Permutations avoiding a simsun pattern

Matteo Silimbani

Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

3rd Croatian Combinatorial Days Zagreb, September 21-22 2020

joint work with M. Barnabei, F. Bonetti, and N. Castronuovo (Bologna)

< 17 →

CroCoDays 2020

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

 $\pi = 3512674$

contains the pattern 231,

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

$$\pi = 3512674$$

CroCoDays 2020

contains the pattern 231, while it avoids the pattern 321.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

$$\pi = 3512674$$

CroCoDavs 2020

contains the pattern 231, while it avoids the pattern 321.

 $S_n(\tau)$ is the subset of τ -avoiding permutations in S_n

A permutation π is said to contain the **consecutive pattern** τ if π contains a subsequence consisting of consecutive entries that is order-isomorphic to τ . For example, the permutation

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

A permutation π is said to contain the **consecutive pattern** τ if π contains a subsequence consisting of consecutive entries that is order-isomorphic to τ . For example, the permutation

$$\pi = 32514$$

CroCoDavs 2020

contains the consectuive pattern 231,

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

A permutation π is said to contain the **consecutive pattern** τ if π contains a subsequence consisting of consecutive entries that is order-isomorphic to τ . For example, the permutation

$$\pi = 32514$$

CroCoDays 2020

contains the consectuive pattern 231, while it avoids the consecutive pattern 321.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

A permutation π avoids the **simsun pattern** τ if π does not cointain the consecutive pattern τ neither do the the restriction of π to any interval [k]. For example, the permutation

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

< 17 >

A permutation π avoids the **simsun pattern** τ if π does not cointain the consecutive pattern τ neither do the the restriction of π to any interval [k]. For example, the permutation

$$\pi = 32514$$

CroCoDavs 2020

contains the simsun pattern 321,

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Simsun patterns

A permutation π avoids the **simsun pattern** τ if π does not cointain the consecutive pattern τ neither do the the restriction of π to any interval [k]. For example, the permutation

$$\pi = 32514$$

CroCoDays 2020

contains the simsun pattern 321, while it avoids the simsun pattern 132.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Simsun patterns

A permutation π avoids the **simsun pattern** τ if π does not cointain the consecutive pattern τ neither do the the restriction of π to any interval [k]. For example, the permutation

$$\pi = 32514$$

contains the simsun pattern 321, while it avoids the simsun pattern 132.

 $S_n(\tau^S)$ is the subset of all permutations in S_n that avoid the simsun pattern τ

S. Sundaram (1994)

 $|S_n(321^S)| = E_{n+1}$, the (n + 1)-th Euler number $2E_n$ is the number of alternating permutations on n symbols

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

S. Sundaram (1994)

 $|S_n(321^S)| = E_{n+1}$, the (n + 1)-th Euler number $2E_n$ is the number of alternating permutations on n symbols

E. Deutsch and S. Elizalde (2012)

Enumeration of $S_n(321^S, \Sigma)$ for every $\Sigma \subseteq S_3$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

S. Sundaram (1994)

 $|S_n(321^S)| = E_{n+1}$, the (n + 1)-th Euler number $2E_n$ is the number of alternating permutations on n symbols

E. Deutsch and S. Elizalde (2012)

Enumeration of $S_n(321^S, \Sigma)$ for every $\Sigma \subseteq S_3$

D. Callan (2006)

 $|S_n(132^S)| = B_n$, the *n*-th Bell number B_n = number of set partitions of $\{1, 2, ..., n\}$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

<ロ> (四) (同) (日) (日) (日)

S. Sundaram (1994)

 $|S_n(321^S)| = E_{n+1}$, the (n + 1)-th Euler number $2E_n$ is the number of alternating permutations on n symbols

E. Deutsch and S. Elizalde (2012)

Enumeration of $S_n(321^S, \Sigma)$ for every $\Sigma \subseteq S_3$

D. Callan (2006)

 $|S_n(132^S)| = B_n$, the *n*-th Bell number $B_n =$ number of set partitions of $\{1, 2, ..., n\}$

Our contribution

Enumeration of $S_n(132^S,\Sigma)$ and $S_n(213^S,\Sigma)$ for every $\Sigma\subseteq S_3$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

If
$$\rho' = \operatorname{rev}(\rho)$$
 and $\Sigma' = \{\operatorname{rev}(\sigma) | \sigma \in \Sigma\}$, then
$$|S_n(\rho^S, \Sigma)| = |S_n((\rho')^S, \Sigma')|$$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

