Permutations avoiding a simsun pattern

Matteo Silimbani

Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

3rd Croatian Combinatorial Days
Zagreb, September 21-22 2020
joint work with M. Barnabei, F. Bonetti, and N. Castronuovo (Bologna)

Pattern avoiding permutations

A permutation π is said to contain a pattern τ if π contains a subsequence that is order-isomorphic to τ. Otherwise, we say that π avoids τ. For example, the permutation

Pattern avoiding permutations

A permutation π is said to contain a pattern τ if π contains a subsequence that is order-isomorphic to τ. Otherwise, we say that π avoids τ. For example, the permutation

$$
\pi=3512674
$$

contains the pattern 231,

Pattern avoiding permutations

A permutation π is said to contain a pattern τ if π contains a subsequence that is order-isomorphic to τ. Otherwise, we say that π avoids τ. For example, the permutation

$$
\pi=3512674
$$

contains the pattern 231, while it avoids the pattern 321.

Pattern avoiding permutations

A permutation π is said to contain a pattern τ if π contains a subsequence that is order-isomorphic to τ. Otherwise, we say that π avoids τ. For example, the permutation

$$
\pi=3512674
$$

contains the pattern 231, while it avoids the pattern 321.
$S_{n}(\tau)$ is the subset of τ-avoiding permutations in S_{n}

Consecutive patterns

A permutation π is said to contain the consecutive pattern τ if π contains a subsequence consisting of consecutive entries that is order-isomorphic to τ. For example, the permutation

Consecutive patterns

A permutation π is said to contain the consecutive pattern τ if π contains a subsequence consisting of consecutive entries that is order-isomorphic to τ. For example, the permutation

$$
\pi=32514
$$

contains the consectuive pattern 231,

Consecutive patterns

A permutation π is said to contain the consecutive pattern τ if π contains a subsequence consisting of consecutive entries that is order-isomorphic to τ. For example, the permutation

$$
\pi=32514
$$

contains the consectuive pattern 231, while it avoids the consecutive pattern 321.

Simsun patterns

A permutation π avoids the simsun pattern τ if π does not cointain the consecutive pattern τ neither do the the restriction of π to any interval $[k]$. For example, the permutation

Simsun patterns

A permutation π avoids the simsun pattern τ if π does not cointain the consecutive pattern τ neither do the the restriction of π to any interval $[k]$. For example, the permutation

$$
\pi=32514
$$

contains the simsun pattern 321,

Simsun patterns

A permutation π avoids the simsun pattern τ if π does not cointain the consecutive pattern τ neither do the the restriction of π to any interval $[k]$. For example, the permutation

$$
\pi=32514
$$

contains the simsun pattern 321, while it avoids the simsun pattern 132.

Simsun patterns

A permutation π avoids the simsun pattern τ if π does not cointain the consecutive pattern τ neither do the the restriction of π to any interval $[k]$. For example, the permutation

$$
\pi=32514
$$

contains the simsun pattern 321 , while it avoids the simsun pattern 132 .
$S_{n}\left(\tau^{S}\right)$ is the subset of all permutations in S_{n} that avoid the simsun pattern τ

Simsun patterns of legth 3

> S. Sundaram (1994)
> $\left|S_{n}\left(321^{S}\right)\right|=E_{n+1}$, the $(n+1)$-th Euler number $2 E_{n}$ is the number of alternating permutations on n symbols

Simsun patterns of legth 3

S. Sundaram (1994)
$\left|S_{n}\left(321^{S}\right)\right|=E_{n+1}$, the $(n+1)$-th Euler number
$2 E_{n}$ is the number of alternating permutations on n symbols

E. Deutsch and S. Elizalde (2012)

Enumeration of $S_{n}\left(321^{S}, \Sigma\right)$ for every $\Sigma \subseteq S_{3}$

Simsun patterns of legth 3

S. Sundaram (1994)
$\left|S_{n}\left(321^{S}\right)\right|=E_{n+1}$, the $(n+1)$-th Euler number
$2 E_{n}$ is the number of alternating permutations on n symbols

E. Deutsch and S. Elizalde (2012)

Enumeration of $S_{n}\left(321^{S}, \Sigma\right)$ for every $\Sigma \subseteq S_{3}$
D. Callan (2006)
$\left|S_{n}\left(132^{S}\right)\right|=B_{n}$, the n-th Bell number $B_{n}=$ number of set partitions of $\{1,2, \ldots, n\}$

Simsun patterns of legth 3

S. Sundaram (1994)
$\left|S_{n}\left(321^{S}\right)\right|=E_{n+1}$, the $(n+1)$-th Euler number
$2 E_{n}$ is the number of alternating permutations on n symbols
E. Deutsch and S. Elizalde (2012)

