Constructing partial geometries with prescribed automorphism groups*

Vedran Krčadinac

University of Zagreb, Croatia

3rd Croatian Combinatorial Days Zagreb, September 21–22, 2020

* This work has been supported by the Croatian Science Foundation under the project no. 6732.

A partial geometry $pg(s, t, \alpha)$ is an incidence structure $(\mathcal{P}, \mathcal{L}, I)$ such that:

- every line is incident with s + 1 points,
- every point is incident with t + 1 lines,
- every pair of points is incident with at most one line,
- for every non-incident point-line pair (P, ℓ), there are exactly α points on ℓ collinear with P.

A partial geometry $pg(s, t, \alpha)$ is an incidence structure $(\mathcal{P}, \mathcal{L}, I)$ such that:

- every line is incident with s+1 points,
- every point is incident with t + 1 lines,
- every pair of points is incident with at most one line,
- for every non-incident point-line pair (P, ℓ), there are exactly α points on ℓ collinear with P.

Partial linear space of order (s, t)

A partial geometry $pg(s, t, \alpha)$ is an incidence structure $(\mathcal{P}, \mathcal{L}, I)$ such that:

- every line is incident with s + 1 points,
- every point is incident with t + 1 lines,
- every pair of points is incident with at most one line,
- for every non-incident point-line pair (P, ℓ), there are exactly α points on ℓ collinear with P.

Partial linear space of order (s, t)

A partial geometry $pg(s, t, \alpha)$ is an incidence structure $(\mathcal{P}, \mathcal{L}, I)$ such that:

- every line is incident with s + 1 points,
- every point is incident with t + 1 lines,
- every pair of points is incident with at most one line,
- for every non-incident point-line pair (P, ℓ), there are exactly α points on ℓ collinear with P.

Partial linear space of order (s, t)

• A $pg(s, t, \alpha)$ with $\alpha = s + 1$ is a Steiner 2-design. This includes finite projective and affine planes, Steiner triple systems, etc.

- ∢ ∃ ▶

- A $pg(s, t, \alpha)$ with $\alpha = s + 1$ is a Steiner 2-design. This includes finite projective and affine planes, Steiner triple systems, etc.
- A pg(s, t, α) with α = t is a Bruck net of order s + 1 and degree t + 1. This is equivalent with t 1 mutually orthogonal Latin squares of order s + 1.

R.H.Bruck, *Finite nets I. Numerical invariants*, Canad. J. Math. **3** (1951), 94–107. R.H.Bruck, *Finite nets II. Uniqueness and imbedding*, Pacific J. Math. **13** (1963), 421–457.

- A $pg(s, t, \alpha)$ with $\alpha = s + 1$ is a Steiner 2-design. This includes finite projective and affine planes, Steiner triple systems, etc.
- A pg(s, t, α) with α = t is a Bruck net of order s + 1 and degree t + 1. This is equivalent with t 1 mutually orthogonal Latin squares of order s + 1.

R.H.Bruck, *Finite nets I. Numerical invariants*, Canad. J. Math. **3** (1951), 94–107.
R.H.Bruck, *Finite nets II. Uniqueness and imbedding*, Pacific J. Math. **13** (1963), 421–457.

• A $pg(s, t, \alpha)$ with $\alpha = 1$ is a generalized quadrangle.

S. E. Payne, J. A. Thas, Finite generalized quadrangles, Pitman, Boston, MA, 1984.

・ロト ・ 同ト ・ ヨト ・ ヨト -

- A $pg(s, t, \alpha)$ with $\alpha = s + 1$ is a Steiner 2-design. This includes finite projective and affine planes, Steiner triple systems, etc.
- A pg(s, t, α) with α = t is a Bruck net of order s + 1 and degree t + 1. This is equivalent with t 1 mutually orthogonal Latin squares of order s + 1.

R.H.Bruck, *Finite nets I. Numerical invariants*, Canad. J. Math. **3** (1951), 94–107.
R.H.Bruck, *Finite nets II. Uniqueness and imbedding*, Pacific J. Math. **13** (1963), 421–457.