If
$$\rho' = \operatorname{rev}(\rho)$$
 and $\Sigma' = \{\operatorname{rev}(\sigma) | \sigma \in \Sigma\}$, then
$$|S_n(\rho^S, \Sigma)| = |S_n((\rho')^S, \Sigma')|$$

⇒ the study of the sets $S_n(321^S, \Sigma)$ $S_n(132^S, \Sigma)$, and $S_n(213^S, \Sigma)$ for every $\Sigma \subseteq S_3$ completes the enumeration of all sets of permutations avoiding a simsun patter of length 3 together with a set of classical patterns $\Sigma \subseteq S_3$

$$\begin{aligned} |S_n(123^S, \Sigma)| &= |S_n(321^S, \Sigma')| \\ |S_n(132^S, \Sigma)| &= |S_n(231^S, \Sigma')| \\ |S_n(213^S, \Sigma)| &= |S_n(312^S, \Sigma')|. \end{aligned}$$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Lemma

A permutation π avoids the simsun pattern 132 if and only if each occurrence of 132 in π is part of an occurrence of the pattern 2413.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< 17 →

Lemma

A permutation π avoids the simsun pattern 132 if and only if each occurrence of 132 in π is part of an occurrence of the pattern 2413.

< 17 >

CroCoDavs 2020

The pattern 2413 contains the classical patterns 132, 213, 231, and 312.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Lemma

A permutation π avoids the simsun pattern 132 if and only if each occurrence of 132 in π is part of an occurrence of the pattern 2413.

The pattern 2413 contains the classical patterns 132, 213, 231, and 312. \Rightarrow if Σ contains at least one of those 4 patterns, then

 $S_n(132^S, \Sigma) = S_n(132, \Sigma)$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< 17 >

Lemma

A permutation π avoids the simsun pattern 132 if and only if each occurrence of 132 in π is part of an occurrence of the pattern 2413.

The pattern 2413 contains the classical patterns 132, 213, 231, and 312. \Rightarrow if Σ contains at least one of those 4 patterns, then

$$S_n(132^S, \Sigma) = S_n(132, \Sigma)$$

CroCoDays 2020

We will study $S_n(132^S, \Sigma)$ only for $\Sigma \subseteq \{123, 321\}$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

We exploit the bijection between $S_n(132^S)$ and the set of partitions of $\{1, 2, ..., n\}$ $\sigma = 478351246$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< 17 >

We exploit the bijection between $S_n(132^S)$ and the set of partitions of $\{1, 2, \ldots, n\}$

 $\sigma = 478351246$

 $w_1 = 478$ $w_2 = 35$ $w_3 = 1246$

< 17 >

CroCoDavs 2020

(the fisrt entries in the words w_i 's must be in decreasing order)

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

We exploit the bijection between $S_n(132^S)$ and the set of partitions of $\{1, 2, \ldots, n\}$

 $\sigma = 478351246$

 $w_1 = 478$ $w_2 = 35$ $w_3 = 1246$

(the fisrt entries in the words w_i 's must be in decreasing order)

 $P(\sigma) = \{\{1, 2, 4, 6\}, \{3, 5\}, \{4, 7, 8\}\}\$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

< 同 > < 三 >

We consider only the sets $S_n(132^S, \Sigma)$, where $\Sigma \subseteq \{123, 321\}$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

We consider only the sets $S_n(132^S, \Sigma)$, where $\Sigma \subseteq \{123, 321\}$

• If $\Sigma = \{123, 321\}$, then $S_n(132^S, \Sigma)$ is empty for every $n \ge 7$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Avoiding 132⁵ and some classical patterns

We consider only the sets $S_n(132^S, \Sigma)$, where $\Sigma \subseteq \{123, 321\}$

- If $\Sigma = \{123, 321\}$, then $S_n(132^S, \Sigma)$ is empty for every $n \ge 7$
- If $\Sigma = \{321\}$, each permutation $\sigma \in S_n(132^5, 321)$ is of the form $\sigma = w_1 w_2$ and corresponds to a partition of $\{1, 2, \ldots, n\}$ into at most two blocks

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Avoiding 132⁵ and some classical patterns

We consider only the sets $S_n(132^S, \Sigma)$, where $\Sigma \subseteq \{123, 321\}$