Enumeration of $S_{n}\left(321^{S}, \Sigma\right)$ for every $\Sigma \subseteq S_{3}$
D. Callan (2006)
$\left|S_{n}\left(132^{5}\right)\right|=B_{n}$, the n-th Bell number
$B_{n}=$ number of set partitions of $\{1,2, \ldots, n\}$
Our contribution
Enumeration of $S_{n}\left(132^{S}, \Sigma\right)$ and $S_{n}\left(213^{S}, \Sigma\right)$ for every $\Sigma \subseteq S_{3}$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

Simsun patterns of legth 3

If $\rho^{\prime}=\operatorname{rev}(\rho)$ and $\Sigma^{\prime}=\{\operatorname{rev}(\sigma) \mid \sigma \in \Sigma\}$, then

$$
\left|S_{n}\left(\rho^{S}, \Sigma\right)\right|=\left|S_{n}\left(\left(\rho^{\prime}\right)^{s}, \Sigma^{\prime}\right)\right|
$$

Simsun patterns of legth 3

If $\rho^{\prime}=\operatorname{rev}(\rho)$ and $\Sigma^{\prime}=\{\operatorname{rev}(\sigma) \mid \sigma \in \Sigma\}$, then

$$
\left|S_{n}\left(\rho^{s}, \Sigma\right)\right|=\left|S_{n}\left(\left(\rho^{\prime}\right)^{s}, \Sigma^{\prime}\right)\right|
$$

\Rightarrow the study of the sets $S_{n}\left(321^{S}, \Sigma\right) S_{n}\left(132^{S}, \Sigma\right)$, and $S_{n}\left(213^{S}, \Sigma\right)$ for every $\Sigma \subseteq S_{3}$ completes the enumeration of all sets of permutations avoiding a simsun patter of length 3 together with a set of classical patterns $\Sigma \subseteq S_{3}$

$$
\begin{aligned}
\left|S_{n}\left(123^{S}, \Sigma\right)\right| & =\left|S_{n}\left(321^{S}, \Sigma^{\prime}\right)\right| \\
\left|S_{n}\left(132^{S}, \Sigma\right)\right| & =\left|S_{n}\left(231^{S}, \Sigma^{\prime}\right)\right| \\
\left|S_{n}\left(213^{S}, \Sigma\right)\right| & =\left|S_{n}\left(312^{S}, \Sigma^{\prime}\right)\right| .
\end{aligned}
$$

The simsun pattern 132

Lemma

A permutation π avoids the simsun pattern 132 if and only if each occurrence of 132 in π is part of an occurrence of the pattern 2413.

The simsun pattern 132

Lemma

A permutation π avoids the simsun pattern 132 if and only if each occurrence of 132 in π is part of an occurrence of the pattern 2413.

The pattern 2413 contains the classical patterns 132, 213, 231, and 312.

The simsun pattern 132

Lemma

A permutation π avoids the simsun pattern 132 if and only if each occurrence of 132 in π is part of an occurrence of the pattern 2413.

The pattern 2413 contains the classical patterns 132, 213, 231, and 312. \Rightarrow if Σ contains at least one of those 4 patterns, then

$$
S_{n}\left(132^{S}, \Sigma\right)=S_{n}(132, \Sigma)
$$

The simsun pattern 132

Lemma

A permutation π avoids the simsun pattern 132 if and only if each occurrence of 132 in π is part of an occurrence of the pattern 2413.

The pattern 2413 contains the classical patterns 132, 213, 231, and 312. \Rightarrow if Σ contains at least one of those 4 patterns, then

$$
S_{n}\left(132^{S}, \Sigma\right)=S_{n}(132, \Sigma)
$$

We will study $S_{n}\left(132^{S}, \Sigma\right)$ only for $\Sigma \subseteq\{123,321\}$

The simsun pattern 132

We exploit the bijection between $S_{n}\left(132^{S}\right)$ and the set of partitions of $\{1,2, \ldots, n\}$

$$
\sigma=478351246
$$

The simsun pattern 132

We exploit the bijection between $S_{n}\left(132^{S}\right)$ and the set of partitions of $\{1,2, \ldots, n\}$

$$
\begin{gathered}
\sigma=478351246 \\
w_{1}=478 \quad w_{2}=35 \quad w_{3}=1246
\end{gathered}
$$

(the fisrt entries in the words w_{i} 's must be in decreasing order)

