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Introduction

A partial geometry pg(s, t, α) is an incidence structure (P,L, I ) such that:

every line is incident with s + 1 points,

every point is incident with t + 1 lines,

every pair of points is incident with at most one line,

for every non-incident point-line pair (P, `), there are
exactly α points on ` collinear with P.


Partial linear
space of
order (s, t)

`︸ ︷︷ ︸
α

P
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Introduction

A partial geometry pg(s, t, α) is an incidence structure (P,L, I ) such that:

every line is incident with s + 1 points,

every point is incident wiht t + 1 lines,

every pair of points is incident with at most one line,

for every non-incident point-line pair (P, `), there are
exactly α points on ` collinear with P.


Partial linear
space of
order (s, t)

`︸ ︷︷ ︸
α

︸ ︷︷ ︸
s+1−α

P t+1−α α ≤ min{s + 1, t + 1}
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Special cases

1 A pg(s, t, α) with α = s + 1 is a Steiner 2-design. This includes
finite projective and affine planes, Steiner triple systems, etc.

2 A pg(s, t, α) with α = t is a Bruck net of order s + 1 and
degree t + 1. This is equivalent with t − 1 mutually orthogonal
Latin squares of order s + 1.

R.H.Bruck, Finite nets I. Numerical invariants, Canad. J. Math. 3 (1951), 94–107.

R.H.Bruck, Finite nets II. Uniqueness and imbedding, Pacific J. Math. 13 (1963), 421–457.

3 A pg(s, t, α) with α = 1 is a generalized quadrangle.

S. E. Payne, J. A. Thas, Finite generalized quadrangles, Pitman, Boston, MA, 1984.

4 Proper partial geometries are pg(s, t, α) with 1 < α < min{s, t}.

The dual of a pg(s, t, α) is a pg(t, s, α). In the sequel we will always
assume α < s ≤ t.
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V. Krčadinac (University of Zagreb) Constructing partial geometries 4 / 22



Special cases

1 A pg(s, t, α) with α = s + 1 is a Steiner 2-design. This includes
finite projective and affine planes, Steiner triple systems, etc.

2 A pg(s, t, α) with α = t is a Bruck net of order s + 1 and
degree t + 1. This is equivalent with t − 1 mutually orthogonal
Latin squares of order s + 1.

R.H.Bruck, Finite nets I. Numerical invariants, Canad. J. Math. 3 (1951), 94–107.

R.H.Bruck, Finite nets II. Uniqueness and imbedding, Pacific J. Math. 13 (1963), 421–457.

3 A pg(s, t, α) with α = 1 is a generalized quadrangle.

S. E. Payne, J. A. Thas, Finite generalized quadrangles, Pitman, Boston, MA, 1984.

4 Proper partial geometries are pg(s, t, α) with 1 < α < min{s, t}.

The dual of a pg(s, t, α) is a pg(t, s, α). In the sequel we will always
assume α < s ≤ t.
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Necessary existence conditions

Counting arguments in a pg(s, t, α) yield:

v := |P| = (s + 1)
(st + α)

α
, b := |L| = (t + 1)

(st + α)

α
.

The point graph of a pg(s, t, α) is strongly regular with parameters

SRG (v , s(t + 1), s − 1 + t(α− 1), α(t + 1)).

R. C. Bose, Strongly regular graphs, partial geometries and partially
balanced designs, Pacific J. Math. 13 (1963), 389–419.

From this we get necessary conditions on the parameters:

α | (s + 1)st and (t + 1)st (integrality of v and b)

α(s + t + 1−α) | st(s + 1)(t + 1) (multiplicities of eigenvalues of SRG)

(s + 1− 2α)t ≤ (s − 1)(s + 1− α)2 (Krein inequalities for SRG)
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Admissible parameters of small pg(s, t, α) (v ≤ 100)