- A $pg(s, t, \alpha)$ with $\alpha = 1$ is a generalized quadrangle.
- S. E. Payne, J. A. Thas, Finite generalized quadrangles, Pitman, Boston, MA, 1984.
 - Solution Proper partial geometries are $pg(s, t, \alpha)$ with $1 < \alpha < \min\{s, t\}$.

- A $pg(s, t, \alpha)$ with $\alpha = s + 1$ is a Steiner 2-design. This includes finite projective and affine planes, Steiner triple systems, etc.
- A pg(s, t, α) with α = t is a Bruck net of order s + 1 and degree t + 1. This is equivalent with t 1 mutually orthogonal Latin squares of order s + 1.

R.H.Bruck, *Finite nets I. Numerical invariants*, Canad. J. Math. **3** (1951), 94–107.
R.H.Bruck, *Finite nets II. Uniqueness and imbedding*, Pacific J. Math. **13** (1963), 421–457.

- A $pg(s, t, \alpha)$ with $\alpha = 1$ is a generalized quadrangle.
- S. E. Payne, J. A. Thas, Finite generalized quadrangles, Pitman, Boston, MA, 1984.
 - Solution Proper partial geometries are $pg(s, t, \alpha)$ with $1 < \alpha < \min\{s, t\}$.

The dual of a $pg(s, t, \alpha)$ is a $pg(t, s, \alpha)$. In the sequel we will always assume $\alpha < s \leq t$.

◆□ > ◆□ > ◆三 > ◆三 > 一三 - ぺへぐ

Counting arguments in a $pg(s, t, \alpha)$ yield:

$$\mathbf{v} := |\mathcal{P}| = (\mathbf{s}+1) \frac{(\mathbf{s}t+\alpha)}{\alpha}, \quad \mathbf{b} := |\mathcal{L}| = (t+1) \frac{(\mathbf{s}t+\alpha)}{\alpha}.$$

- 4月 ト 4 ヨ ト 4 ヨ ト

Counting arguments in a $pg(s, t, \alpha)$ yield:

$$\mathbf{v} := |\mathcal{P}| = (\mathbf{s}+1) \frac{(\mathbf{s}t+\alpha)}{lpha}, \quad \mathbf{b} := |\mathcal{L}| = (t+1) \frac{(\mathbf{s}t+\alpha)}{lpha}.$$

The point graph of a $pg(s, t, \alpha)$ is strongly regular with parameters

$$SRG(v, s(t+1), s-1+t(\alpha-1), \alpha(t+1)).$$

・何ト ・ヨト ・ヨト

Counting arguments in a $pg(s, t, \alpha)$ yield:

$$\mathbf{v} := |\mathcal{P}| = (\mathbf{s}+1) \frac{(\mathbf{s}t+\alpha)}{lpha}, \quad \mathbf{b} := |\mathcal{L}| = (t+1) \frac{(\mathbf{s}t+\alpha)}{lpha}.$$

The point graph of a $pg(s, t, \alpha)$ is strongly regular with parameters

$$SRG(v, s(t+1), s-1+t(\alpha-1), \alpha(t+1)).$$

R. C. Bose, *Strongly regular graphs, partial geometries and partially balanced designs*, Pacific J. Math. **13** (1963), 389–419.

Counting arguments in a $pg(s, t, \alpha)$ yield:

$$\mathbf{v} := |\mathcal{P}| = (\mathbf{s}+1) \frac{(\mathbf{s}t+\alpha)}{lpha}, \quad \mathbf{b} := |\mathcal{L}| = (t+1) \frac{(\mathbf{s}t+\alpha)}{lpha}.$$

The point graph of a $pg(s, t, \alpha)$ is strongly regular with parameters

$$SRG(v, s(t+1), s-1+t(\alpha-1), \alpha(t+1)).$$

R. C. Bose, *Strongly regular graphs, partial geometries and partially balanced designs*, Pacific J. Math. **13** (1963), 389–419.