The simsun pattern 132

We exploit the bijection between $S_{n}\left(132^{S}\right)$ and the set of partitions of $\{1,2, \ldots, n\}$

$$
\begin{gathered}
\sigma=478351246 \\
w_{1}=478 \quad w_{2}=35 \quad w_{3}=1246
\end{gathered}
$$

(the fisrt entries in the words w_{i} 's must be in decreasing order)

$$
P(\sigma)=\{\{1,2,4,6\},\{3,5\},\{4,7,8\}\}
$$

Avoiding 132^{S} and some classical patterns

We consider only the sets $S_{n}\left(132^{S}, \Sigma\right)$, where $\Sigma \subseteq\{123,321\}$

Avoiding 132^{S} and some classical patterns

We consider only the sets $S_{n}\left(132^{5}, \Sigma\right)$, where $\Sigma \subseteq\{123,321\}$

- If $\Sigma=\{123,321\}$, then $S_{n}\left(132^{s}, \Sigma\right)$ is empty for every $n \geq 7$

Avoiding 132^{S} and some classical patterns

We consider only the sets $S_{n}\left(132^{5}, \Sigma\right)$, where $\Sigma \subseteq\{123,321\}$

- If $\Sigma=\{123,321\}$, then $S_{n}\left(132^{s}, \Sigma\right)$ is empty for every $n \geq 7$
- If $\Sigma=\{321\}$, each permutation $\sigma \in S_{n}\left(132^{S}, 321\right)$ is of the form $\sigma=w_{1} w_{2}$ and corresponds to a partition of $\{1,2, \ldots, n\}$ into at most two blocks

Avoiding 132^{S} and some classical patterns

We consider only the sets $S_{n}\left(132^{5}, \Sigma\right)$, where $\Sigma \subseteq\{123,321\}$

- If $\Sigma=\{123,321\}$, then $S_{n}\left(132^{5}, \Sigma\right)$ is empty for every $n \geq 7$
- If $\Sigma=\{321\}$, each permutation $\sigma \in S_{n}\left(132^{S}, 321\right)$ is of the form $\sigma=w_{1} w_{2}$ and corresponds to a partition of $\{1,2, \ldots, n\}$ into at most two blocks

Enumeration of permutations in $S_{n}\left(132^{s}, 321\right)$
$\left|S_{n}\left(132^{s}, 321\right)\right|=2^{n-1}$

The set $S_{n}\left(132^{S}, 123\right)$

- If $\Sigma=\{123\}$, then take $\sigma=w_{1} w_{2} \ldots w_{k}$ in $S_{n}\left(132^{S}, 123\right)$

The set $S_{n}\left(132^{S}, 123\right)$

- If $\Sigma=\{123\}$, then take $\sigma=w_{1} w_{2} \ldots w_{k}$ in $S_{n}\left(132^{S}, 123\right)$
i. every block has at most two elements

The set $S_{n}\left(132^{S}, 123\right)$

- If $\Sigma=\{123\}$, then take $\sigma=w_{1} w_{2} \ldots w_{k}$ in $S_{n}\left(132^{S}, 123\right)$
i. every block has at most two elements
ii. if the blocks are arranged in descending order of their smallest element, also the greatest elements of the blocks of size 2 are in descending order

The set $S_{n}\left(132^{S}, 123\right)$

- If $\Sigma=\{123\}$, then take $\sigma=w_{1} w_{2} \ldots w_{k}$ in $S_{n}\left(132^{S}, 123\right)$
i. every block has at most two elements
ii. if the blocks are arranged in descending order of their smallest element, also the greatest elements of the blocks of size 2 are in descending order

Enumeration of permutations in $S_{n}\left(132^{S}, 123\right)$

$\left|S_{n}\left(132^{S}, 123\right)\right|$ is the n-th Motzkin number M_{n}

The set $S_{n}\left(132^{s}, 123\right)$

$$
\sigma=128116105932714
$$

The set $S_{n}\left(132^{s}, 123\right)$

$$
\sigma=128116105932714
$$

The set $S_{n}\left(132^{s}, 123\right)$

$$
\sigma=128116105932714
$$

The set $S_{n}\left(132^{5}, 123\right)$

$$
\sigma=128116105932714
$$

The set $S_{n}\left(132^{5}, 123\right)$

$$
\sigma=128116105932714
$$

The set $S_{n}\left(132^{5}, 123\right)$

$$
\sigma=128116105932714
$$

The set $S_{n}\left(132^{s}, 123\right)$

$$
\sigma=128116105932714
$$

The set $S_{n}\left(132^{s}, 123\right)$

$$
\sigma=128116105932714
$$

The set $S_{n}\left(132^{s}, 123\right)$

$$
\sigma=128116105932714
$$

The set $S_{n}\left(132^{s}, 123\right)$

$$
\sigma=128116105932714
$$

Binary increasing trees

A binary increasing tree (b.i.t.) is a plane, rooted, binary tree in which each of the n nodes bears a different positive integer label from 1 to n and labels increase along any descending path.

