Constructing partial geometries with prescribed automorphism groups*

Vedran Krčadinac

University of Zagreb, Croatia

3rd Croatian Combinatorial Days
Zagreb, September 21-22, 2020

[^0]
Introduction

A partial geometry $\operatorname{pg}(s, t, \alpha)$ is an incidence structure $(\mathcal{P}, \mathcal{L}, I)$ such that:

- every line is incident with $s+1$ points,
- every point is incident with $t+1$ lines,
- every pair of points is incident with at most one line,
- for every non-incident point-line pair (P, ℓ), there are exactly α points on ℓ collinear with P.

Introduction

A partial geometry $\operatorname{pg}(s, t, \alpha)$ is an incidence structure $(\mathcal{P}, \mathcal{L}, I)$ such that:

- every line is incident with $s+1$ points,
- every point is incident with $t+1$ lines,
- every pair of points is incident with at most one line,

Partial linear
space of order (s, t)

- for every non-incident point-line pair (P, ℓ), there are exactly α points on ℓ collinear with P.

Introduction

A partial geometry $\operatorname{pg}(s, t, \alpha)$ is an incidence structure $(\mathcal{P}, \mathcal{L}, I)$ such that:

- every line is incident with $s+1$ points,
- every point is incident with $t+1$ lines,
- every pair of points is incident with at most one line,

Partial linear
space of order (s, t)

- for every non-incident point-line pair (P, ℓ), there are exactly α points on ℓ collinear with P.

Introduction

A partial geometry $\operatorname{pg}(s, t, \alpha)$ is an incidence structure $(\mathcal{P}, \mathcal{L}, I)$ such that:

- every line is incident with $s+1$ points,
- every point is incident wiht $t+1$ lines,
- every pair of points is incident with at most one line,

Partial linear
space of order (s, t)

- for every non-incident point-line pair (P, ℓ), there are exactly α points on ℓ collinear with P.

$$
\alpha \leq \min \{s+1, t+1\}
$$

Special cases

(1) A $p g(s, t, \alpha)$ with $\alpha=s+1$ is a Steiner 2 -design. This includes finite projective and affine planes, Steiner triple systems, etc.

Special cases

(1) A $p g(s, t, \alpha)$ with $\alpha=s+1$ is a Steiner 2 -design. This includes finite projective and affine planes, Steiner triple systems, etc.
(2) A $p g(s, t, \alpha)$ with $\alpha=t$ is a Bruck net of order $s+1$ and degree $t+1$. This is equivalent with $t-1$ mutually orthogonal Latin squares of order $s+1$.
R.H.Bruck, Finite nets I. Numerical invariants, Canad. J. Math. 3 (1951), 94-107.
R.H.Bruck, Finite nets II. Uniqueness and imbedding, Pacific J. Math. 13 (1963), 421-457.

Special cases

(1) A $p g(s, t, \alpha)$ with $\alpha=s+1$ is a Steiner 2-design. This includes finite projective and affine planes, Steiner triple systems, etc.
(2) A $p g(s, t, \alpha)$ with $\alpha=t$ is a Bruck net of order $s+1$ and degree $t+1$. This is equivalent with $t-1$ mutually orthogonal Latin squares of order $s+1$.
R.H.Bruck, Finite nets I. Numerical invariants, Canad. J. Math. 3 (1951), 94-107.
R.H.Bruck, Finite nets II. Uniqueness and imbedding, Pacific J. Math. 13 (1963), 421-457.
(3) A $p g(s, t, \alpha)$ with $\alpha=1$ is a generalized quadrangle.
S. E. Payne, J. A. Thas, Finite generalized quadrangles, Pitman, Boston, MA, 1984.

Special cases

(1) A $p g(s, t, \alpha)$ with $\alpha=s+1$ is a Steiner 2-design. This includes finite projective and affine planes, Steiner triple systems, etc.
(2) A $p g(s, t, \alpha)$ with $\alpha=t$ is a Bruck net of order $s+1$ and degree $t+1$. This is equivalent with $t-1$ mutually orthogonal Latin squares of order $s+1$.
R.H.Bruck, Finite nets I. Numerical invariants, Canad. J. Math. 3 (1951), 94-107.
R.H.Bruck, Finite nets II. Uniqueness and imbedding, Pacific J. Math. 13 (1963), 421-457.
(3) A $p g(s, t, \alpha)$ with $\alpha=1$ is a generalized quadrangle.
S. E. Payne, J. A. Thas, Finite generalized quadrangles, Pitman, Boston, MA, 1984.
(9) Proper partial geometries are $p g(s, t, \alpha)$ with $1<\alpha<\min \{s, t\}$.