- If $\Sigma = \{123, 321\}$, then $S_n(132^S, \Sigma)$ is empty for every $n \ge 7$
- If $\Sigma = \{321\}$, each permutation $\sigma \in S_n(132^5, 321)$ is of the form $\sigma = w_1 w_2$ and corresponds to a partition of $\{1, 2, \ldots, n\}$ into at most two blocks

Enumeration of permutations in $S_n(132^5, 321)$

 $|S_n(132^S, 321)| = 2^{n-1}$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

• If $\Sigma = \{123\}$, then take $\sigma = w_1 w_2 \dots w_k$ in $S_n(132^S, 123)$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

-∢ ∃ >

- If $\Sigma = \{123\}$, then take $\sigma = w_1 w_2 \dots w_k$ in $S_n(132^5, 123)$
 - i. every block has at most two elements

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< 17 >

- If $\Sigma = \{123\}$, then take $\sigma = w_1 w_2 \dots w_k$ in $S_n(132^S, 123)$
 - i. every block has at most two elements
 - ii. if the blocks are arranged in descending order of their smallest element, also the greatest elements of the blocks of size 2 are in descending order

- If $\Sigma = \{123\}$, then take $\sigma = w_1 w_2 \dots w_k$ in $S_n(132^S, 123)$
 - i. every block has at most two elements
 - ii. if the blocks are arranged in descending order of their smallest element, also the greatest elements of the blocks of size 2 are in descending order

CroCoDavs 2020

Enumeration of permutations in $S_n(132^5, 123)$

 $|S_n(132^S, 123)|$ is the *n*-th Motzkin number M_n

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

$\sigma\,=\,12\,8\,11\,6\,10\,5\,9\,3\,2\,7\,1\,4$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Image: Image:

$\sigma \, = \, 12\,8\,11\,6\,10\,5\,9\,3\,2\,7\,1\,4$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

- E

$\sigma = 128116105932714$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020
$\sigma = 128116105932714$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Image: Image:

$\sigma = 128116105932714$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Image: Image:

$\sigma = 128116105932714$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Image: Image:

$\sigma = 128116105932714$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< □ > < 同 >

$\sigma = 128116105932714$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< □ > < (P) >

$\sigma = 128116105932714$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< □ > < (P) >

$\sigma = 128116105932714$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< 17 >

$\sigma = 128116105932714$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< 17 >

$\sigma = 128116105932714$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< 17 >

$\sigma = \frac{128116105932714}{12}$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< 17 >

$\sigma = 128116105932714$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< 17 >

A binary increasing tree (b.i.t.) is a plane, rooted, binary tree in which each of the n nodes bears a different positive integer label from 1 to n and labels increase along any descending path.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

 $\pi = 1$ 1 \bullet

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

・ロト ・回ト ・目

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

A B +
A B +
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

]-trees

A \beth -tree is a binary increasing tree of the following form

< 17 >

CroCoDays 2020

where a < b < c, $x \le c$ and where the nodes labelled with x and c are connected by an arbitrarily long sequence of left edges.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

]-trees

A \beth -tree is a binary increasing tree of the following form

where a < b < c, $x \le c$ and where the nodes labelled with x and c are connected by an arbitrarily long sequence of left edges. The vertices labelled x and c may coincide.

CroCoDavs 2020

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

 $T_n(\beth)$ is the set of all binary increasing trees with *n* nodes and not containing any \beth -subtree.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< □ > < (P) >

 $T_n(\beth)$ is the set of all binary increasing trees with *n* nodes and not containing any \beth -subtree.

Characterization of permutations avoiding the simsun pattern 213

The map ϕ defined above is a bijection between $S_n(213^S)$ and $T_n(\beth)$, for every $n \in \mathbb{N}$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

< 17 >

 $T_n(\beth)$ is the set of all binary increasing trees with *n* nodes and not containing any \beth -subtree.

