

EVALUATING TOPOLOGICAL ORDERING IN DIRECTED ACYCLIC GRAPHS

Suzana Antunović University of Split, Croatia

4th CroCoDays, Zagreb 2022.

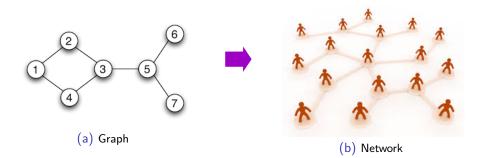
Evaluating topological ordering in directed acyclic graphs

(*) published in *Electronic Journal of Graph Theory and Applications* **9** (2) (2021), 567-580

(**) Joint work with D. Vukičević

Graph vs. Network

"Network is a graph with meaning!"



э

A D N A B N A B N A B N

Graphs are everywhere!

2

イロト イポト イヨト イヨト

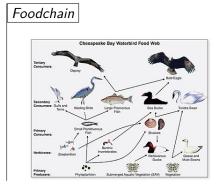
Graphs are everywhere!

A D N A B N A B N A B N

Evaluating topological ordering in DAGs

3

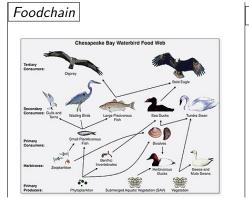
Graphs are everywhere!

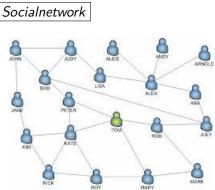


э

A D N A B N A B N A B N

Graphs are everywhere!





A D N A B N A B N A B N

э

Directed vs. Undirected

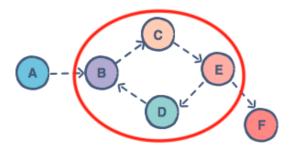


э

A D N A B N A B N A B N

Directed acyclic graph

Directed **A**cyclic **G**raphs = DAG



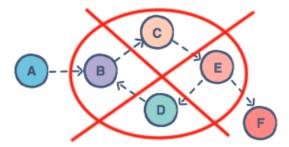
Evaluating topological ordering in DAGs

э

< /□ > < Ξ

Directed acyclic graph

Directed **A**cyclic **G**raphs = DAG



Evaluating topological ordering in DAGs

September 21, 2022

→ ∃ →

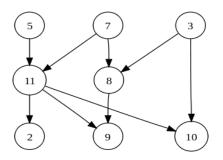
э

< □ > < 同 >

10/23

Topological ordering

"Every DAG has a topological ordering."



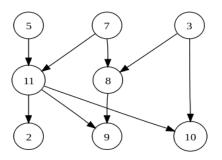
• 5,7,3,11,8,2,9,10

Image: A matrix

э

Topological ordering

"Every DAG has a topological ordering."



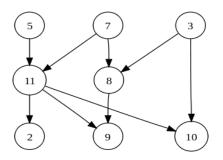
- 5,7,3,11,8,2,9,10
- 3, 5, 7, 8, 11, 2, 9, 10

э

→ ∃ →

< 47 ▶

"Every DAG has a topological ordering."

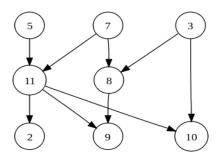


- 5,7,3,11,8,2,9,10
- 3, 5, 7, 8, 11, 2, 9, 10
- 5, 7, 3, 8, 11, 10, 9, 2

4 A b

э

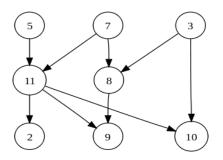
"Every DAG has a topological ordering."



- 5,7,3,11,8,2,9,10
- 3, 5, 7, 8, 11, 2, 9, 10
- $\bullet \ 5,7,3,8,11,10,9,2$
- 7,5,11,3,10,8,9,2

< 🗗 🕨

"Every DAG has a topological ordering."