Special cases

(1) A $p g(s, t, \alpha)$ with $\alpha=s+1$ is a Steiner 2 -design. This includes finite projective and affine planes, Steiner triple systems, etc.
(2) A $p g(s, t, \alpha)$ with $\alpha=t$ is a Bruck net of order $s+1$ and degree $t+1$. This is equivalent with $t-1$ mutually orthogonal Latin squares of order $s+1$.
R.H.Bruck, Finite nets I. Numerical invariants, Canad. J. Math. 3 (1951), 94-107. R.H.Bruck, Finite nets II. Uniqueness and imbedding, Pacific J. Math. 13 (1963), 421-457.
(3) A $p g(s, t, \alpha)$ with $\alpha=1$ is a generalized quadrangle.
S. E. Payne, J. A. Thas, Finite generalized quadrangles, Pitman, Boston, MA, 1984.
(9) Proper partial geometries are $\operatorname{pg}(s, t, \alpha)$ with $1<\alpha<\min \{s, t\}$.

The dual of a $\operatorname{pg}(s, t, \alpha)$ is a $p g(t, s, \alpha)$. In the sequel we will always assume $\alpha<s \leq t$.

Necessary existence conditions

Counting arguments in a $p g(s, t, \alpha)$ yield:

$$
v:=|\mathcal{P}|=(s+1) \frac{(s t+\alpha)}{\alpha}, \quad b:=|\mathcal{L}|=(t+1) \frac{(s t+\alpha)}{\alpha} .
$$

Necessary existence conditions

Counting arguments in a $p g(s, t, \alpha)$ yield:

$$
v:=|\mathcal{P}|=(s+1) \frac{(s t+\alpha)}{\alpha}, \quad b:=|\mathcal{L}|=(t+1) \frac{(s t+\alpha)}{\alpha} .
$$

The point graph of a $p g(s, t, \alpha)$ is strongly regular with parameters

$$
\operatorname{SRG}(v, s(t+1), s-1+t(\alpha-1), \alpha(t+1))
$$

Necessary existence conditions

Counting arguments in a $p g(s, t, \alpha)$ yield:

$$
v:=|\mathcal{P}|=(s+1) \frac{(s t+\alpha)}{\alpha}, \quad b:=|\mathcal{L}|=(t+1) \frac{(s t+\alpha)}{\alpha}
$$

The point graph of a $p g(s, t, \alpha)$ is strongly regular with parameters

$$
\operatorname{SRG}(v, s(t+1), s-1+t(\alpha-1), \alpha(t+1))
$$

R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math. 13 (1963), 389-419.

Necessary existence conditions

Counting arguments in a $p g(s, t, \alpha)$ yield:

$$
v:=|\mathcal{P}|=(s+1) \frac{(s t+\alpha)}{\alpha}, \quad b:=|\mathcal{L}|=(t+1) \frac{(s t+\alpha)}{\alpha} .
$$

The point graph of a $p g(s, t, \alpha)$ is strongly regular with parameters

$$
\operatorname{SRG}(v, s(t+1), s-1+t(\alpha-1), \alpha(t+1))
$$

R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math. 13 (1963), 389-419.

From this we get necessary conditions on the parameters:
$\alpha \mid(s+1) s t$ and $(t+1) s t$
(integrality of v and b)
$\alpha(s+t+1-\alpha) \mid s t(s+1)(t+1) \quad$ (multiplicities of eigenvalues of SRG)
$(s+1-2 \alpha) t \leq(s-1)(s+1-\alpha)^{2} \quad$ (Krein inequalities for SRG)