Characterization of permutations avoiding the simsun pattern 213

The map ϕ defined above is a bijection between $S_n(213^S)$ and $T_n(\beth)$, for every $n \in \mathbb{N}$

< 17 ▶

CroCoDavs 2020

We determine $|T_n(\beth)|$ rather than computing $|S_n(213^S)|$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Enumeration of **I**-trees

The leftmost label of a b.i.t. is the label of the leftmost node in the left branch starting at the root

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< 17 >

Enumeration of **I**-trees

 $t_{n,\ell} =$ number of b.i.t in $T_n(\beth)$ whose leftmost label is ℓ

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

イロト イヨト イヨト

Enumeration of **\]**-trees

 $t_{n,\ell}$ = number of b.i.t in $T_n(\beth)$ whose leftmost label is ℓ

 $t_{n,\ell} = |\{T \in T_n(\beth) | \phi^{-1}(T)(1) = \ell\}|$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

• • • • • • • • • • • • • •

Enumeration of **\]**-trees

 $t_{n,\ell}$ = number of b.i.t in $T_n(\beth)$ whose leftmost label is ℓ

 $t_{n,\ell} = |\{T \in T_n(\beth) | \phi^{-1}(T)(1) = \ell\}|$

Enumeration of \Box -trees according to size and leftmost label

The numbers $t_{n,\ell}$ satisfy the following recurrence

$$t_{n,\ell} = \begin{cases} \sum_{k=1}^{n-1} \sum_{i,j} \binom{\ell-j-2}{i-1} \binom{n-\ell}{k-i} t_{k,i} t_{n-1-k,j} & \text{if } \ell \ge 2\\ \sum_j t_{n-1,j} & \text{if } \ell = 1 \end{cases} \quad \forall n \ge 2$$

(日) (同) (日) (日)

CroCoDavs 2020

with initial conditions $t_{0,0} = t_{1,1} = 1$ and $t_{0,i} = t_{1,i} = 0$ if i > 0

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Lemma

A permutation π avoids the simsun pattern 213 if and only if each occurrence of 213 in π is part of an occurrence of the pattern 3124.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< 17 >

Lemma

A permutation π avoids the simsun pattern 213 if and only if each occurrence of 213 in π is part of an occurrence of the pattern 3124.

< 17 >

CroCoDavs 2020

The pattern 3124 contains the classical patterns 123, 213 and 312.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Lemma

A permutation π avoids the simsun pattern 213 if and only if each occurrence of 213 in π is part of an occurrence of the pattern 3124.

The pattern 3124 contains the classical patterns 123, 213 and 312. \Rightarrow if Σ contains at least one of those 3 patterns, then

 $S_n(213^S, \Sigma) = S_n(213, \Sigma)$

< 17 >

CroCoDavs 2020

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Lemma

A permutation π avoids the simsun pattern 213 if and only if each occurrence of 213 in π is part of an occurrence of the pattern 3124.

The pattern 3124 contains the classical patterns 123, 213 and 312. \Rightarrow if Σ contains at least one of those 3 patterns, then

$$S_n(213^S, \Sigma) = S_n(213, \Sigma)$$

CroCoDays 2020

We will study the sets $S_n(213^5, \Sigma)$ only for $\Sigma \subseteq \{132, 231, 321\}$.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Right combs

A *right comb* is a binary increasing tree in $T_n(\beth)$ that also avoids the following subtrees:

where solid edges have length 1 and dashed edges have arbitrary length, with d < e < f.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< A.

Right combs

The shape of a right-comb is:

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< 17 >

Right combs

The shape of a right-comb is:

CroCoDays 2020

 RCT_n is the set of right combs with *n* nodes and a_n its cardinality.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Characterization of $\phi(S_n(213^S, 132))$

 $\phi(S_n(213^S, 132)) = RCT_n$. Hence

$$|S_n(213^S, 132)| = a_n$$

Recurrence for the sequence a_n

The sequence $\{a_n\}_{n\geq 0}$ satisfies

$$a_n = 2a_{n-1} + \sum_{i=1}^{n-2} a_i \cdot (a_{n-i-1} - a_{n-i-2}) \quad \forall n \ge 2$$

with $a_0 = a_1 = 1$.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Left combs

A *left comb* is a binary increasing tree in $T_n(\beth)$ that also avoids the following subtrees:

where solid edges have length 1 and dashed edges have arbitrary length, with d < e < f.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020
LCT_n is the set of left combs with *n* nodes and b_n its cardinality.

Characterization of $\phi(S_n(213^S, 231))$

 $\phi(S_n(213^S, 231)) = LCT_n$. Hence

 $|S_n(213^S, 231)| = b_n$

Equicardinality result (SURPISING)

The sequences $|LCT_n|$ and $|RCT_n|$ satisfy the same recurrence with the same initial condition. Hence:

$$S_n(213^S, 231)| = |S_n(213^S, 132)|$$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

 $S_n(213^S, 321) \Rightarrow$ we focus on permutation themselves rather than studying the associated b.i.t.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

 $S_n(213^5, 321) \Rightarrow$ we focus on permutation themselves rather than studying the associated b.i.t.

