
New Class of Binomial Sums and Their
Applications

Jovan Mikić
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Abstract

We introduce a notion that we call a ”M -sum” and use it to examine the divisibility
properties of some binomial sums.

There is a close relationship between M -sum and D-sum. By using D sums, we
give recurrence relations for M -sums.

We present three applications of our new sums. The first application is for a known
alternating binomial sum studied by Calkin.

The second application is for the following binomial sum S: Zl+2
>=0 → Z ,

S(2n,m, a1, a2, . . . , al) =
2n∑
k=0

(−1)k
(

2n

k

)m l∏
i=1

(
ai + k

k

)(
ai + 2n− k

2n− k

)
;

which arises as a generalization of a known identity connected with a famous Dixon’s
formula. We prove that, if m is a positive integer, then S(2n,m, a1, a2, . . . , al) is
divisible by

(
2n
n

)
and

(
ai+n
n

)
for all i = 1, l.

As a third application, we present an interesting connection between our new sums
and one Theorem by Guo, Jouhet and Zeng.

1 Introduction

Let m, n, and k be non-negative integers such that m ≥ 1. We consider the sum

S(n,m) =
n∑

k=0

(
n

k

)m

F (n, k), (1)

where F (n, k) is an integer-valued function that depends only on n and k.
The aim is to examine some divisibility properties of sums of the form S(n,m). To do

this, we introduce the notion of “M sums”.

1

mailto:jnmikic@gmail.com


Definition 1. Let n, j, and t be non-negative integers such that j ≤ bn
2
c. Then the M sums

for S(n,m) are as follows:

MS(n, j, t) =

(
n− j

j

) n−2j∑
v=0

(
n− 2j

v

)(
n

j + v

)t

F (n, j + v). (2)

Obviously, for m ≥ 1, the equation

S(n,m) = MS(n, 0,m− 1) (3)

holds.
Hence, we can see the sum MS(n, j,m− 1) as a generalization of the sum S(n,m).
Let n, j, and t be as in Definition 1. We present our main theorem:

Theorem 2.

MS(n, j, t + 1) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t).

Theorem 2 gives a recursive definition of a MS sum.
For proving Theorem 2, we use a method of “D sums”.

2 Background

Recently, in our previous paper [6], the notion of “D sums” was introduced.
Let n, j, and t be as in Definition 1; and let S be as in Eq. (1).
Then the D sums for S(n,m) are

DS(n, j, t) =

n−2j∑
l=0

(
n− j

l

)(
n− j

j + l

)(
n

j + l

)t

F (n, j + l). (4)

For m ≥ 2, by Eq. (4), it follows that

S(n,m) = DS(n, 0,m− 2). (5)

Furthermore, D sums satisfy the following two recurrence relations [6, Thm. 2, p. 2], [8,
Eqns. (14) and (15), p. 4]:

DS(n, j, t + 1) =

bn−2j
2
c∑

u=0

(
n

j + u

)(
n− j

u

)
DS(n, j + u, t), (6)

DS(n, j, 0) =

bn−2j
2
c∑

u=0

(
n− j

u

)(
n− j − u

j + u

) n−2j−2u∑
v=0

(
n− 2j − 2u

v

)
F (n, j + u + v). (7)
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In 1998, Calkin [1, Thm. 1] proved that the alternating binomial sum
∑2n

k=0(−1)k
(
2n
k

)m
is divisible by

(
2n
n

)
for all non-negative integers n and all positive integers m. In 2007, Guo,

Jouhet, and Zeng proved, among other things, two generalizations of Calkin’s result [5, Thm.
1.2, Thm. 1.3, p. 2].

The first application of D sums [6, Section 8] was for proving Calkin’s result [1, Thm. 1].
Also, by using D sums, it was proved [6] that

∑2n
k=0

(
2n
k

)m|n− k| is divisible by n
(
2n
n

)
for all

non-negative integers n and all positive integers m.
Recently, by the same method, it was proved [8, Thm. 1] that

∑2n
k=0(−1)k

(
2n
k

)m(2k
k

)(
4n−2k
2n−k

)
is divisible by

(
2n
n

)
for all non-negative integers n and all positive integers m.

Furthermore, it was proved [8, Corollary 4] that
∑2n

k=0(−1)k
(
2n
k

)m
CkC2n−k is divisible by(

2n
n

)
for all non-negative integers n and all positive integers m.

We will show that there is a close relationship between M -sums and D-sums.