Admissible parameters of small $\operatorname{pg}(s, t, \alpha)(v \leq 100)$

Part.geom.	Npg	Point gr.	Nsrg	Line gr.	Nsrg
$p g(2,2,1)$	1	$(15,6,1,3)$	1	$(15,6,1,3)$	1
$p g(2,4,1)$	1	$(27,10,1,5)$	1	$(45,12,3,3)$	78
$p g(3,4,2)$	0	$(28,15,6,10)$	4	$(35,16,6,8)$	3854
$p g(3,3,1)$	2	$(40,12,2,4)$	28	$(40,12,2,4)$	28
$p g(4,6,3)$	2	$(45,28,15,21)$	1	$(63,30,13,15)$	+
$p g(3,5,1)$	1	$(64,18,2,6)$	167	$(96,20,4,4)$	+
$p g(5,8,4)$	0	$(66,45,28,36)$	1	$(99,48,22,24)$	+
$p g(6,6,4)$	$?$	$(70,42,23,28)$	+	$(70,42,23,28)$	+
$p g(4,7,2)$	0	$(75,32,10,16)$	0	$(120,35,10,10)$	$?$
$p g(3,6,1)$	0	$(76,21,2,7)$	0	$(133,24,5,4)$	$?$
$p g(5,5,2)$	≥ 1	$(81,30,9,12)$	+	$(81,30,9,12)$	+
$p g(4,4,1)$	1	$(85,20,3,5)$	+	$(85,20,3,5)$	+
$p g(6,10,5)$	$?$	$(91,66,45,55)$	1	$(143,70,33,35)$	+
$p g(4,9,2)$	0	$(95,40,12,20)$	0	$(190,45,12,10)$	$?$
$p g(5,6,2)$	$?$	$(96,35,10,14)$	$?$	$(112,36,10,12)$	$?$
$p g(5,9,3)$	0	$(96,50,22,30)$	0	$(160,54,18,18)$	$?$

Admissible parameters of small $p g(s, t, \alpha)(v \leq 100)$

J. A. Thas, Partial geometries, in: The Handbook of Combinatorial Designs, Second Edition (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2007, pp. 557-561. Table 41.33 on page 561.

Admissible parameters of small $p g(s, t, \alpha)(v \leq 100)$

J. A. Thas, Partial geometries, in: The Handbook of Combinatorial Designs, Second Edition (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2007, pp. 557-561. Table 41.33 on page 561.
A. E. Brouwer, Parameters of strongly regular graphs, https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html

Admissible parameters of small $p g(s, t, \alpha)(v \leq 100)$

J. A. Thas, Partial geometries, in: The Handbook of Combinatorial Designs, Second Edition (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2007, pp. 557-561. Table 41.33 on page 561.
A. E. Brouwer, Parameters of strongly regular graphs, https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
J. Azarija, T. Marc, There is no $(75,32,10,16)$ strongly regular graph, Linear Algebra Appl. 557 (2018), 62-83. A pg(4, 7, 2)
J. Azarija, T. Marc, There is no $(95,40,12,20)$ strongly regular graph, J. Combin. Des. 28 (2020), 294-306. A pg(4, 9, 2)

Admissible parameters of small $p g(s, t, \alpha)(v \leq 100)$

J. A. Thas, Partial geometries, in: The Handbook of Combinatorial Designs, Second Edition (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2007, pp. 557-561. Table 41.33 on page 561.
A. E. Brouwer, Parameters of strongly regular graphs, https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
J. Azarija, T. Marc, There is no $(75,32,10,16)$ strongly regular graph, Linear Algebra Appl. 557 (2018), 62-83. A pg(4, 7, 2)
J. Azarija, T. Marc, There is no $(95,40,12,20)$ strongly regular graph, J. Combin. Des. 28 (2020), 294-306. A pg(4, 9, 2)
J. H. van Lint, A. Schrijver, Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields, Combinatorica 1 (1981), no. 1, 63-73. $\exists \operatorname{pg}(5,5,2)$

Partial geometries with prescribed automorphism groups

An automorphism of a partial geometry \mathcal{G} is a permutation of the points mapping lines onto lines. The full automorphism group is denoted $\operatorname{Aut}(\mathcal{G})$. Any subgroup $G \leq \operatorname{Aut}(\mathcal{G})$ is called an automorphism group of \mathcal{G}.

Partial geometries with prescribed automorphism groups

An automorphism of a partial geometry \mathcal{G} is a permutation of the points mapping lines onto lines. The full automorphism group is denoted $\operatorname{Aut}(\mathcal{G})$. Any subgroup $G \leq \operatorname{Aut}(\mathcal{G})$ is called an automorphism group of \mathcal{G}.