From this we get necessary conditions on the parameters:

$$\begin{array}{l} \alpha \mid (s+1)st \quad \text{and} \quad (t+1)st \quad (\text{integrality of } v \text{ and } b) \\ \alpha(s+t+1-\alpha) \mid st(s+1)(t+1) \quad (\text{multiplicities of eigenvalues of SRG}) \\ (s+1-2\alpha)t \leq (s-1)(s+1-\alpha)^2 \quad (\text{Krein inequalities for SRG}) \end{array}$$

Npg	Point gr.	Nsrg	Line gr.	Nsrg
1	(15, 6, 1, 3)	1	(15, 6, 1, 3)	1
1	(27, 10, 1, 5)	1	(45, 12, 3, 3)	78
0	(28, 15, 6, 10)	4	(35, 16, 6, 8)	3854
2	(40, 12, 2, 4)	28	(40, 12, 2, 4)	28
2	(45, 28, 15, 21)	1	(63, 30, 13, 15)	+
1	(64, 18, 2, 6)	167	(96, 20, 4, 4)	+
0	(66, 45, 28, 36)	1	(99, 48, 22, 24)	+
?	(70, 42, 23, 28)	+	(70, 42, 23, 28)	+
0	(75, 32, 10, 16)	0	(120, 35, 10, 10)	?
0	(76, 21, 2, 7)	0	(133, 24, 5, 4)	?
≥ 1	(81, 30, 9, 12)	+	(81, 30, 9, 12)	+
1	(85, 20, 3, 5)	+	(85, 20, 3, 5)	+
?	(91, 66, 45, 55)	1	(143, 70, 33, 35)	+
0	(95, 40, 12, 20)	0	(190, 45, 12, 10)	?
?	(96, 35, 10, 14)	?	(112, 36, 10, 12)	?
0	(96, 50, 22, 30)	0	(160, 54, 18, 18)	?
	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 2 \\ 2 \\ 1 \\ 0 \\ ? \\ 0 \\ 0 \\ 2 \\ 1 \\ ? \\ 0 \\ 0 \\ ? \\ 0 \\ 0 \\ ? \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

V. Krčadinac (University of Zagreb)

J. A. Thas, *Partial geometries*, in: *The Handbook of Combinatorial Designs, Second Edition* (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2007, pp. 557–561. Table 41.33 on page 561.

J. A. Thas, *Partial geometries*, in: *The Handbook of Combinatorial Designs, Second Edition* (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2007, pp. 557–561. Table 41.33 on page 561.

A. E. Brouwer, *Parameters of strongly regular graphs*, https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html

- J. A. Thas, *Partial geometries*, in: *The Handbook of Combinatorial Designs, Second Edition* (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2007, pp. 557–561. Table 41.33 on page 561.
- A. E. Brouwer, *Parameters of strongly regular graphs*, https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
- J. Azarija, T. Marc, *There is no* (75, 32, 10, 16) *strongly regular graph*, Linear Algebra Appl. **557** (2018), 62–83. $\nexists pg(4, 7, 2)$
- J. Azarija, T. Marc, *There is no* (95, 40, 12, 20) *strongly regular graph*, J. Combin. Des. **28** (2020), 294–306. $\nexists pg(4, 9, 2)$

- J. A. Thas, *Partial geometries*, in: *The Handbook of Combinatorial Designs, Second Edition* (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2007, pp. 557–561. Table 41.33 on page 561.
- A. E. Brouwer, *Parameters of strongly regular graphs*, https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
- J. Azarija, T. Marc, *There is no* (75, 32, 10, 16) *strongly regular graph*, Linear Algebra Appl. **557** (2018), 62–83. $\nexists pg(4,7,2)$
- J. Azarija, T. Marc, *There is no* (95, 40, 12, 20) *strongly regular graph*, J. Combin. Des. **28** (2020), 294–306. $\nexists pg(4, 9, 2)$

J. H. van Lint, A. Schrijver, Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields, Combinatorica 1 (1981), no. 1, 63–73. $\exists pg(5,5,2)$

An automorphism of a partial geometry \mathcal{G} is a permutation of the points mapping lines onto lines. The full automorphism group is denoted $\operatorname{Aut}(\mathcal{G})$. Any subgroup $\mathcal{G} \leq \operatorname{Aut}(\mathcal{G})$ is called an automorphism group of \mathcal{G} .