3 Proof of Theorem 2

We need one auxiliary result.
We will use a symmetry of binomial coefficients and the well-known binomial identity(

a

b

)(
b

c

)
=

(
a

c

)(
a− c

b− c

)
; (8)

where a, b, c are non-negative integers such that a ≥ b ≥ c.

Lemma 3. Let n and j be non-negative integers; and let t be a positive integer. Then the
following equation

MS(n, j, t) =

(
n

j

)
DS(n, j, t− 1). (9)

holds.

Proof. By Eq. (2), we know that

MS(n, j, t) =

n−2j∑
v=0

(
n− j

j

)(
n− 2j

v

)(
n

j + v

)t

F (n, j + v). (10)
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Starting from Eq. (10), we have gradually:

MS(n, j, t) =

n−2j∑
v=0

(
n− j

n− 2j

)(
n− 2j

v

)(
n

j + v

)t

F (n, j + v) (by symmetry)

=

n−2j∑
v=0

(
n− j

v

)(
n− j − v

n− 2j − v

)(
n

j + v

)t

F (n, j + v) (by Eq. (8))

=

n−2j∑
v=0

(
n− j

v

)(
n− j − v

j

)(
n

j + v

)t

F (n, j + v) (by symmetry)

=

n−2j∑
v=0

(
n− j

v

)(
n− j − v

j

)(
n

j + v

)(
n

j + v

)t−1

F (n, j + v)

=

n−2j∑
v=0

(
n− j

v

)((n− j − v

j

)(
n

n− j − v

))( n

j + v

)t−1

F (n, j + v) (by symmetry)

=

n−2j∑
v=0

(
n− j

v

)(
n

j

)(
n− j

n− 2j − v

)(
n

j + v

)t−1

F (n, j + v) (by Eq. (8))

=

(
n

j

) n−2j∑
v=0

(
n− j

v

)(
n− j

j + v

)(
n

j + v

)t−1

F (n, j + v) (by symmetry)

By the definition of D sums (see Eq. (4)) and the last equation above, we conclude that

MS(n, j, t) =

(
n

j

)
DS(n, j, t− 1).

This completes the proof of Lemma 3.
Now, we are ready for the proof of main theorem 2. We will use Eqns. (6), (7), and

Lemma 3.
By Eq. (6), it follows that

DS(n, j, t + 1) =

bn−2j
2
c∑

u=0

(
n− j

u

)(
n

j + u

)
DS(n, j + u, t). (11)

Let us recall that t in Eq. (11) is a non-negative integer.
By Lemma 3, it follows that(

n

j + u

)
DS(n, j + u, t) = MS(n, j + u, t + 1). (12)

By Eq. (12), Eq. (11) becomes as follows:

DS(n, j, t + 1) =

bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t + 1). (13)
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By multiplication of both sides of Eq. (13) with
(
n
j

)
, it follows that

(
n

j

)
DS(n, j, t + 1) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t + 1) (14)

By Lemma 3, Eq. (14) becomes as follows:

MS(n, j, t + 2) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t + 1) (15)

By setting t := t + 1, Eq. (15) becomes

MS(n, j, t + 1) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t).

If t is a positive integer, then Eq. (15) proves Theorem 2.
For t = 0, we will use Eq. (7).
By Eq. (7), it follows that

DS(n, j, 0) =

bn−2j
2
c∑

u=0

(
n− j

u

)(
n− (j + u)

j + u

) n−2(j+u)∑
v=0

(
n− 2(j + u)

v

)
F (n, (j + u) + v)

=

bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, 0).

By the last equation above, it follows that

DS(n, j, 0) =

bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, 0). (16)

By multiplication of both sides of Eq. (16) with
(
n
j

)
, it follows that

(
n

j

)
DS(n, j, 0) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, 0). (17)

By Lemma 3, we know that

MS(n, j, 1) =

(
n

j

)
DS(n, j, 0). (18)
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By using Eq. (18), Eq. (17) becomes, as follows:

MS(n, j, 1) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, 0). (19)

It is readily verified that Eq. (19) proves Theorem 2 for the case t = 0.
Hence, Eqns. (15) and (19) complete the proof of Theorem 2.

4 How do we use “M” sums ?

In one particular situation, Theorem 2 implies a simple consequence which is important for
us.