Problem:

Given a permutation group G on the v-element set of points \mathcal{P}, find all partial geometries $\operatorname{pg}(s, t, \alpha)$ with G as an automorphism group.

Partial geometries with prescribed automorphism groups

An automorphism of a partial geometry \mathcal{G} is a permutation of the points mapping lines onto lines. The full automorphism group is denoted $\operatorname{Aut}(\mathcal{G})$. Any subgroup $G \leq \operatorname{Aut}(\mathcal{G})$ is called an automorphism group of \mathcal{G}.

Problem:

Given a permutation group G on the v-element set of points \mathcal{P}, find all partial geometries $\operatorname{pg}(s, t, \alpha)$ with G as an automorphism group.

The lines are subsets of \mathcal{P} of size $k:=s+1$.

Partial geometries with prescribed automorphism groups

An automorphism of a partial geometry \mathcal{G} is a permutation of the points mapping lines onto lines. The full automorphism group is denoted $\operatorname{Aut}(\mathcal{G})$.
Any subgroup $G \leq \operatorname{Aut}(\mathcal{G})$ is called an automorphism group of \mathcal{G}.

Problem:

Given a permutation group G on the v-element set of points \mathcal{P}, find all partial geometries $\operatorname{pg}(s, t, \alpha)$ with G as an automorphism group.

The lines are subsets of \mathcal{P} of size $k:=s+1$.

Construction method:

(1) Choose a permutation group G on the set of points \mathcal{P}.
(2) Compute the orbits of G on k-element subsets of \mathcal{P}.
(3) Select orbits comprising lines of the partial geometry.

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6$

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6$
J. H. van Lint, A. Schrijver, Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields, Combinatorica 1 (1981), no. 1, 63-73.
P. J. Cameron, J. H. van Lint, On the partial geometry pg(6, 6, 2), J. Combin. Theory Ser. A 32 (1982), no. 2, 252-255.

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6$
J. H. van Lint, A. Schrijver, Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields, Combinatorica 1 (1981), no. 1, 63-73.
P. J. Cameron, J. H. van Lint, On the partial geometry pg(6, 6, 2), J. Combin. Theory Ser. A 32 (1982), no. 2, 252-255.
$\mathcal{G}=$ partial geometry of van Lint and Schrijver
$\operatorname{Aut}(\mathcal{G}) \cong \mathbb{F}_{3}^{4} \rtimes S_{6}$ of order 58320
$G \leq \operatorname{Aut}(\mathcal{G}), G \cong \mathbb{F}_{3}^{3} \rtimes \mathbb{Z}_{4}$ of order 108

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6$
J. H. van Lint, A. Schrijver, Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields, Combinatorica 1 (1981), no. 1, 63-73.
P. J. Cameron, J. H. van Lint, On the partial geometry pg(6, 6, 2), J. Combin. Theory Ser. A 32 (1982), no. 2, 252-255.
$\mathcal{G}=$ partial geometry of van Lint and Schrijver
$\operatorname{Aut}(\mathcal{G}) \cong \mathbb{F}_{3}^{4} \rtimes S_{6}$ of order 58320
$G \leq \operatorname{Aut}(\mathcal{G}), G \cong \mathbb{F}_{3}^{3} \rtimes \mathbb{Z}_{4}$ of order 108
B. McKay, A. Piperno, nauty and Traces, https://pallini.di.uniroma1.it GAP - Groups, Algorithms, and Programming, http://www.gap-system.org

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$
$\binom{81}{6}=324540216 \approx 3.2 \cdot 10^{8}$

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$
$\binom{81}{6}=324540216 \approx 3.2 \cdot 10^{8} \quad\left(\begin{array}{c}(81 \\ 6 \\ 81\end{array}\right)=\binom{324540216}{81} \approx 4.5 \cdot 10^{568}$

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$
$\binom{81}{6}=324540216 \approx 3.2 \cdot 10^{8} \quad\left(\begin{array}{c}81 \\ 6 \\ 81\end{array}\right)=\binom{324540216}{81} \approx 4.5 \cdot 10^{568}$
Number of orbits of G on the 6 -subsets: $3007997 \approx 3 \cdot 10^{6}$