The bijection ϕ

$$
\pi \quad=\quad 1
$$

1

The bijection ϕ

$$
\pi=\text { _~2 }_{1}^{1}
$$

The bijection ϕ

$$
\pi \quad=\quad 1 \quad 3 \quad 2
$$

The bijection ϕ

$$
\pi=4 \quad 1 \quad 3 \quad 2
$$

The bijection ϕ

$$
\pi=4 \quad 5 \quad 1 \quad 3 \quad 2
$$

The bijection ϕ

ב-trees

A \beth-tree is a binary increasing tree of the following form

where $a<b<c, x \leq c$ and where the nodes labelled with x and c are connected by an arbitrarily long sequence of left edges.

ב-trees

A \beth-tree is a binary increasing tree of the following form

where $a<b<c, x \leq c$ and where the nodes labelled with x and c are connected by an arbitrarily long sequence of left edges. The vertices labelled x and c may coincide.

The simsun pattern 213

$T_{n}(\beth)$ is the set of all binary increasing trees with n nodes and not containing any \beth-subtree.

The simsun pattern 213

$T_{n}(\beth)$ is the set of all binary increasing trees with n nodes and not containing any \beth-subtree.

Characterization of permutations avoiding the simsun pattern 213

The map ϕ defined above is a bijection between $S_{n}\left(213^{S}\right)$ and $T_{n}(\beth)$, for every $n \in \mathbb{N}$

The simsun pattern 213

$T_{n}(\beth)$ is the set of all binary increasing trees with n nodes and not containing any \beth-subtree.

Characterization of permutations avoiding the simsun pattern 213

The map ϕ defined above is a bijection between $S_{n}\left(213^{S}\right)$ and $T_{n}(\beth)$, for every $n \in \mathbb{N}$

We determine $\left|T_{n}(\beth)\right|$ rather than computing $\left|S_{n}\left(213^{S}\right)\right|$

Enumeration of \beth-trees

The leftmost label of a b.i.t. is the label of the leftmost node in the left branch starting at the root

Enumeration of \beth-trees

$t_{n, \ell}=$ number of b.i.t in $T_{n}(\beth)$ whose leftmost label is ℓ

Enumeration of \beth-trees

$t_{n, \ell}=$ number of b.i.t in $T_{n}(\beth)$ whose leftmost label is ℓ

$$
t_{n, \ell}=\left|\left\{T \in T_{n}(\beth) \mid \phi^{-1}(T)(1)=\ell\right\}\right|
$$

Enumeration of \beth-trees

$t_{n, \ell}=$ number of b.i.t in $T_{n}(\beth)$ whose leftmost label is ℓ
$t_{n, \ell}=\left|\left\{T \in T_{n}(\beth) \mid \phi^{-1}(T)(1)=\ell\right\}\right|$

Enumeration of \beth-trees according to size and leftmost label

The numbers $t_{n, \ell}$ satisfy the following recurrence

$$
t_{n, \ell}=\left\{\begin{array}{ll}
\sum_{k=1}^{n-1} \sum_{i, j}\binom{\ell-j-2}{i-1}\binom{n-\ell}{k-i} t_{k, i} t_{n-1-k, j} & \text { if } \ell \geq 2 \\
\sum_{j} t_{n-1, j} & \text { if } \ell=1
\end{array} \quad \forall n \geq 2\right.
$$

with initial conditions $t_{0,0}=t_{1,1}=1$ and $t_{0, i}=t_{1, i}=0$ if $i>0$

The simsun pattern 213

Lemma

A permutation π avoids the simsun pattern 213 if and only if each occurrence of 213 in π is part of an occurrence of the pattern 3124.

The simsun pattern 213

Lemma

A permutation π avoids the simsun pattern 213 if and only if each occurrence of 213 in π is part of an occurrence of the pattern 3124.

The pattern 3124 contains the classical patterns 123, 213 and 312.

The simsun pattern 213

Lemma

A permutation π avoids the simsun pattern 213 if and only if each occurrence of 213 in π is part of an occurrence of the pattern 3124.

The pattern 3124 contains the classical patterns 123, 213 and 312. \Rightarrow if Σ contains at least one of those 3 patterns, then

$$
S_{n}\left(213^{S}, \Sigma\right)=S_{n}(213, \Sigma)
$$

The simsun pattern 213

Lemma

A permutation π avoids the simsun pattern 213 if and only if each occurrence of 213 in π is part of an occurrence of the pattern 3124.