Let n be a fixed non-negative integer. Let t0 be a non-negative integer, and let j be an
arbitrary integer in the range 0 ≤ j ≤ bn

2
c. Suppose that q = q(n) is a positive integer which

divides MS(n, j, t0) sums for all j in the given range. We want q to be as large as possible.
Then it can be shown, by Theorem 2, that q divides MS(n, j, t0 + 1) for all j in the given
range.

By induction, it follows that q divides MS(n, j, t) for all t such that t ≥ t0 and for all j
in the given range. By Eq. (3), it follows that q divides S(n, t + 1) for all t such that t ≥ t0.

See also [8, Section 5, p. 7].

5 The first application for the alternating sum

We give a proof of Calkin’s result [1, Thm. 1] by using M sums.
Let n be a non-negative integer and let m be a positive integer. Let

S1(2n,m) =
2n∑
k=0

(−1)k
(

2n

k

)m

.

Obviously, the sum S1(2n,m) is an instance of the sum (1), where F1(2n, k) = (−1)k.
We use the well-known identity [2, Eq. (1.25), p. 4]

2n∑
k=0

(−1)k
(

2n

k

)
=

{
0, if n > 0;

1, if n = 0,
(20)

where n is a non-negative integer.
By Eq. (20), we conclude that S3(2n, 1) is divisible by

(
2n
n

)
.
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Furthermore, it is known

S1(2n, 2) = (−1)n
(

2n

n

)
, (Kummer’s formula)

S1(2n, 3) = (−1)n
(

2n

n

)(
3n

2n

)
. (Dixon’s formula)

Therefore, it follows that S1(2n,m) is divisible by
(
2n
n

)
for 1 ≤ m ≤ 3.

Let us calculate MS1(2n, j, 0) sum; where j is a non-negative integer such that j ≤ n.
Without loss of generality, let us assume that n is a positive integer.
By Def. (1), it follows that

MS1(2n, j, 0) =

(
2n− j

j

) 2n−2j∑
v=0

(
2n− 2j

v

)(
2n

j + v

)0

F1(2n, j + v)

=

(
2n− j

j

) 2n−2j∑
v=0

(
2n− 2j

v

)
(−1)j+v.

By the last equation above, it follows that

MS1(2n, j, 0) = (−1)j
(

2n− j

j

) 2(n−j)∑
v=0

(−1)v
(

2(n− j)

v

)
. (21)

By Eqns. (20) and (21), it follows that

MS1(2n, j, 0) =

{
0, if 0 ≤ j < n;

(−1)n, if j = n.
(22)

Let us calculate MS1(2n, j, 1) sum. We will use Theorem 2 and Eq. (22).
By setting t = 0 in Theorem 2, it follows that

MS1(2n, j, 1) =

(
2n

j

) n−j∑
u=0

(
2n− j

u

)
MS1(2n, j + u, 0). (23)

By Eq. (22), it follows that

MS1(2n, j + u, 0) =

{
0, if 0 ≤ u < n− j;

(−1)n, if u = n− j.
(24)
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By Eq. (24), Eq. (23) becomes gradually

MS1(2n, j, 1) = (−1)n
(

2n

j

)(
2n− j

n− j

)
= (−1)n

(
2n

2n− j

)(
2n− j

n

)
(by symmetry)

= (−1)n
(

2n

n

)(
n

n− j

)
(by Eq. (8)).

By the lst equation above, it follows that

MS1(2n, j, 1) = (−1)n
(

2n

n

)(
n

j

)
. (25)

By setting j = 0 in Eq. (25) and by using Eq. (3), we obtain Kummer’s formula.
Furthermore, Eq. (25) suggets setting q1(2n) =

(
2n
n

)
.

By Theorem 2 and induction, it can be shown that MS1(2n, j, t) is divisible by
(
2n
n

)
for

all positive integers t and all integers j such that 0 ≤ j ≤ n.
Let m ≥ 2. By Eq. (3), we know that

S1(2n,m) = MS1(2n, 0,m− 1).

Since m− 1 ≥ 1, the sum MS1(2n, 0,m− 1) is divisible by
(
2n
n

)
. By Eq. (3), S1(2n,m) is

divisible by
(
2n
n

)
for m ≥ 2.

This proves Calkin’s result.

Remark 4. By using M -sums, we also can prove Dixon’s formula [4, 7]. Namely, by using
Theorem 2, Eq. (25), and the Vandermonde identity, it can be shown that

MS1(2n, j, 2) = (−1)n
(

2n

n

)(
2n

j

)(
3n− j

2n

)
. (26)

By setting j = 0 in Eq. (26) and by using Eq. (3), we obtain Dixon’s formula.