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$
$\binom{81}{6}=324540216 \approx 3.2 \cdot 10^{8} \quad\left(\begin{array}{c}81 \\ 6 \\ 81\end{array}\right)=\binom{324540216}{81} \approx 4.5 \cdot 10^{568}$
Number of orbits of G on the 6 -subsets: $3007997 \approx 3 \cdot 10^{6}$

$\|\mathcal{O}\|$	$\#$
108	3002106
54	5670
36	108
27	75
18	37
9	1

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$
$\binom{81}{6}=324540216 \approx 3.2 \cdot 10^{8} \quad\left(\begin{array}{c}(81 \\ 6 \\ 81\end{array}\right)=\binom{324540216}{81} \approx 4.5 \cdot 10^{568}$
Number of orbits of G on the 6 -subsets: $3007997 \approx 3 \cdot 10^{6}$

Orbits by size:
$\left.\begin{array}{c|c}|\mathcal{O}| & \# \\ \hline 108 & 3002106 \\ 54 & 5670 \\ 36 & 108 \\ 27 & 75 \\ 18 & 37 \\ 9 & 1\end{array}\right\} \quad 5891 \approx 5.9 \cdot 10^{3}$

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$

Number of "short" orbits of G on the 6-subsets: 5891

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$

Number of "short" orbits of G on the 6-subsets: 5891
Some of these orbits cannot be used in a $p g(5,5,2)$!

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$

Number of "short" orbits of G on the 6-subsets: 5891
Some of these orbits cannot be used in a $p g(5,5,2)$!

1. Lines of a partial linear space intersect in at most one point.

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$

Number of "short" orbits of G on the 6-subsets: 5891
Some of these orbits cannot be used in a $\operatorname{pg}(5,5,2)$!

1. Lines of a partial linear space intersect in at most one point.
2. A partial geometry with $\alpha=2$ does not contain the configuration:

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$

Number of "short" orbits of G on the 6-subsets: 5891
Some of these orbits cannot be used in a $p g(5,5,2)$!

1. Lines of a partial linear space intersect in at most one point.
2. A partial geometry with $\alpha=2$ does not contain the configuration:

An orbit \mathcal{O} is called good if $|X \cap Y| \leq 1$ for all $X, Y \in \mathcal{O}, X \neq Y$ and it does not contain the configuration above.

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$

Number of "short" orbits of G on the 6-subsets: 5891
Some of these orbits cannot be used in a $p g(5,5,2)$!

1. Lines of a partial linear space intersect in at most one point.
2. A partial geometry with $\alpha=2$ does not contain the configuration:

An orbit \mathcal{O} is called good if $|X \cap Y| \leq 1$ for all $X, Y \in \mathcal{O}, X \neq Y$ and it does not contain the configuration above.

Number of short good orbits of G on the 6-subsets: 181

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$

Number of short good orbits of G on the 6-subsets: 181

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$
Number of short good orbits of G on the 6-subsets: 181

How to generate the orbits?
V. Krčadinac, R. Vlahović Kruc, Quasi-symmetric designs on 56 points, Adv. Math. Commun. doi:10.3934/amc. 2020086

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$

Number of short good orbits of G on the 6-subsets: 181

How to generate the orbits?
V. Krčadinac, R. Vlahović Kruc, Quasi-symmetric designs on 56 points, Adv. Math. Commun. doi:10.3934/amc. 2020086

Theorem.

A partial linear space of order (s, t) is a $p g(s, t, \alpha)$ if and only if it does not contain the configuration:

Partial geometries with prescribed automorphism groups

Example: $\operatorname{pg}(5,5,2), v=b=81, k=6,|G|=108$, orbits: 181

Partial geometries with prescribed automorphism groups

Example: $\operatorname{pg}(5,5,2), v=b=81, k=6,|G|=108$, orbits: 181

We want to select a subset of the orbits $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ such that $\bigcup_{i=1}^{n} \mathcal{O}_{i}$ is the set of lines of a $\operatorname{pg}(5,5,2)$. Necessary: $\sum_{i=1}^{n}\left|\mathcal{O}_{i}\right|=81$.

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$, orbits: 181

We want to select a subset of the orbits $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ such that $\bigcup_{i=1}^{n} \mathcal{O}_{i}$ is the set of lines of a $\operatorname{pg}(5,5,2)$. Necessary: $\sum_{i=1}^{n}\left|\mathcal{O}_{i}\right|=81$.