An automorphism of a partial geometry \mathcal{G} is a permutation of the points mapping lines onto lines. The full automorphism group is denoted $\operatorname{Aut}(\mathcal{G})$. Any subgroup $\mathcal{G} \leq \operatorname{Aut}(\mathcal{G})$ is called an automorphism group of \mathcal{G} .

Problem:

Given a permutation group G on the v-element set of points \mathcal{P} , find all partial geometries $pg(s, t, \alpha)$ with G as an automorphism group.

An automorphism of a partial geometry \mathcal{G} is a permutation of the points mapping lines onto lines. The full automorphism group is denoted $\operatorname{Aut}(\mathcal{G})$. Any subgroup $\mathcal{G} \leq \operatorname{Aut}(\mathcal{G})$ is called an automorphism group of \mathcal{G} .

Problem:

Given a permutation group G on the v-element set of points \mathcal{P} , find all partial geometries $pg(s, t, \alpha)$ with G as an automorphism group.

The lines are subsets of \mathcal{P} of size k := s + 1.

An automorphism of a partial geometry \mathcal{G} is a permutation of the points mapping lines onto lines. The full automorphism group is denoted $\operatorname{Aut}(\mathcal{G})$. Any subgroup $\mathcal{G} \leq \operatorname{Aut}(\mathcal{G})$ is called an automorphism group of \mathcal{G} .

Problem:

Given a permutation group G on the v-element set of points \mathcal{P} , find all partial geometries $pg(s, t, \alpha)$ with G as an automorphism group.

The lines are subsets of \mathcal{P} of size k := s + 1.

Construction method:

- **(**) Choose a permutation group G on the set of points \mathcal{P} .
- **②** Compute the orbits of G on k-element subsets of \mathcal{P} .
- Select orbits comprising lines of the partial geometry.

Example: pg(5, 5, 2), v = b = 81, k = 6

Example: pg(5, 5, 2), v = b = 81, k = 6

J. H. van Lint, A. Schrijver, *Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields*, Combinatorica **1** (1981), no. 1, 63–73.

P. J. Cameron, J. H. van Lint, *On the partial geometry pg*(6,6,2), J. Combin. Theory Ser. A **32** (1982), no. 2, 252–255.

Example: pg(5, 5, 2), v = b = 81, k = 6

J. H. van Lint, A. Schrijver, *Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields*, Combinatorica **1** (1981), no. 1, 63–73.

P. J. Cameron, J. H. van Lint, *On the partial geometry pg*(6,6,2), J. Combin. Theory Ser. A **32** (1982), no. 2, 252–255.

 $\mathcal{G} = partial \text{ geometry of van Lint and Schrijver}$ $\operatorname{Aut}(\mathcal{G}) \cong \mathbb{F}_3^4 \rtimes S_6 \text{ of order } 58\,320$ $\mathcal{G} \leq \operatorname{Aut}(\mathcal{G}), \ \mathcal{G} \cong \mathbb{F}_3^3 \rtimes \mathbb{Z}_4 \text{ of order } 108$

|山田 | 小田 | (田)

Example: pg(5, 5, 2), v = b = 81, k = 6

J. H. van Lint, A. Schrijver, *Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields*, Combinatorica **1** (1981), no. 1, 63–73.

P. J. Cameron, J. H. van Lint, *On the partial geometry pg*(6,6,2), J. Combin. Theory Ser. A **32** (1982), no. 2, 252–255.

 $\mathcal{G} = partial \text{ geometry of van Lint and Schrijver}$ $\operatorname{Aut}(\mathcal{G}) \cong \mathbb{F}_3^4 \rtimes S_6 \text{ of order } 58\,320$ $\mathcal{G} \leq \operatorname{Aut}(\mathcal{G}), \ \mathcal{G} \cong \mathbb{F}_3^3 \rtimes \mathbb{Z}_4 \text{ of order } 108$

B. McKay, A. Piperno, nauty and Traces, https://pallini.di.uniroma1.it GAP - Groups, Algorithms, and Programming, http://www.gap-system.org

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108

$$\binom{81}{6} = 324\,540\,216 \approx 3.2\cdot 10^8$$

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108

$$\binom{81}{6} = 324\,540\,216 \approx 3.2 \cdot 10^8 \qquad \binom{\binom{81}{6}}{81} = \binom{324\,540\,216}{81} \approx 4.5 \cdot 10^{568}$$

