Lemma
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Figure: Examples of good catterpillars.

Theorem

Let (H, π) be a reflexive tree. If (H, π) is a good catterpillar, then the problem
List-S-Hom((H, π)) is polynomial and NP-complete otherwise.



Conclusion



Conclusion

In the paper, we proved a full complexity dichotomy and described polynomial
instances for the following cases of targets (H, π):

• there are no bicoloured edges in (H, π),

• the graph H is an irreflexive tree, and

• the graph H is a reflexive tree.
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