The pattern 3124 contains the classical patterns 123, 213 and 312. \Rightarrow if Σ contains at least one of those 3 patterns, then

$$
S_{n}\left(213^{S}, \Sigma\right)=S_{n}(213, \Sigma)
$$

We will study the sets $S_{n}\left(213^{S}, \Sigma\right)$ only for $\Sigma \subseteq\{132,231,321\}$.

Right combs

A right comb is a binary increasing tree in $T_{n}(\beth)$ that also avoids the following subtrees:

where solid edges have length 1 and dashed edges have arbitrary length, with $d<e<f$.

Right combs

The shape of a right-comb is:

Right combs

The shape of a right-comb is:

$R C T_{n}$ is the set of right combs with n nodes and a_{n} its cardinality.

The set $S_{n}\left(213^{S}, 132\right)$

Characterization of $\phi\left(S_{n}\left(213^{S}, 132\right)\right)$

$$
\phi\left(S_{n}\left(213^{S}, 132\right)\right)=R C T_{n} . \text { Hence }
$$

$$
\left|S_{n}\left(213^{S}, 132\right)\right|=a_{n}
$$

Recurrence for the sequence a_{n}
The sequence $\left\{a_{n}\right\}_{n \geq 0}$ satisfies

$$
a_{n}=2 a_{n-1}+\sum_{i=1}^{n-2} a_{i} \cdot\left(a_{n-i-1}-a_{n-i-2}\right) \quad \forall n \geq 2
$$

with $a_{0}=a_{1}=1$.

Left combs

A left comb is a binary increasing tree in $T_{n}(\beth)$ that also avoids the following subtrees:

where solid edges have length 1 and dashed edges have arbitrary length, with $d<e<f$.

The set $S_{n}\left(213^{S}, 231\right)$

$L C T_{n}$ is the set of left combs with n nodes and b_{n} its cardinality.
Characterization of $\phi\left(S_{n}\left(213^{s}, 231\right)\right)$
$\phi\left(S_{n}\left(213^{S}, 231\right)\right)=L C T_{n}$. Hence

$$
\left|S_{n}\left(213^{s}, 231\right)\right|=b_{n}
$$

Equicardinality result (SURPISING)

The sequences $\left|L C T_{n}\right|$ and $\left|R C T_{n}\right|$ satisfy the same recurrence with the same initial condition. Hence:

$$
\left|S_{n}\left(213^{S}, 231\right)\right|=\left|S_{n}\left(213^{S}, 132\right)\right|
$$

The set $S_{n}\left(213^{S}, 321\right)$

$S_{n}\left(213^{s}, 321\right) \Rightarrow$ we focus on permutation themselves rather than studying the associated b.i.t.

The set $S_{n}\left(213^{S}, 321\right)$

$S_{n}\left(213^{s}, 321\right) \Rightarrow$ we focus on permutation themselves rather than studying the associated b.i.t.

We can construct a permutation $\rho \in S_{n}\left(213^{S}, 321\right)$ starting from $\pi \in S_{n-1}\left(213^{S}, 321\right)$ as follows:

$$
\pi=\sigma x_{1} x_{2} \ldots x_{k}
$$

where $x_{1} x_{2} \ldots x_{k}$ is the last incrasing sequence of $\pi(k \geq 1)$.

The set $S_{n}\left(213^{S}, 321\right)$

$S_{n}\left(213^{s}, 321\right) \Rightarrow$ we focus on permutation themselves rather than studying the associated b.i.t.

We can construct a permutation $\rho \in S_{n}\left(213^{S}, 321\right)$ starting from $\pi \in S_{n-1}\left(213^{S}, 321\right)$ as follows:

$$
\pi=\sigma x_{1} x_{2} \ldots x_{k}
$$

where $x_{1} x_{2} \ldots x_{k}$ is the last incrasing sequence of $\pi(k \geq 1)$. We can insert n in one of the following ways:

The set $S_{n}\left(213^{S}, 321\right)$

$S_{n}\left(213^{s}, 321\right) \Rightarrow$ we focus on permutation themselves rather than studying the associated b.i.t.

We can construct a permutation $\rho \in S_{n}\left(213^{S}, 321\right)$ starting from $\pi \in S_{n-1}\left(213^{S}, 321\right)$ as follows:

$$
\pi=\sigma x_{1} x_{2} \ldots x_{k}
$$

where $x_{1} x_{2} \ldots x_{k}$ is the last incrasing sequence of $\pi(k \geq 1)$. We can insert n in one of the following ways:

■ $\rho=n \sigma x_{1} x_{2} \ldots x_{k}$

The set $S_{n}\left(213^{S}, 321\right)$

$S_{n}\left(213^{s}, 321\right) \Rightarrow$ we focus on permutation themselves rather than studying the associated b.i.t.