We can construct a permutation $\rho \in S_n(213^5, 321)$ starting from $\pi \in S_{n-1}(213^5, 321)$ as follows:

 $\pi = \sigma x_1 x_2 \dots x_k$

CroCoDavs 2020

where $x_1x_2...x_k$ is the last incrasing sequence of π ($k \ge 1$).

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

 $S_n(213^5, 321) \Rightarrow$ we focus on permutation themselves rather than studying the associated b.i.t.

We can construct a permutation $\rho \in S_n(213^5, 321)$ starting from $\pi \in S_{n-1}(213^5, 321)$ as follows:

 $\pi = \sigma x_1 x_2 \dots x_k$

where $x_1x_2...x_k$ is the last incrasing sequence of π ($k \ge 1$). We can insert *n* in one of the following ways:

 $S_n(213^5, 321) \Rightarrow$ we focus on permutation themselves rather than studying the associated b.i.t.

We can construct a permutation $\rho \in S_n(213^5, 321)$ starting from $\pi \in S_{n-1}(213^5, 321)$ as follows:

 $\pi = \sigma x_1 x_2 \dots x_k$

where $x_1x_2...x_k$ is the last incrasing sequence of π ($k \ge 1$). We can insert *n* in one of the following ways:

$$\rho = n\sigma x_1 x_2 \dots x_k$$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

 $S_n(213^5, 321) \Rightarrow$ we focus on permutation themselves rather than studying the associated b.i.t.

We can construct a permutation $\rho \in S_n(213^S, 321)$ starting from $\pi \in S_{n-1}(213^S, 321)$ as follows:

 $\pi = \sigma x_1 x_2 \dots x_k$

where $x_1x_2...x_k$ is the last incrasing sequence of π ($k \ge 1$). We can insert *n* in one of the following ways:

$$\rho = n\sigma x_1 x_2 \dots x_k$$

 $\rho = \sigma x_1 \dots x_i n \dots x_k, \ i > 1$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

 $S_n(213^5, 321) \Rightarrow$ we focus on permutation themselves rather than studying the associated b.i.t.

We can construct a permutation $\rho \in S_n(213^S, 321)$ starting from $\pi \in S_{n-1}(213^S, 321)$ as follows:

 $\pi = \sigma x_1 x_2 \dots x_k$

where $x_1x_2...x_k$ is the last incrasing sequence of π ($k \ge 1$). We can insert *n* in one of the following ways:

$$\rho = n\sigma x_1 x_2 \dots x_k$$

$$\rho = \sigma x_1 \dots x_i n \dots x_k, \ i > 1$$

• $\rho = x_1 n x_2 \dots x_k$ if σ is empty (otherwise we would create an occurence of the consecutive pattern 213).

CroCoDavs 2020

 $A_{n,k}$ = number of permutations $\sigma \in S_n(213^S, 321)$ whose last ascending run has length k

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< □ > < () >

 $A_{n,k}$ = number of permutations $\sigma \in S_n(213^5, 321)$ whose last ascending run has length k

Recurrence for $A_{n,k}$

$$A_{n,k} = A_{n-1,k} + A_{n-1,k-1} \cdot \delta_{k \ge 3} + A_{n-1,k+1} \cdot \delta_{n-1=k+1} + \sum_{i=2}^{n-k-1} A_{n-1,k+i}$$

for all $n \ge 3$ and $k \ge 1$, where

$$\delta_P = egin{cases} 1 & ext{if the proposition } P ext{ is true} \ 0 & ext{otherwise}. \end{cases}$$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

 $A_{n,k}$ = number of permutations $\sigma \in S_n(213^5, 321)$ whose last ascending run has length k

Recurrence for $A_{n,k}$

$$A_{n,k} = A_{n-1,k} + A_{n-1,k-1} \cdot \delta_{k\geq 3} + A_{n-1,k+1} \cdot \delta_{n-1=k+1} + \sum_{i=2}^{n-k-1} A_{n-1,k+i}$$

for all $n \geq 3$ and $k \geq 1$, where

$$\delta_P = egin{cases} 1 & ext{if the proposition } P ext{ is true} \ 0 & ext{otherwise}. \end{cases}$$