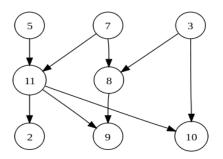


- 5,7,3,11,8,2,9,10
- 3, 5, 7, 8, 11, 2, 9, 10
- $\bullet \ 5,7,3,8,11,10,9,2$
- 7,5,11,3,10,8,9,2
- 5,7,11,2,3,8,9,10

4 A I

11/23

"Every DAG has a topological ordering."



- 5,7,3,11,8,2,9,10
- 3, 5, 7, 8, 11, 2, 9, 10
- 5,7,3,8,11,10,9,2
- 7,5,11,3,10,8,9,2
- 5,7,11,2,3,8,9,10
- 3,7,8,5,11,10,2,9

11/23

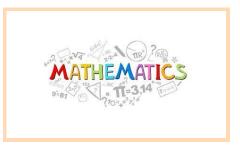
(人間) とうきょうきょう

Evolution

Topological ordering

Task scheduling problem

Linear ordering problem



(日) (四) (日) (日) (日)

5	uzana	Antur	IOVIC

Evaluating topological ordering in DAGs

September 21, 2022

12 / 23

Mathematical framework

- G = (V, E) directed acyclic graph
- P(G) set of all bijections p: V(G) → {1, 2, ..., n} such that for every directed edge uv ∈ E(G) it holds

d_p(uv) = p(v) - p(u) distance between vetices u and v in topological order p

ヘロト 不得 とうじょう とうせいしょ

For each vertex $v \in V(G)$ we define:

$$s_{p,G}(v) = \sum_{uv \in E(G)} d_p(uv)$$

$$a_{p,G}(v) = \left\{ egin{array}{c} rac{s_{p,G}(v)}{d_G^-(v)} & ext{if } d_G^-(v) > 0, \ 0 & ext{if } d_G^-(v) = 0 \end{array}
ight.$$

$$m_{p,G}(v) = \max_{uv \in E(G)} \{d_p(uv)\},$$

Suzana Antunović

Evaluating topological ordering in DAGs

September 21, 2022

イロト イポト イヨト イヨト

14 / 23

- 31

We expand these measures to the entire DAG G with n vertices. There are a number of ways to approach this problem.

1)

$$s_p^1(G) = \frac{1}{n} \sum_{v \in V(G)} s_{p,G}(v)$$

$$a_p^1(G) = \frac{1}{n} \sum_{v \in V(G)} a_{p,G}(v)$$

$$m_p^1(G) = \frac{1}{n} \sum_{v \in V(G)} m_{p,G}(v)$$

Suzana Antunović

Evaluating topological ordering in DAGs

September 21, 2022

3

15 / 23

< □ > < □ > < □ > < □ > < □ > < □ >

We expand these measures to the entire DAG G with n vertices. There are a number of ways to approach this problem.

2)

$$s_p^{\infty}(G) = \max_{v \in V(G)} \{s_{p,G}(v)\}$$

$$a_p^{\infty}(G) = \max_{v \in V(G)} \{a_{p,G}(v)\}$$

$$a_p^{\infty}(G) = \max_{v \in V(G)} \{a_{p,G}(v)\}$$

Suzana Antunović

Evaluating topological ordering in DAGs

September 21, 2022

16/23

We expand these measures to the entire DAG G with n vertices. There are a number of ways to approach this problem.

3)

$$s_p^{\alpha}(G) = \left(\frac{1}{n}\sum_{v\in V(G)}s_{p,G}(v)\right)^{\frac{1}{\alpha}}$$

$$a_p^{\alpha}(G) = \left(\frac{1}{n}\sum_{v\in V(G)}a_{p,G}(v)\right)^{\frac{1}{\alpha}}$$

$$m_p^{\alpha}(G) = \left(\frac{1}{n}\sum_{v\in V(G)}m_{p,G}(v)\right)^{\frac{1}{\alpha}}$$