6 Generalization of new sums

We begin with the following definition:

Definition 5. Let m, n, k, a1, a2, . . ., al be non-negative integers such that m ≥ 1. We
consider the sum:

S(n,m, a1, a2, . . . , al) =
n∑

k=0

(
n

k

)m

F (n, k, a1, a2, . . . , al), (27)

where F (n, k, a1, a2, . . . , al) is an integer-valued function.
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The aim is to examine some divisibility properties of sums of the form S(n,m, a1, a2, . . . , al).
To do this, we introduce a natural generalization of a notion of M sums.

Definition 6. Let n, j, t, a1 ,a2, . . ., al be non-negative integers such that j ≤ bn
2
c. Then

the M sums for S(n,m, a1, a2, . . . , al) are as follows:

MS(n, j, t, a1, a2, . . . , al) =

(
n− j

j

) n−2j∑
v=0

(
n− 2j

v

)(
n

j + v

)t

F (n, j + v, a1, a2, . . . , al). (28)

Obviously, for m ≥ 1, the equation

S(n,m, a1, a2, . . . , al) = MS(n, 0,m− 1, a1, a2, . . . , al) (29)

holds.
The Eq. (29) is similar with Eq. (3).
Let n, j, t, a1, a2, . . ., al be as in Definition 6. Then the following theorem is true:

Theorem 7.

MS(n, j, t + 1, a1, a2, . . . , al) =

(
n

j

) bn−2j
2
c∑

u=0

(
n− j

u

)
MS(n, j + u, t, a1, a2, . . . , al).

The proof of Theorem 7 is similar with the proof of Theorem 2.

7 The second application of new sums

Let us consider the following binomial sum S: Zl+2
>=0 → Z

S(2n,m, a1, a2, . . . , al) =
2n∑
k=0

(−1)k
(

2n

k

)m l∏
i=1

(
ai + k

k

)(
ai + 2n− k

2n− k

)
;

where l is a positive integer and n, m, a1, a2, . . ., al are non-negative integers.
It is known [3, Eq. (6.56), p. 29] that

2n∑
k=0

(−1)k
(

2n

k

)(
a + k

k

)(
a + 2n− k

2n− k

)
=

2n∑
k=0

(−1)k
(

2n

k

)(
a

k

)(
a

2n− k

)
, (30)

2n∑
k=0

(−1)k
(

2n

k

)(
a

k

)(
a

2n− k

)
= (−1)n

(
2n

n

)(
a + n

2n

)
, (31)

2n∑
k=0

(−1)k
(

2n

k

)(
a + k

k

)(
a + 2n− k

2n− k

)
= (−1)n

(
2n

n

)(
a + n

2n

)
. (32)

Note that Eq. (31) is Dixon’s formula.
By using M sums, we can prove the following theorem:
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Theorem 8. If m is a positive integer, then S(2n,m, a1, a2, . . . , al) is divisible by
(
2n
n

)
and(

ai+n
n

)
for all i = 1, l.

8 The third application of new sums

In [5, Section 4, Theorem 4.1 ,p. 8], Guo, Jouhet, and Zeng presented, among other, a
theorem which gave an another proof of Calkin’s result [1, Thm. 1]. Their theorem has a
direct consequence:

Theorem 9. Let l be a positive integer greater than 1, and let k, n1, n2, . . .,nl+1 be non-
negative integers. Then the sum

n1∑
k=−n1

(−1)k
l∏

i=1

(
ni + ni+1

ni + k

)

is divisible by
(
n1+nl

n1

)
, where nl+1 = n1.

We assert that the following implication is true:

Theorem 10. Let l be a fixed positive integer greater than 2, and let k, n1, n2, . . .,nl+1 be
non-negative integers.. Let us suppose that the sum

n1∑
k=−n1

(−1)k
l∏

i=1

(
ni + ni+1

ni + k

)

is divisible by
(
n1+nl

n1

)
, where nl+1 = n1. Then, by using M sums, it can be proved that the

following sum
n1∑

k=−n1

(−1)k
(

2n1

k + n1

)m

·
l−1∏
i=1

(
ni + ni+1

ni + k

)
is divisible by

(
2n1

n1

)
and

(
n1+nl−1

n1

)
; where m is a positive integer and nl = n1.
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