We can construct a permutation $\rho \in S_{n}\left(213^{S}, 321\right)$ starting from $\pi \in S_{n-1}\left(213^{S}, 321\right)$ as follows:

$$
\pi=\sigma x_{1} x_{2} \ldots x_{k}
$$

where $x_{1} x_{2} \ldots x_{k}$ is the last incrasing sequence of $\pi(k \geq 1)$. We can insert n in one of the following ways:

■ $\rho=n \sigma x_{1} x_{2} \ldots x_{k}$
■ $\rho=\sigma x_{1} \ldots x_{i} n \ldots x_{k}, i>1$

The set $S_{n}\left(213^{S}, 321\right)$

$S_{n}\left(213^{s}, 321\right) \Rightarrow$ we focus on permutation themselves rather than studying the associated b.i.t.

We can construct a permutation $\rho \in S_{n}\left(213^{S}, 321\right)$ starting from $\pi \in S_{n-1}\left(213^{S}, 321\right)$ as follows:

$$
\pi=\sigma x_{1} x_{2} \ldots x_{k}
$$

where $x_{1} x_{2} \ldots x_{k}$ is the last incrasing sequence of $\pi(k \geq 1)$. We can insert n in one of the following ways:

■ $\rho=n \sigma x_{1} x_{2} \ldots x_{k}$
■ $\rho=\sigma x_{1} \ldots x_{i} n \ldots x_{k}, i>1$

- $\rho=x_{1} n x_{2} \ldots x_{k}$ if σ is empty (otherwise we would create an occurence of the consecutive pattern 213).

The set $S_{n}\left(213^{S}, 321\right)$

$A_{n, k}=$ number of permutations $\sigma \in S_{n}\left(213^{S}, 321\right)$ whose last ascending run has length k

The set $S_{n}\left(213^{S}, 321\right)$

$A_{n, k}=$ number of permutations $\sigma \in S_{n}\left(213^{S}, 321\right)$ whose last ascending run has length k

Recurrence for $A_{n, k}$

$$
A_{n, k}=A_{n-1, k}+A_{n-1, k-1} \cdot \delta_{k \geq 3}+A_{n-1, k+1} \cdot \delta_{n-1=k+1}+\sum_{i=2}^{n-k-1} A_{n-1, k+i}
$$

for all $n \geq 3$ and $k \geq 1$, where

$$
\delta_{P}= \begin{cases}1 & \text { if the proposition } P \text { is true } \\ 0 & \text { otherwise. }\end{cases}
$$

The set $S_{n}\left(213^{S}, 321\right)$

$A_{n, k}=$ number of permutations $\sigma \in S_{n}\left(213^{S}, 321\right)$ whose last ascending run has length k

Recurrence for $A_{n, k}$

$$
A_{n, k}=A_{n-1, k}+A_{n-1, k-1} \cdot \delta_{k \geq 3}+A_{n-1, k+1} \cdot \delta_{n-1=k+1}+\sum_{i=2}^{n-k-1} A_{n-1, k+i}
$$

for all $n \geq 3$ and $k \geq 1$, where

$$
\delta_{P}= \begin{cases}1 & \text { if the proposition } P \text { is true } \\ 0 & \text { otherwise. }\end{cases}
$$

The sequence $\left\{\left|S_{n}\left(213^{S}, 321\right)\right|\right\}_{n \geq 0}$, is not present on the OEIS

The set $S_{n}\left(213^{S}, 132,231\right)$

We have that $\phi\left(S_{n}\left(213^{s}, 132,231\right)\right)=R C T_{n} \cap L T C_{n}$
The trees in this set are of the form:

The set $S_{n}\left(213^{5}, 132,231\right)$

We have that $\phi\left(S_{n}\left(213^{s}, 132,231\right)\right)=R C T_{n} \cap L T C_{n}$
The trees in this set are of the form:

with the left and the right branches possibly empty.