The sequence $\{|S_n(213^S, 321)|\}_{n\geq 0}$, is not present on the OEIS

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

We have that $\phi(S_n(213^S, 132, 231)) = RCT_n \cap LTC_n$

The trees in this set are of the form:

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< 17 →

We have that $\phi(S_n(213^S, 132, 231)) = RCT_n \cap LTC_n$

The trees in this set are of the form:

CroCoDavs 2020

with the left and the right branches possibly empty.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Enumeration of $S_n(213^5, 132, 231)$

$$|S_n(213^S, 132, 231)| = \begin{cases} 2^{n-2} + 1 & \text{if } n \ge 2\\ 1 & \text{if } n = 0, 1. \end{cases}$$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

・ロト ・回ト ・ モト

Enumeration of $S_n(213^5, 132, 231)$

$$|S_n(213^S, 132, 231)| = \begin{cases} 2^{n-2} + 1 & \text{if } n \ge 2\\ 1 & \text{if } n = 0, 1. \end{cases}$$

There are two possibilities:

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

・ロト ・回ト ・ モト

Enumeration of $S_n(213^5, 132, 231)$

$$|S_n(213^S, 132, 231)| = \begin{cases} 2^{n-2} + 1 & \text{if } n \ge 2\\ 1 & \text{if } n = 0, 1. \end{cases}$$

There are two possibilities:

the right branch is empty

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

-∢ ∃ >

Enumeration of $S_n(213^S, 132, 231)$

$$|S_n(213^5, 132, 231)| = \begin{cases} 2^{n-2} + 1 & \text{if } n \ge 2\\ 1 & \text{if } n = 0, 1. \end{cases}$$

There are two possibilities:

- the right branch is empty
- if it is not empty, the right son of the root must have label 2 in order to avoid the ⊐-configuration. We choose labels for the other vertices in the left branch as an arbitrary subset of {3,...,n}

CroCoDays 2020

 $\phi(\mathit{S}_n(213^S,132,321)) =$ set of right combs with the left branch starting at the root of length at most 1

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Enumeration of $S_n(213^S, 132, 321)$

$$|S_n(213^S, 132, 321)| = \begin{cases} \frac{n^2 - 3n + 6}{2} & \text{if } n \ge 2\\ 1 & \text{if } n = 0, 1. \end{cases}$$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

<ロト <回ト < 臣

Enumeration of $S_n(213^S, 132, 321)$

$$|S_n(213^S, 132, 321)| = \begin{cases} \frac{n^2 - 3n + 6}{2} & \text{if } n \ge 2\\ 1 & \text{if } n = 0, 1. \end{cases}$$

This follows from the fact that labels in the bottommost right branch must be in consecutive order to avoid the β -configuration that is forbidden in a right comb

CroCoDavs 2020

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

We want to figure out what the set $\phi(S_n(213^S, 231, 321))$ looks like.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

We want to figure out what the set $\phi(S_n(213^S, 231, 321))$ looks like.

• the tree must be left combs (they belong to $\phi(S_n(213^S, 231))$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

We want to figure out what the set $\phi(S_n(213^S, 231, 321))$ looks like.

- the tree must be left combs (they belong to $\phi(S_n(213^S, 231))$
- the right branches have length at most 1 (no 321)

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

We want to figure out what the set $\phi(S_n(213^S, 231, 321))$ looks like.

- the tree must be left combs (they belong to $\phi(S_n(213^S, 231))$
- the right branches have length at most 1 (no 321)
- the tree must avoid

(this configuration corresponds to either a 321 or a 213^{5})

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Enumeration of $S_n(213^5, 231, 321)$

 $c_n = |S_n(213^S, 231, 321)|$ satisfies

$$c_n = c_{n-1} + c_{n-3} + c_{n-4} + \ldots + c_0.$$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

The set $S_n(213^5, 132, 231, 321)$

The b.i.t. associated with a permutation in $S_n(213^S, 132, 231, 321)$ is of the form

CroCoDavs 2020

where both the solid and the dashed branch can be empty.

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

The b.i.t. associated with a permutation in $S_n(213^S, 132, 231, 321)$ is of the form

where both the solid and the dashed branch can be empty.

Enumeration of $S_n(213^5, 132, 231, 321)$ $|S_n(213^5, 132, 231, 321)| = \begin{cases} n-1 & \text{if } n \ge 3\\ n & \text{if } n = 1, 2\\ 1 & \text{if } n = 0. \end{cases}$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

A generalized pattern is a classical pattern τ some of whose consecutive letters may be underlined.