Suzana Antunović

3

Since the topological ordering od directed acyclic graph is generally not unique, we define

$$s^{\alpha}(G) = \min_{p \in P(G)} \left\{ s^{\alpha}_{p}(G) \right\}$$
$$a^{\alpha}(G) = \min_{p \in P(G)} \left\{ a^{\alpha}_{p}(G) \right\}$$
$$m^{\alpha}(G) = \min_{p \in P(G)} \left\{ m^{\alpha}_{p}(G) \right\}$$

イロト イポト イヨト イヨト

э

Sample claim

Theorem

Let G be a directed graph of type A with $n \ge 3$ vertices and $\alpha \ge 1$. It holds

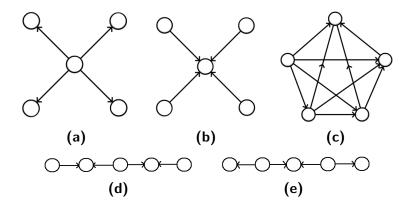
$$\left(\frac{n-1}{n}\right)^{\frac{1}{\alpha}} \leq m^{\alpha}(G) \leq \left(\frac{1}{n}\sum_{i=1}^{n-1}i^{\alpha}\right)^{\frac{1}{\alpha}}$$

The lower bound is obtained for $G = P_n$ and the upper bound for $G = O_n$.

- 31

< □ > < □ > < □ > < □ > < □ > < □ >

Extremal results



20 / 23

3

Measure	Minimal	Maximal
$s^{\infty}(G)$	1	$\sum_{i=1}^{n-1} i$
$a^{\infty}(G)$	1	n-1
$m^{\infty}(G)$	1	n-1
$s^{lpha}(G)$	$\left(\frac{n-1}{n}\right)^{\frac{1}{\alpha}}$	$\left[\frac{1}{n}\sum_{i=2}^{n}\binom{i-1}{\sum_{j=1}^{i}j}^{\alpha}\right]^{\frac{1}{\alpha}}$
$a^{lpha}(G)$	$\min\left\{\frac{n}{2n^{\frac{1}{\alpha}}},\frac{\alpha}{2(\alpha-1)}\left[\frac{(n-1)(\alpha-1)}{n}\right]^{\frac{1}{\alpha}},\left(\frac{n-1}{n}\right)^{\frac{1}{\alpha}}\right\}$	$\left(\frac{1}{n}\sum_{i=1}^{n-1}i^{\alpha}\right)^{\frac{1}{\alpha}}$
$m^{lpha}(G)$	$\left(\frac{n-1}{n}\right)^{\frac{1}{\alpha}}$	$\left(\frac{1}{n}\sum_{i=1}^{n-1}i^{\alpha}\right)^{\frac{1}{\alpha}}$

Table: Extremal values for the graphs of type A

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Table: Extremal values for the graphs of type B

Measure	Minimal	Maximal
$s^{\infty}(G)$	4	$\sum_{i=1}^{n-1} i$
$a^{\infty}(G)$	2	n-1
$m^{\infty}(G)$	3	n-1
$s^{lpha}(G)$	$\frac{2n-3}{n}$ (*)	$\left(\frac{1}{n}\sum_{i=2}^{n} \left(\sum_{j=1}^{i-1} j\right)^{\alpha}\right)^{\frac{1}{\alpha}}$
$a^{lpha}(G)$	¹ / ₂ (*)	$\left(\frac{1}{n}\sum_{i=1}^{n-1}i^{\alpha}\right)^{\frac{1}{\alpha}}$
$m^{lpha}(G)$	$\frac{n-1}{n}$ (*)	$\left(\frac{1}{n}\sum_{i=1}^{n-1}i^{\alpha}\right)^{\frac{1}{\alpha}}$

Suzana Antunović

Evaluating topological ordering in DAGs

September 21, 2022 22 / 23

イロト 不得 トイヨト イヨト 二日

Thank you for your attention!

Suzana Antunović

Evaluating topological ordering in DAGs

September 21, 2022

< □ > < □ > < □ > < □ > < □ > < □ >

23 / 23