The set $S_{n}\left(213^{5}, 132,231\right)$

Enumeration of $S_{n}\left(213^{S}, 132,231\right)$

$$
\left|S_{n}\left(213^{S}, 132,231\right)\right|= \begin{cases}2^{n-2}+1 & \text { if } n \geq 2 \\ 1 & \text { if } n=0,1\end{cases}
$$

The set $S_{n}\left(213^{5}, 132,231\right)$

Enumeration of $S_{n}\left(213^{S}, 132,231\right)$

$$
\left|S_{n}\left(213^{S}, 132,231\right)\right|= \begin{cases}2^{n-2}+1 & \text { if } n \geq 2 \\ 1 & \text { if } n=0,1\end{cases}
$$

There are two possibilities:

The set $S_{n}\left(213^{5}, 132,231\right)$

Enumeration of $S_{n}\left(213^{S}, 132,231\right)$

$$
\left|S_{n}\left(213^{S}, 132,231\right)\right|= \begin{cases}2^{n-2}+1 & \text { if } n \geq 2 \\ 1 & \text { if } n=0,1\end{cases}
$$

There are two possibilities:

- the right branch is empty

The set $S_{n}\left(213^{5}, 132,231\right)$

Enumeration of $S_{n}\left(213^{S}, 132,231\right)$

$$
\left|S_{n}\left(213^{S}, 132,231\right)\right|= \begin{cases}2^{n-2}+1 & \text { if } n \geq 2 \\ 1 & \text { if } n=0,1\end{cases}
$$

There are two possibilities:

- the right branch is empty

■ if it is not empty, the right son of the root must have label 2 in order to avoid the \beth-configuration. We choose labels for the other vertices in the left branch as an arbitrary subset of $\{3, \ldots, n\}$

The set $S_{n}\left(213^{5}, 132,321\right)$

$\phi\left(S_{n}\left(213^{S}, 132,321\right)\right)=$ set of right combs with the left branch starting at the root of length at most 1

The set $S_{n}\left(213^{5}, 132,321\right)$

Enumeration of $S_{n}\left(213^{S}, 132,321\right)$

$$
\left|S_{n}\left(213^{S}, 132,321\right)\right|= \begin{cases}\frac{n^{2}-3 n+6}{2} & \text { if } n \geq 2 \\ 1 & \text { if } n=0,1 .\end{cases}
$$

The set $S_{n}\left(213^{5}, 132,321\right)$

Enumeration of $S_{n}\left(213^{S}, 132,321\right)$

$$
\left|S_{n}\left(213^{S}, 132,321\right)\right|= \begin{cases}\frac{n^{2}-3 n+6}{2} & \text { if } n \geq 2 \\ 1 & \text { if } n=0,1 .\end{cases}
$$

This follows from the fact that labels in the bottommost right branch must be in consecutive order to avoid the β-configuration that is forbidden in a right comb

The set $S_{n}\left(213^{S}, 231,321\right)$

We want to figure out what the set $\phi\left(S_{n}\left(213^{S}, 231,321\right)\right)$ looks like.

The set $S_{n}\left(213^{5}, 231,321\right)$

We want to figure out what the set $\phi\left(S_{n}\left(213^{s}, 231,321\right)\right)$ looks like.

- the tree must be left combs (they belong to $\phi\left(S_{n}\left(213^{5}, 231\right)\right)$

The set $S_{n}\left(213^{5}, 231,321\right)$

We want to figure out what the set $\phi\left(S_{n}\left(213^{S}, 231,321\right)\right)$ looks like.

- the tree must be left combs (they belong to $\phi\left(S_{n}\left(213^{s}, 231\right)\right)$
- the right branches have length at most 1 (no 321)

The set $S_{n}\left(213^{5}, 231,321\right)$

We want to figure out what the set $\phi\left(S_{n}\left(213^{S}, 231,321\right)\right)$ looks like.

- the tree must be left combs (they belong to $\phi\left(S_{n}\left(213^{S}, 231\right)\right)$
- the right branches have length at most 1 (no 321)
- the tree must avoid

(this configuration corresponds to either a 321 or a 213^{S})

The set $S_{n}\left(213^{s}, 231,321\right)$

Matteo Silimbani Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy
Permutations avoiding a simsun pattern

The set $S_{n}\left(213^{5}, 231,321\right)$

Enumeration of $S_{n}\left(213^{5}, 231,321\right)$
$c_{n}=\left|S_{n}\left(213^{5}, 231,321\right)\right|$ satisfies

$$
c_{n}=c_{n-1}+c_{n-3}+c_{n-4}+\ldots+c_{0}
$$

The set $S_{n}\left(213^{S}, 132,231,321\right)$

The b.i.t. associated with a permutation in $S_{n}\left(213^{S}, 132,231,321\right)$ is of the form

where both the solid and the dashed branch can be empty.

The set $S_{n}\left(213^{S}, 132,231,321\right)$

The b.i.t. associated with a permutation in $S_{n}\left(213^{S}, 132,231,321\right)$ is of the form

where both the solid and the dashed branch can be empty.
Enumeration of $S_{n}\left(213^{S}, 132,231,321\right)$

$$
\left|S_{n}\left(213^{S}, 132,231,321\right)\right|= \begin{cases}n-1 & \text { if } n \geq 3 \\ n & \text { if } n=1,2 \\ 1 & \text { if } n=0\end{cases}
$$

Connection with barred generalized patterns

A generalized pattern is a classical pattern τ some of whose consecutive letters may be underlined.