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108

$$\binom{81}{6} = 324\,540\,216 \approx 3.2 \cdot 10^8 \qquad \binom{\binom{81}{6}}{81} = \binom{324\,540\,216}{81} \approx 4.5 \cdot 10^{568}$$

Number of orbits of G on the 6-subsets: $3007997 \approx 3 \cdot 10^6$

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108

$$\binom{81}{6} = 324\,540\,216 \approx \textbf{3.2} \cdot \textbf{10}^{8} \quad \binom{\binom{81}{6}}{81} = \binom{324\,540\,216}{81} \approx \textbf{4.5} \cdot \textbf{10}^{568}$$

Number of orbits of G on the 6-subsets: $3007997 \approx 3 \cdot 10^6$

	$ \mathcal{O} $	#
	108	3 002 106
	54	5 670
Orbits by size:	36	108
	27	75
	18	37
	9	1

(日) (同) (三) (三) (三)

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108

$$\binom{81}{6} = 324\,540\,216 \approx \textbf{3.2} \cdot \textbf{10}^{8} \quad \binom{\binom{81}{6}}{81} = \binom{324\,540\,216}{81} \approx \textbf{4.5} \cdot \textbf{10}^{568}$$

Number of orbits of G on the 6-subsets: $3007997 \approx 3 \cdot 10^6$

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108

Number of "short" orbits of G on the 6-subsets: 5891

Example: pg(5,5,2), v = b = 81, k = 6, |G| = 108

Number of "short" orbits of G on the 6-subsets: 5891

Some of these orbits cannot be used in a pg(5,5,2)!

Example: pg(5,5,2), v = b = 81, k = 6, |G| = 108

Number of "short" orbits of G on the 6-subsets: 5891

Some of these orbits cannot be used in a pg(5,5,2)!

1. Lines of a partial linear space intersect in at most one point.

Example: pg(5,5,2), v = b = 81, k = 6, |G| = 108

Number of "short" orbits of G on the 6-subsets: 5891

Some of these orbits cannot be used in a pg(5,5,2)!

1. Lines of a partial linear space intersect in at most one point.

2. A partial geometry with $\alpha = 2$ does not contain the configuration:

Example: pg(5,5,2), v = b = 81, k = 6, |G| = 108

Number of "short" orbits of G on the 6-subsets: 5891

Some of these orbits cannot be used in a pg(5,5,2)!

- 1. Lines of a partial linear space intersect in at most one point.
- 2. A partial geometry with $\alpha = 2$ does not contain the configuration:

An orbit \mathcal{O} is called good if $|X \cap Y| \leq 1$ for all $X, Y \in \mathcal{O}, X \neq Y$ and it does not contain the configuration above.

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108

Number of "short" orbits of G on the 6-subsets: 5891

Some of these orbits cannot be used in a pg(5,5,2)!

- 1. Lines of a partial linear space intersect in at most one point.
- 2. A partial geometry with $\alpha = 2$ does not contain the configuration:

An orbit \mathcal{O} is called good if $|X \cap Y| \leq 1$ for all $X, Y \in \mathcal{O}, X \neq Y$ and it does not contain the configuration above.

Number of short good orbits of G on the 6-subsets: 181

Example: pg(5,5,2), v = b = 81, k = 6, |G| = 108

Number of short good orbits of G on the 6-subsets: 181

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108

Number of short good orbits of G on the 6-subsets: 181

How to generate the orbits?

V. Krčadinac, R. Vlahović Kruc, *Quasi-symmetric designs on* 56 *points*, Adv. Math. Commun. doi:10.3934/amc.2020086

Example: pg(5,5,2), v = b = 81, k = 6, |G| = 108

Number of short good orbits of G on the 6-subsets: 181

How to generate the orbits?

V. Krčadinac, R. Vlahović Kruc, *Quasi-symmetric designs on* 56 *points*, Adv. Math. Commun. doi:10.3934/amc.2020086

Theorem.