Define the compatibility graph with the 181 orbits as vertices and their sizes as weights. Orbits \mathcal{O}_{1} and \mathcal{O}_{2} are joined by an edge if $|X \cap Y| \leq 1$ for all $X \in O_{1}, Y \in \mathcal{O}_{2}$ and $\mathcal{O}_{1} \cup \mathcal{O}_{2}$ does not contain the forbidden configuration.

Partial geometries with prescribed automorphism groups

Example: $p g(5,5,2), v=b=81, k=6,|G|=108$, orbits: 181

We want to select a subset of the orbits $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ such that $\bigcup_{i=1}^{n} \mathcal{O}_{i}$ is the set of lines of a $\operatorname{pg}(5,5,2)$. Necessary: $\sum_{i=1}^{n}\left|\mathcal{O}_{i}\right|=81$.

Define the compatibility graph with the 181 orbits as vertices and their sizes as weights. Orbits \mathcal{O}_{1} and \mathcal{O}_{2} are joined by an edge if $|X \cap Y| \leq 1$ for all $X \in O_{1}, Y \in \mathcal{O}_{2}$ and $\mathcal{O}_{1} \cup \mathcal{O}_{2}$ does not contain the forbidden configuration.

Search for cliques of weight $b=81$ in the compatibility graph.
S. Niskanen, P. R. J. Östergård, Cliquer user's guide, version 1.0, Communications Laboratory, Helsinki University of Technology, Espoo, Finland, Tech. Rep. T48, 2003.

Partial geometries with prescribed automorphism groups

Example: $\operatorname{pg}(5,5,2), v=b=81, k=6,|G|=108$, orbits: 181
The compatibility graph has 181 vertices and 528 edges (density 3.2%).
There are 384 cliques of weight 81 , all of them correspond to $\mathrm{pg}(5,5,2)$.

Partial geometries with prescribed automorphism groups

Example: $\operatorname{pg}(5,5,2), v=b=81, k=6,|G|=108$, orbits: 181
The compatibility graph has 181 vertices and 528 edges (density 3.2%).
There are 384 cliques of weight 81 , all of them correspond to $p g(5,5,2)$.
Using nauty, one finds that there are two non-isomorphic $p g(5,5,2)$.
$\left|\operatorname{Aut}\left(\mathcal{G}_{1}\right)\right|=58320$, isomorphic to the geometry of van Lint and Schrijver.
$\left|\operatorname{Aut}\left(\mathcal{G}_{2}\right)\right|=972$, a new partial geometry $\operatorname{pg}(5,5,2)$!

Partial geometries with prescribed automorphism groups

Example: $\operatorname{pg}(5,5,2), v=b=81, k=6,|G|=108$, orbits: 181
The compatibility graph has 181 vertices and 528 edges (density 3.2%).
There are 384 cliques of weight 81 , all of them correspond to $\mathrm{pg}(5,5,2)$.
Using nauty, one finds that there are two non-isomorphic $p g(5,5,2)$.
$\left|\operatorname{Aut}\left(\mathcal{G}_{1}\right)\right|=58320$, isomorphic to the geometry of van Lint and Schrijver.
$\left|\operatorname{Aut}\left(\mathcal{G}_{2}\right)\right|=972$, a new partial geometry $\operatorname{pg}(5,5,2)$!
V. Krčadinac, A new partial geometry pg(5, 5, 2), 16 September 2020. https://arxiv.org/abs/2009.07946

We give a computer-free description of the new $p g(5,5,2)$ using a four-dimensional vector space over $G F(3)$, by changing some lines of the geometry of van Lint and Schrijver.

A general construction of partial geometries

Let \mathcal{R} be a projective plane of order q. A subset \mathcal{A} of points is called a d-arc if d is the greatest number of collinear points in \mathcal{A}.

A general construction of partial geometries

Let \mathcal{R} be a projective plane of order q. A subset \mathcal{A} of points is called a d-arc if d is the greatest number of collinear points in \mathcal{A}.
The number of points in a d-arc is $|\mathcal{A}| \leq d q-q+d$. Equality holds if and only if every line is either disjoint from \mathcal{A}, or intersects \mathcal{A} in exactly d points. In this case \mathcal{A} is called a maximal arc (for $d=2$ a hyperoval).