A permutation π contains the generalized pattern τ if contains τ in the classical sense and the elements corresponding to τ_{i} and τ_{i+1} are consecutive in π if $\tau_{i} \tau_{i+1}$ is underlined in τ. For example, the permutation

Connection with barred generalized patterns

A generalized pattern is a classical pattern τ some of whose consecutive letters may be underlined.

A permutation π contains the generalized pattern τ if contains τ in the classical sense and the elements corresponding to τ_{i} and τ_{i+1} are consecutive in π if $\tau_{i} \tau_{i+1}$ is underlined in τ. For example, the permutation

$$
\pi=32514
$$

contains the generalized pattern $\underline{321}$,

Connection with barred generalized patterns

A generalized pattern is a classical pattern τ some of whose consecutive letters may be underlined.

A permutation π contains the generalized pattern τ if contains τ in the classical sense and the elements corresponding to τ_{i} and τ_{i+1} are consecutive in π if $\tau_{i} \tau_{i+1}$ is underlined in τ. For example, the permutation

$$
\pi=32514
$$

contains the generalized pattern $\underline{321}$, while it avoids the generalized pattern 321.

Connection with barred generalized patterns

A barred generalized pattern τ is a generalized pattern τ some of whose consecutive letters may be overlined. If τ is a barred generalized pattern, denote by $\hat{\tau}$ the generalized pattern obtained from τ removing the overbars and by $\tilde{\tau}$ the generalized pattern obtained from τ removing the overbarred symbols.

A permutation π avoids the barred generalized pattern τ if every occurence of $\tilde{\tau}$ in π is part of an occurence of $\hat{\tau}$.

Connection with barred generalized patterns

A barred generalized pattern τ is a generalized pattern τ some of whose consecutive letters may be overlined. If τ is a barred generalized pattern, denote by $\hat{\tau}$ the generalized pattern obtained from τ removing the overbars and by $\tilde{\tau}$ the generalized pattern obtained from τ removing the overbarred symbols.

A permutation π avoids the barred generalized pattern τ if every occurence of $\tilde{\tau}$ in π is part of an occurence of $\hat{\tau}$.

For example, consider the barred generalized pattern $3 \overline{1} \underline{24}$. In the permutations

$$
\pi=4513762
$$

the subsequence 437 forms an occurence of the generalized pattern $2 \underline{13}$

Connection with barred generalized patterns

A barred generalized pattern τ is a generalized pattern τ some of whose consecutive letters may be overlined. If τ is a barred generalized pattern, denote by $\hat{\tau}$ the generalized pattern obtained from τ removing the overbars and by $\tilde{\tau}$ the generalized pattern obtained from τ removing the overbarred symbols.

A permutation π avoids the barred generalized pattern τ if every occurence of $\tilde{\tau}$ in π is part of an occurence of $\hat{\tau}$.

For example, consider the barred generalized pattern $3 \overline{1} \underline{24}$. In the permutations

$$
\pi=4513762
$$

the subsequence 437 forms an occurence of the generalized pattern 213 which is part of an occurence of 3124

Connection with barred generalized patterns

A barred generalized pattern τ is a generalized pattern τ some of whose consecutive letters may be overlined. If τ is a barred generalized pattern, denote by $\hat{\tau}$ the generalized pattern obtained from τ removing the overbars and by $\tilde{\tau}$ the generalized pattern obtained from τ removing the overbarred symbols.

A permutation π avoids the barred generalized pattern τ if every occurence of $\tilde{\tau}$ in π is part of an occurence of $\hat{\tau}$.

For example, consider the barred generalized pattern $3 \overline{1} \underline{24}$. In the permutations

$$
\pi=4513762
$$

the subsequence 437 forms an occurence of the generalized pattern 213 which is part of an occurence of 3124 and the same holds for the other occurrences of $2 \underline{13}$, hence π avoids the barred generalized pattern $3 \overline{1} \underline{24}$.

Connection with barred generalized patterns

Connection between simsun and barred generalized patterns

With the previous notation,

$$
\begin{aligned}
& S_{n}\left(132^{S}\right)=S_{n}(24 \overline{1} 3) \\
& S_{n}\left(213^{S}\right)=S_{n}(3 \overline{1} \underline{2} 4)
\end{aligned}
$$

Thank you

Thank you for your attention!