Part.geom. Npg Point gr. Nsrg Line gr. Nsrg

pg(2, 2, 1) 1 (15, 6, 1, 3) 1 (15, 6, 1, 3) 1
pg(2, 4, 1) 1 (27, 10, 1, 5) 1 (45, 12, 3, 3) 78
pg(3, 4, 2) 0 (28, 15, 6, 10) 4 (35, 16, 6, 8) 3854
pg(3, 3, 1) 2 (40, 12, 2, 4) 28 (40, 12, 2, 4) 28
pg(4, 6, 3) 2 (45, 28, 15, 21) 1 (63, 30, 13, 15) +
pg(3, 5, 1) 1 (64, 18, 2, 6) 167 (96, 20, 4, 4) +
pg(5, 8, 4) 0 (66, 45, 28, 36) 1 (99, 48, 22, 24) +
pg(6, 6, 4) ? (70, 42, 23, 28) + (70, 42, 23, 28) +
pg(4, 7, 2) 0 (75, 32, 10, 16) 0 (120, 35, 10, 10) ?
pg(3, 6, 1) 0 (76, 21, 2, 7) 0 (133, 24, 5, 4) ?
pg(5, 5, 2) ≥ 1 (81, 30, 9, 12) + (81, 30, 9, 12) +
pg(4, 4, 1) 1 (85, 20, 3, 5) + (85, 20, 3, 5) +

pg(6, 10, 5) ? (91, 66, 45, 55) 1 (143, 70, 33, 35) +
pg(4, 9, 2) 0 (95, 40, 12, 20) 0 (190, 45, 12, 10) ?
pg(5, 6, 2) ? (96, 35, 10, 14) ? (112, 36, 10, 12) ?
pg(5, 9, 3) 0 (96, 50, 22, 30) 0 (160, 54, 18, 18) ?
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Admissible parameters of small pg(s, t, α) (v ≤ 100)

J. A. Thas, Partial geometries, in: The Handbook of Combinatorial
Designs, Second Edition (eds. C. J. Colbourn and J. H. Dinitz), CRC
Press, 2007, pp. 557–561. Table 41.33 on page 561.

A. E. Brouwer, Parameters of strongly regular graphs,
https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html

J. Azarija, T. Marc, There is no (75, 32, 10, 16) strongly regular graph,
Linear Algebra Appl. 557 (2018), 62–83. 6 ∃ pg(4, 7, 2)

J. Azarija, T. Marc, There is no (95, 40, 12, 20) strongly regular graph,
J. Combin. Des. 28 (2020), 294–306. 6 ∃ pg(4, 9, 2)

J. H. van Lint, A. Schrijver, Construction of strongly regular graphs,
two-weight codes and partial geometries by finite fields, Combinatorica 1
(1981), no. 1, 63–73. ∃ pg(5, 5, 2)
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Partial geometries with prescribed automorphism groups

An automorphism of a partial geometry G is a permutation of the points
mapping lines onto lines. The full automorphism group is denoted Aut(G).
Any subgroup G ≤ Aut(G) is called an automorphism group of G.

Problem:

Given a permutation group G on the v -element set of points P, find
all partial geometries pg(s, t, α) with G as an automorphism group.

The lines are subsets of P of size k := s + 1.

Construction method:

1 Choose a permutation group G on the set of points P.

2 Compute the orbits of G on k-element subsets of P.

3 Select orbits comprising lines of the partial geometry.
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Partial geometries with prescribed automorphism groups

Example: pg(5, 5, 2), v = b = 81, k = 6

J. H. van Lint, A. Schrijver, Construction of strongly regular graphs, two-weight
codes and partial geometries by finite fields, Combinatorica 1 (1981), no. 1,
63–73.

P. J. Cameron, J. H. van Lint, On the partial geometry pg(6, 6, 2), J. Combin.

Theory Ser. A 32 (1982), no. 2, 252–255.

G = partial geometry of van Lint and Schrijver

Aut(G) ∼= F4
3 o S6 of order 58 320

G ≤ Aut(G), G ∼= F3
3 o Z4 of order 108

B. McKay, A. Piperno, nauty and Traces, https://pallini.di.uniroma1.it

GAP – Groups, Algorithms, and Programming, http://www.gap-system.org
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Partial geometries with prescribed automorphism groups

Example: pg(5, 5, 2), v = b = 81, k = 6, |G | = 108

(
81

6

)
= 324 540 216 ≈ 3.2 · 108

((81
6

)
81

)
=

(
324 540 216

81

)
≈ 4.5 · 10568
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6
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=
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)
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Number of orbits of G on the 6-subsets: 3 007 997 ≈ 3 · 106

Orbits by size:

|O| #

108 3 002 106
54 5 670
36 108
27 75
18 37
9 1
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Partial geometries with prescribed automorphism groups

Example: pg(5, 5, 2), v = b = 81, k = 6, |G | = 108(
81

6

)
= 324 540 216 ≈ 3.2 · 108

((81
6

)
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)
=

(
324 540 216

81

)
≈ 4.5 · 10568

Number of orbits of G on the 6-subsets: 3 007 997 ≈ 3 · 106

Orbits by size:

|O| #

108 (((((3 002 106
54 5 670
36 108
27 75
18 37
9 1

 5 891 ≈ 5.9 · 103
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Partial geometries with prescribed automorphism groups

Example: pg(5, 5, 2), v = b = 81, k = 6, |G | = 108

Number of “short” orbits of G on the 6-subsets: 5 891

Some of these orbits cannot be used in a pg(5, 5, 2)!