A partial linear space of order (s, t) is a $pg(s, t, \alpha)$ if and only if it does not contain the configuration:

(日) (同) (日) (日)

Example: pg(5,5,2), v = b = 81, k = 6, |G| = 108, orbits: 181

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108, orbits: 181

We want to select a subset of the orbits $\mathcal{O}_1, \ldots, \mathcal{O}_n$ such that $\bigcup_{i=1}^n \mathcal{O}_i$ is the set of lines of a pg(5,5,2). Necessary: $\sum_{i=1}^n |\mathcal{O}_i| = 81$.

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108, orbits: 181

We want to select a subset of the orbits $\mathcal{O}_1, \ldots, \mathcal{O}_n$ such that $\bigcup_{i=1}^n \mathcal{O}_i$ is the set of lines of a pg(5,5,2). Necessary: $\sum_{i=1}^n |\mathcal{O}_i| = 81$.

Define the compatibility graph with the 181 orbits as vertices and their sizes as weights. Orbits \mathcal{O}_1 and \mathcal{O}_2 are joined by an edge if $|X \cap Y| \leq 1$ for all $X \in \mathcal{O}_1$, $Y \in \mathcal{O}_2$ and $\mathcal{O}_1 \cup \mathcal{O}_2$ does not contain the forbidden configuration.

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108, orbits: 181

We want to select a subset of the orbits $\mathcal{O}_1, \ldots, \mathcal{O}_n$ such that $\bigcup_{i=1}^n \mathcal{O}_i$ is the set of lines of a pg(5,5,2). Necessary: $\sum_{i=1}^n |\mathcal{O}_i| = 81$.

Define the compatibility graph with the 181 orbits as vertices and their sizes as weights. Orbits \mathcal{O}_1 and \mathcal{O}_2 are joined by an edge if $|X \cap Y| \leq 1$ for all $X \in O_1$, $Y \in \mathcal{O}_2$ and $\mathcal{O}_1 \cup \mathcal{O}_2$ does not contain the forbidden configuration.

Search for cliques of weight b = 81 in the compatibility graph.

S. Niskanen, P. R. J. Östergård, *Cliquer user's guide, version 1.0*, Communications Laboratory, Helsinki University of Technology, Espoo, Finland, Tech. Rep. T48, 2003.

イロト イ団ト イヨト イヨト 三日

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108, orbits: 181

The compatibility graph has 181 vertices and 528 edges (density 3.2%).

There are 384 cliques of weight 81, all of them correspond to pg(5,5,2).

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108, orbits: 181

The compatibility graph has 181 vertices and 528 edges (density 3.2%). There are 384 cliques of weight 81, all of them correspond to pg(5,5,2). Using nauty, one finds that there are **two** non-isomorphic pg(5,5,2). $|\operatorname{Aut}(\mathcal{G}_1)| = 58\,320$, isomorphic to the geometry of van Lint and Schrijver. $|\operatorname{Aut}(\mathcal{G}_2)| = 972$, a new partial geometry pg(5,5,2)!

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Example: pg(5, 5, 2), v = b = 81, k = 6, |G| = 108, orbits: 181

The compatibility graph has 181 vertices and 528 edges (density 3.2%). There are 384 cliques of weight 81, all of them correspond to pg(5,5,2). Using nauty, one finds that there are **two** non-isomorphic pg(5,5,2). $|\operatorname{Aut}(\mathcal{G}_1)| = 58\,320$, isomorphic to the geometry of van Lint and Schrijver. $|\operatorname{Aut}(\mathcal{G}_2)| = 972$, a new partial geometry pg(5,5,2)!

V. Krčadinac, A new partial geometry pg(5,5,2), 16 September 2020. https://arxiv.org/abs/2009.07946

We give a computer-free description of the new pg(5, 5, 2) using a four-dimensional vector space over GF(3), by changing some lines of the geometry of van Lint and Schrijver.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = ∽○< (~

Let \mathcal{R} be a projective plane of order q. A subset \mathcal{A} of points is called a *d*-arc if *d* is the greatest number of collinear points in \mathcal{A} .

Let \mathcal{R} be a projective plane of order q. A subset \mathcal{A} of points is called a *d*-arc if *d* is the greatest number of collinear points in \mathcal{A} .