A general construction of partial geometries

Let \mathcal{R} be a projective plane of order q. A subset \mathcal{A} of points is called a d-arc if d is the greatest number of collinear points in \mathcal{A}.
The number of points in a d-arc is $|\mathcal{A}| \leq d q-q+d$. Equality holds if and only if every line is either disjoint from \mathcal{A}, or intersects \mathcal{A} in exactly d points. In this case \mathcal{A} is called a maximal arc (for $d=2$ a hyperoval).

A necessary condition for the existence of a maximal d-arc is that d divides q (the order of the projective plane). Hence, only planes of composite orders are of interest (known only if q is a prime power).

A general construction of partial geometries

Let \mathcal{R} be a projective plane of order q. A subset \mathcal{A} of points is called a d-arc if d is the greatest number of collinear points in \mathcal{A}.
The number of points in a d-arc is $|\mathcal{A}| \leq d q-q+d$. Equality holds if and only if every line is either disjoint from \mathcal{A}, or intersects \mathcal{A} in exactly d points. In this case \mathcal{A} is called a maximal arc (for $d=2$ a hyperoval).
A necessary condition for the existence of a maximal d-arc is that d divides q (the order of the projective plane). Hence, only planes of composite orders are of interest (known only if q is a prime power).

Theorem (J. A. Thas, W. D. Wallis, 1973).

Let \mathcal{A} be a maximal d-arc in a projective plane of order q. The set of d-secants of \mathcal{A} as POINTS and the set of points not in \mathcal{A} as LINES constitute a partial geometry $p g(s, t, \alpha)$ for $s=q(d-1) / d, t=q-d$, and $\alpha=(q-d)(d-1) / d$.

A general construction of partial geometries

Let \mathcal{R} be a projective plane of order q. A subset \mathcal{A} of points is called a d-arc if d is the greatest number of collinear points in \mathcal{A}.
The number of points in a d-arc is $|\mathcal{A}| \leq d q-q+d$. Equality holds if and only if every line is either disjoint from \mathcal{A}, or intersects \mathcal{A} in exactly d points. In this case \mathcal{A} is called a maximal arc (for $d=2$ a hyperoval).
A necessary condition for the existence of a maximal d-arc is that d divides q (the order of the projective plane). Hence, only planes of composite orders are of interest (known only if q is a prime power).

Theorem (J. A. Thas, W. D. Wallis, 1973).

Let \mathcal{A} be a maximal d-arc in a projective plane of order q. The set of d-secants of \mathcal{A} as POINTS and the set of points not in \mathcal{A} as LINES constitute a partial geometry $p g(s, t, \alpha)$ for $s=q(d-1) / d, t=q-d$, and $\alpha=(q-d)(d-1) / d$.

We want $s \leq t$ and hence only consider $d \leq \sqrt{q}$.

A general construction of partial geometries

```
q=4 Projective plane is unique: }PG(2,4
d=2 It contains hyperovals }\rightsquigarrowpg(2,2,1) (smallest gen. quadrangle)
```


A general construction of partial geometries

```
\(q=4 \quad\) Projective plane is unique: \(P G(2,4)\)
\(d=2 \quad\) It contains hyperovals \(\rightsquigarrow p g(2,2,1)\) (smallest gen. quadrangle)
```

$q=8$ Projective plane is unique: $P G(2,8)$
$d=2 \quad$ It contains hyperovals $\rightsquigarrow p g(4,6,3)$ (all are isomorphic)

A general construction of partial geometries

$q=4$ Projective plane is unique: $P G(2,4)$
$d=2 \quad$ It contains hyperovals $\rightsquigarrow p g(2,2,1)$ (smallest gen. quadrangle)
$q=8$ Projective plane is unique: $P G(2,8)$
$d=2 \quad$ It contains hyperovals $\rightsquigarrow p g(4,6,3)$ (all are isomorphic)
R. Mathon, The partial geometries $p g(5,7,3)$, Congr. Numer. 31 (1981), 129-139.

Mathon proved that there are precisely two $\mathrm{pg}(4,6,3)$ up to isomorphism. The one above has $\operatorname{Aut}(\mathcal{G})=P G L(2,8) \rtimes \mathbb{Z}_{3}$ of order 1512. The other one does not come from a hyperoval in $\operatorname{PG}(2,8)$ and has $\operatorname{Aut}(\mathcal{G})=$ $\left(\mathbb{Z}_{3}^{2} \rtimes Q_{8}\right) \rtimes \mathbb{Z}_{3}$ of order 216 . Both geometries can be obtained from a group of order 18 isomorphic to $S_{3} \times \mathbb{Z}_{3}$. This is the "largest common subgroup" of their full automorphism groups.