1. Lines of a partial linear space intersect in at most one point.

2. A partial geometry with α = 2 does not contain the configuration:

An orbit O is called good if |X ∩ Y | ≤ 1 for all X ,Y ∈ O, X 6= Y and it
does not contain the configuration above.
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V. Krčadinac (University of Zagreb) Constructing partial geometries 13 / 22



Partial geometries with prescribed automorphism groups

Example: pg(5, 5, 2), v = b = 81, k = 6, |G | = 108

Number of “short” orbits of G on the 6-subsets: 5 891

Some of these orbits cannot be used in a pg(5, 5, 2)!

1. Lines of a partial linear space intersect in at most one point.

2. A partial geometry with α = 2 does not contain the configuration:

An orbit O is called good if |X ∩ Y | ≤ 1 for all X ,Y ∈ O, X 6= Y and it
does not contain the configuration above.

Number of short good orbits of G on the 6-subsets: 181
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Partial geometries with prescribed automorphism groups

Example: pg(5, 5, 2), v = b = 81, k = 6, |G | = 108

Number of short good orbits of G on the 6-subsets: 181

How to generate the orbits?

V. Krčadinac, R. Vlahović Kruc, Quasi-symmetric designs on 56 points,
Adv. Math. Commun. doi:10.3934/amc.2020086

Theorem.

A partial linear space of order (s, t) is a pg(s, t, α)
if and only if it does not contain the configuration: ︸ ︷︷ ︸

α+1

V. Krčadinac (University of Zagreb) Constructing partial geometries 14 / 22



Partial geometries with prescribed automorphism groups

Example: pg(5, 5, 2), v = b = 81, k = 6, |G | = 108

Number of short good orbits of G on the 6-subsets: 181

How to generate the orbits?
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V. Krčadinac (University of Zagreb) Constructing partial geometries 14 / 22



Partial geometries with prescribed automorphism groups

Example: pg(5, 5, 2), v = b = 81, k = 6, |G | = 108

Number of short good orbits of G on the 6-subsets: 181

How to generate the orbits?
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Partial geometries with prescribed automorphism groups

Example: pg(5, 5, 2), v = b = 81, k = 6, |G | = 108, orbits: 181

We want to select a subset of the orbits O1, . . . ,On such that
n⋃

i=1
Oi is the set of lines of a pg(5, 5, 2). Necessary:

n∑
i=1
|Oi | = 81.

Define the compatibility graph with the 181 orbits as vertices and their
sizes as weights. Orbits O1 and O2 are joined by an edge if |X ∩ Y | ≤ 1
for all X ∈ O1, Y ∈ O2 and O1 ∪ O2 does not contain the forbidden
configuration.

Search for cliques of weight b = 81 in the compatibility graph.

S. Niskanen, P. R. J. Österg̊ard, Cliquer user’s guide, version 1.0,
Communications Laboratory, Helsinki University of Technology, Espoo,
Finland, Tech. Rep. T48, 2003.

V. Krčadinac (University of Zagreb) Constructing partial geometries 15 / 22



Partial geometries with prescribed automorphism groups

Example: pg(5, 5, 2), v = b = 81, k = 6, |G | = 108, orbits: 181

We want to select a subset of the orbits O1, . . . ,On such that
n⋃

i=1
Oi is the set of lines of a pg(5, 5, 2). Necessary:

n∑
i=1
|Oi | = 81.

Define the compatibility graph with the 181 orbits as vertices and their
sizes as weights. Orbits O1 and O2 are joined by an edge if |X ∩ Y | ≤ 1
for all X ∈ O1, Y ∈ O2 and O1 ∪ O2 does not contain the forbidden
configuration.

Search for cliques of weight b = 81 in the compatibility graph.
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Partial geometries with prescribed automorphism groups

Example: pg(5, 5, 2), v = b = 81, k = 6, |G | = 108, orbits: 181

The compatibility graph has 181 vertices and 528 edges (density 3.2 %).