The number of points in a *d*-arc is $|\mathcal{A}| \leq dq - q + d$. Equality holds if and only if every line is either disjoint from \mathcal{A} , or intersects \mathcal{A} in exactly *d* points. In this case \mathcal{A} is called a maximal arc (for d = 2 a hyperoval).

Let \mathcal{R} be a projective plane of order q. A subset \mathcal{A} of points is called a *d*-arc if *d* is the greatest number of collinear points in \mathcal{A} .

The number of points in a *d*-arc is $|\mathcal{A}| \leq dq - q + d$. Equality holds if and only if every line is either disjoint from \mathcal{A} , or intersects \mathcal{A} in exactly *d* points. In this case \mathcal{A} is called a maximal arc (for d = 2 a hyperoval). A necessary condition for the existence of a maximal *d*-arc is that *d* divides *q* (the order of the projective plane). Hence, only planes of

composite orders are of interest (known only if q is a prime power).

Let \mathcal{R} be a projective plane of order q. A subset \mathcal{A} of points is called a *d*-arc if d is the greatest number of collinear points in \mathcal{A} .

The number of points in a *d*-arc is $|\mathcal{A}| \leq dq - q + d$. Equality holds if and only if every line is either disjoint from \mathcal{A} , or intersects \mathcal{A} in exactly *d* points. In this case \mathcal{A} is called a maximal arc (for d = 2 a hyperoval). A necessary condition for the existence of a maximal *d*-arc is that *d* divides *q* (the order of the projective plane). Hence, only planes of

composite orders are of interest (known only if q is a prime power).

Theorem (J. A. Thas, W. D. Wallis, 1973).

Let \mathcal{A} be a maximal *d*-arc in a projective plane of order q. The set of *d*-secants of \mathcal{A} as POINTS and the set of points not in \mathcal{A} as LINES constitute a partial geometry $pg(s, t, \alpha)$ for s = q(d-1)/d, t = q - d, and $\alpha = (q - d)(d - 1)/d$.

3

Let \mathcal{R} be a projective plane of order q. A subset \mathcal{A} of points is called a *d*-arc if d is the greatest number of collinear points in \mathcal{A} .

The number of points in a *d*-arc is $|\mathcal{A}| \leq dq - q + d$. Equality holds if and only if every line is either disjoint from \mathcal{A} , or intersects \mathcal{A} in exactly d points. In this case \mathcal{A} is called a maximal arc (for d = 2 a hyperoval). A necessary condition for the existence of a maximal *d*-arc is that d divides q (the order of the projective plane). Hence, only planes of

composite orders are of interest (known only if q is a prime power).

Theorem (J. A. Thas, W. D. Wallis, 1973).

Let \mathcal{A} be a maximal *d*-arc in a projective plane of order q. The set of *d*-secants of \mathcal{A} as POINTS and the set of points not in \mathcal{A} as LINES constitute a partial geometry $pg(s, t, \alpha)$ for s = q(d-1)/d, t = q - d, and $\alpha = (q - d)(d - 1)/d$.

We want $s \leq t$ and hence only consider $d \leq \sqrt{q}$.

3

- q = 4 Projective plane is unique: PG(2, 4)
- d = 2 It contains hyperovals $\rightsquigarrow pg(2,2,1)$ (smallest gen. quadrangle)

- q = 4 Projective plane is unique: PG(2, 4)
- d = 2 It contains hyperovals $\rightsquigarrow pg(2,2,1)$ (smallest gen. quadrangle)
- q = 8 Projective plane is unique: PG(2,8)
- d = 2 It contains hyperovals $\rightsquigarrow pg(4, 6, 3)$ (all are isomorphic)

- q = 4 Projective plane is unique: PG(2,4)
- d = 2 It contains hyperovals $\rightsquigarrow pg(2,2,1)$ (smallest gen. quadrangle)

$$q = 8$$
 Projective plane is unique: $PG(2,8)$

d = 2 It contains hyperovals $\rightsquigarrow pg(4, 6, 3)$ (all are isomorphic)

R. Mathon, The partial geometries pg(5,7,3), Congr. Numer. 31 (1981), 129–139.

Mathon proved that there are precisely **two** pg(4, 6, 3) up to isomorphism. The one above has $Aut(\mathcal{G}) = PGL(2, 8) \rtimes \mathbb{Z}_3$ of order 1512. The other one does not come from a hyperoval in PG(2, 8) and has $Aut(\mathcal{G}) =$ $(\mathbb{Z}_3^2 \rtimes Q_8) \rtimes \mathbb{Z}_3$ of order 216. Both geometries can be obtained from a group of order 18 isomorphic to $S_3 \times \mathbb{Z}_3$. This is the "largest common subgroup" of their full automorphism groups.