A general construction of partial geometries

$q=9$ There are 4 projective planes: $P G(2,9)$, Hall, dual Hall and Hughes.
$d=3$ The four planes do not contain maximal $3-\operatorname{arcs}(\rightsquigarrow p g(6,6,4))$.

A general construction of partial geometries

$q=9$ There are 4 projective planes: $P G(2,9)$, Hall, dual Hall and Hughes.
$d=3$ The four planes do not contain maximal 3 -arcs $(\leadsto p g(6,6,4)$).
The existence of $p g(6,6,4)$ is open. A complete classification is difficult because there are lots of $\operatorname{srg}(70,42,23,28)$ (complements of line graphs of STS(21)).

A general construction of partial geometries

$q=9$ There are 4 projective planes: $P G(2,9)$, Hall, dual Hall and Hughes. $d=3$ The four planes do not contain maximal 3 -arcs $(\leadsto p g(6,6,4)$). The existence of $p g(6,6,4)$ is open. A complete classification is difficult because there are lots of $\operatorname{srg}(70,42,23,28)$ (complements of line graphs of STS(21)).
$q=16$ There are 22 known projective planes.
$d=2 \quad$ Hyperovals exist in 18 known planes $\rightsquigarrow p g(8,14,7)$ (93 non-isom.)
T. Penttila, G. F. Royle, M. K. Simpson, Hyperovals in the known projective planes of order 16, J. Combin. Des. 4 (1996), no. 1, 59-65.
M. Gezek, V. D. Tonchev, On partial geometries arising from maximal arcs, 30 August 2020. https://arxiv.org/abs/2008.13246

A general construction of partial geometries

\mid Aut \mid	$\# p g(8,14,7)$	\mid Aut \mid	$\# p g(8,14,7)$	\mid Aut \mid	$\# p g(8,14,7)$
16320	1	64	8	6	2
320	1	32	3	4	4
144	1	16	59	3	1
112	2	14	2	2	3
80	1	8	5		

A general construction of partial geometries

\mid Aut \mid	$\# p g(8,14,7)$	\mid Aut \mid	$\# p g(8,14,7)$	\mid Aut \mid	$\# p g(8,14,7)$
16320	1	64	8	6	2
320	1	32	3	4	4
144	1	16	59	3	1
112	2	14	2	2	3
80	1	8	5		

Open problem: is there a $p g(8,14,7)$ not arising from a hyperoval in a plane of order 16 (analogue of Mathon's $p g(4,6,3)$)?

A general construction of partial geometries

\mid Aut \mid	$\# p g(8,14,7)$	\mid Aut \mid	$\# p g(8,14,7)$	\mid Aut \mid	$\# p g(8,14,7)$
16320	1	64	8	6	2
320	1	32	3	4	4
144	1	16	59	3	1
112	2	14	2	2	3
80	1	8	5		

Open problem: is there a $p g(8,14,7)$ not arising from a hyperoval in a plane of order 16 (analogue of Mathon's $p g(4,6,3)$)?
$q=16$ There are 22 known projective planes.
$d=4$ Maximal 4-arcs exist in 18 known planes (not completely classified) $\rightsquigarrow p g(12,12,9)$ (59 non-isomorphic)

A general construction of partial geometries

\mid Aut \mid	$\# p g(12,12,9)$	\mid Aut \mid	$\# p g(12,12,9)$
408	1	32	21
144	3	24	12
96	3	16	9
68	1	4	5
48	4		

A general construction of partial geometries

\mid Aut \mid	$\# p g(12,12,9)$	\mid Aut \mid	$\# p g(12,12,9)$
408	1	32	21
144	3	24	12
96	3	16	9
68	1	4	5
48	4		

Work in progress...

- find $\operatorname{pg}(6,6,4)$ or prove that they do not exist
- find $p g(8,14,7)$ not arising from a hyperoval
- find more $\operatorname{pg}(12,12,9)$

Thanks for your attention!

[^0]: * This work has been supported by the Croatian Science Foundation under the project no. 6732.