There are 384 cliques of weight 81, all of them correspond to pg(5, 5, 2).

Using nauty, one finds that there are two non-isomorphic pg(5, 5, 2).

|Aut(G1)| = 58 320, isomorphic to the geometry of van Lint and Schrijver.

|Aut(G2)| = 972, a new partial geometry pg(5, 5, 2)!

V. Krčadinac, A new partial geometry pg(5, 5, 2), 16 September 2020.
https://arxiv.org/abs/2009.07946

We give a computer-free description of the new pg(5, 5, 2) using a
four-dimensional vector space over GF (3), by changing some lines
of the geometry of van Lint and Schrijver.
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A general construction of partial geometries

Let R be a projective plane of order q. A subset A of points is called a
d-arc if d is the greatest number of collinear points in A.

The number of points in a d-arc is |A| ≤ dq− q + d . Equality holds if and
only if every line is either disjoint from A, or intersects A in exactly d
points. In this case A is called a maximal arc (for d = 2 a hyperoval).

A necessary condition for the existence of a maximal d-arc is that
d divides q (the order of the projective plane). Hence, only planes of
composite orders are of interest (known only if q is a prime power).

Theorem (J. A. Thas, W. D. Wallis, 1973).

Let A be a maximal d-arc in a projective plane of order q. The set of
d-secants of A as POINTS and the set of points not in A as LINES
constitute a partial geometry pg(s, t, α) for s = q(d − 1)/d , t = q − d ,
and α = (q − d)(d − 1)/d .

We want s ≤ t and hence only consider d ≤ √q.
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A general construction of partial geometries

q = 4 Projective plane is unique: PG (2, 4)

d = 2 It contains hyperovals  pg(2, 2, 1) (smallest gen. quadrangle)

q = 8 Projective plane is unique: PG (2, 8)

d = 2 It contains hyperovals  pg(4, 6, 3) (all are isomorphic)

R. Mathon, The partial geometries pg(5, 7, 3), Congr. Numer. 31 (1981), 129–139.

Mathon proved that there are precisely two pg(4, 6, 3) up to isomorphism.
The one above has Aut(G) = PGL(2, 8) o Z3 of order 1512. The other
one does not come from a hyperoval in PG (2, 8) and has Aut(G) =
(Z2

3 o Q8) o Z3 of order 216. Both geometries can be obtained from a
group of order 18 isomorphic to S3 × Z3. This is the “largest common
subgroup” of their full automorphism groups.
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A general construction of partial geometries

q = 9 There are 4 projective planes: PG (2, 9), Hall, dual Hall and Hughes.

d = 3 The four planes do not contain maximal 3-arcs ( pg(6, 6, 4)).

The existence of pg(6, 6, 4) is open. A complete classification is difficult
because there are lots of srg(70, 42, 23, 28) (complements of line graphs
of STS(21)).

q = 16 There are 22 known projective planes.

d = 2 Hyperovals exist in 18 known planes  pg(8, 14, 7) (93 non-isom.)

T. Penttila, G. F. Royle, M. K. Simpson, Hyperovals in the known
projective planes of order 16, J. Combin. Des. 4 (1996), no. 1, 59–65.

M. Gezek, V. D. Tonchev, On partial geometries arising from maximal
arcs, 30 August 2020. https://arxiv.org/abs/2008.13246
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A general construction of partial geometries

|Aut | #pg(8, 14, 7) |Aut | #pg(8, 14, 7) |Aut | #pg(8, 14, 7)

16320 1 64 8 6 2
320 1 32 3 4 4
144 1 16 59 3 1
112 2 14 2 2 3
80 1 8 5

Open problem: is there a pg(8, 14, 7) not arising from a hyperoval
in a plane of order 16 (analogue of Mathon’s pg(4, 6, 3))?

q = 16 There are 22 known projective planes.

d = 4 Maximal 4-arcs exist in 18 known planes (not completely classified)

 pg(12, 12, 9) (59 non-isomorphic)
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A general construction of partial geometries

|Aut | #pg(12, 12, 9) |Aut | #pg(12, 12, 9)

408 1 32 21
144 3 24 12
96 3 16 9
68 1 4 5
48 4

Work in progress. . .

find pg(6, 6, 4) or prove that they do not exist

find pg(8, 14, 7) not arising from a hyperoval

find more pg(12, 12, 9)

. . .
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The End

Thanks for your attention!
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