◆□ > ◆圖 > ◆臣 > ◆臣 > □ 臣

- q = 9 There are **4** projective planes: PG(2,9), Hall, dual Hall and Hughes.
- d = 3 The four planes do not contain maximal 3-arcs ($\rightsquigarrow pg(6, 6, 4)$).

q = 9 There are **4** projective planes: PG(2,9), Hall, dual Hall and Hughes. d = 3 The four planes do not contain maximal 3-arcs ($\rightsquigarrow pg(6,6,4)$). The existence of pg(6,6,4) is **open**. A complete classification is difficult because there are lots of srg(70, 42, 23, 28) (complements of line graphs of STS(21)). q = 9 There are **4** projective planes: PG(2,9), Hall, dual Hall and Hughes. d = 3 The four planes do not contain maximal 3-arcs ($\rightsquigarrow pg(6,6,4)$). The existence of pg(6,6,4) is **open**. A complete classification is difficult because there are lots of srg(70,42,23,28) (complements of line graphs of STS(21)).

q = 16 There are 22 known projective planes.

d = 2 Hyperovals exist in 18 known planes $\rightarrow pg(8, 14, 7)$ (93 non-isom.)

T. Penttila, G. F. Royle, M. K. Simpson, *Hyperovals in the known projective planes of order* 16, J. Combin. Des. **4** (1996), no. 1, 59–65.

M. Gezek, V. D. Tonchev, On partial geometries arising from maximal arcs, 30 August 2020. https://arxiv.org/abs/2008.13246

イロト イ理ト イヨト イヨト 二日

Aut	#pg(8, 14, 7)	Aut	#pg(8, 14, 7)	Aut	#pg(8, 14, 7)
16320	1	64	8	6	2
320	1	32	3	4	4
144	1	16	59	3	1
112	2	14	2	2	3
80	1	8	5		

Aut	#pg(8, 14, 7)	Aut	#pg(8, 14, 7)	Aut	#pg(8, 14, 7)
16320	1	64	8	6	2
320	1	32	3	4	4
144	1	16	59	3	1
112	2	14	2	2	3
80	1	8	5		

Open problem: is there a pg(8, 14, 7) not arising from a hyperoval in a plane of order 16 (analogue of Mathon's pg(4, 6, 3))?

Aut	#pg(8, 14, 7)	Aut	#pg(8, 14, 7)	Aut	#pg(8, 14, 7)
16320	1	64	8	6	2
320	1	32	3	4	4
144	1	16	59	3	1
112	2	14	2	2	3
80	1	8	5		

Open problem: is there a pg(8, 14, 7) not arising from a hyperoval in a plane of order 16 (analogue of Mathon's pg(4, 6, 3))?

- q = 16 There are 22 known projective planes.
- $d = 4 \qquad \text{Maximal 4-arcs exist in 18 known planes (not completely classified)} \\ \rightsquigarrow pg(12, 12, 9) \text{ (59 non-isomorphic)}$

Aut	#pg(12, 12, 9)	Aut	#pg(12, 12, 9)
408	1	32	21
144	3	24	12
96	3	16	9
68	1	4	5
48	4		

Aut	#pg(12, 12, 9)	Aut	#pg(12, 12, 9)
408	1	32	21
144	3	24	12
96	3	16	9
68	1	4	5
48	4		

Work in progress...

- find pg(6, 6, 4) or prove that they do not exist
- find pg(8, 14, 7) not arising from a hyperoval
- find more pg(12, 12, 9)

• . . .

Thanks for your attention!

æ

メロト メポト メヨト メヨト