A permutation π contains the generalized pattern τ if it contains τ in the classical sense and the elements corresponding to τ_i and τ_{i+1} are consecutive in π if $\tau_i \tau_{i+1}$ is underlined in τ . For example, the permutation

A generalized pattern is a classical pattern τ some of whose consecutive letters may be underlined.

A permutation π contains the generalized pattern τ if it contains τ in the classical sense and the elements corresponding to τ_i and τ_{i+1} are consecutive in π if $\tau_i \tau_{i+1}$ is underlined in τ . For example, the permutation

 $\pi = 32514$

< 17 >

CroCoDays 2020

contains the generalized pattern 321,

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

A generalized pattern is a classical pattern τ some of whose consecutive letters may be underlined.

A permutation π contains the generalized pattern τ if it contains τ in the classical sense and the elements corresponding to τ_i and τ_{i+1} are consecutive in π if $\tau_i \tau_{i+1}$ is underlined in τ . For example, the permutation

 $\pi = 32514$

(A) → (A) = (A)

CroCoDavs 2020

contains the generalized pattern $\underline{321}$, while it avoids the generalized pattern $\underline{321}$.

A **barred generalized pattern** τ is a generalized pattern τ some of whose consecutive letters may be overlined. If τ is a barred generalized pattern, denote by $\hat{\tau}$ the generalized pattern obtained from τ removing the overbars and by $\tilde{\tau}$ the generalized pattern obtained from τ removing the overbars and by $\tilde{\tau}$

A permutation π avoids the barred generalized pattern τ if every occurence of $\tilde{\tau}$ in π is part of an occurence of $\hat{\tau}$.

A **barred generalized pattern** τ is a generalized pattern τ some of whose consecutive letters may be overlined. If τ is a barred generalized pattern, denote by $\hat{\tau}$ the generalized pattern obtained from τ removing the overbars and by $\tilde{\tau}$ the generalized pattern obtained from τ removing the overbars and by $\tilde{\tau}$

A permutation π avoids the barred generalized pattern τ if every occurence of $\tilde{\tau}$ in π is part of an occurence of $\hat{\tau}$.

For example, consider the barred generalized pattern $3\overline{1}\underline{24}$. In the permutations

 $\pi = 4513762$

A (1) > A (1) > A

CroCoDavs 2020

the subsequence 437 forms an occurrence of the generalized pattern $2\underline{13}$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

A barred generalized pattern τ is a generalized pattern τ some of whose consecutive letters may be overlined. If τ is a barred generalized pattern, denote by $\hat{\tau}$ the generalized pattern obtained from τ removing the overbars and by $\tilde{\tau}$ the generalized pattern obtained from τ removing the overbars symbols.

A permutation π avoids the barred generalized pattern τ if every occurence of $\tilde{\tau}$ in π is part of an occurence of $\hat{\tau}$.

For example, consider the barred generalized pattern $3\overline{1}\underline{24}$. In the permutations

$\pi = 4513762$

the subsequence 437 forms an occurence of the generalized pattern $2\underline{13}$ which is part of an occurence of 3124

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

CroCoDavs 2020

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

A **barred generalized pattern** τ is a generalized pattern τ some of whose consecutive letters may be overlined. If τ is a barred generalized pattern, denote by $\hat{\tau}$ the generalized pattern obtained from τ removing the overbars and by $\tilde{\tau}$ the generalized pattern obtained from τ removing the overbars and by $\tilde{\tau}$

A permutation π avoids the barred generalized pattern τ if every occurence of $\tilde{\tau}$ in π is part of an occurence of $\hat{\tau}$.

For example, consider the barred generalized pattern $3\overline{1}\underline{24}$. In the permutations

$\pi = 4513762$

the subsequence 437 forms an occurence of the generalized pattern $2\underline{13}$ which is part of an occurence of 3124 and the same holds for the other occurrences of $2\underline{13}$, hence π avoids the barred generalized pattern $3\overline{124}$.

Image: A (1) → A (

CroCoDays 2020

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Connection between simsun and barred generalized patterns

With the previous notation,

 $S_n(132^S) = S_n(24\overline{1}3)$ $S_n(213^S) = S_n(3\overline{1}24)$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

Thank you for your attention!

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

CroCoDays 2020

< □ > < () >