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Proposed problem

Shown below (from left to right) are graphs of r = sin(4θ/3)
and r = sin(6θ/5), where every other adjacent region (starting
from the outside) is shaded black. Find the total shaded area
for any such graph r = sin(k + 1)θ/k , where k > 0 is an odd
integer and θ ranges from 0 to 2kπ. [1] [2]

About rhodonea curve

Rhodonea curve is a sinusoid specified by either the cosine or
sine functions with no phase angle that is plotted in polar
coordinates.

Let r = sin(mθ/n), where n and m > n are relatively prime,
non-zero integeres.

▶ Graph of rhodonea curve is composed of petals.
▶ Petal is the shape formed by the graph of a half-cycle of the

sinusoid.
▶ A cycle is a portion of a sinusoid that is one period T = 2nπ/m

long and consists of a positive half-cycle, the continuous set of
points, T/2 = nπ/m.

▶ For an even integer m, the curve will be rose-shaped with 2m
petals. For an odd integer m, the curve will be rose-shaped with
m petals.
Consider the petal which is symmetric about the line
y = tg

(nπ
2m

)
x. All other petals are given by rotation of this

petal about the pole by kπ
m radians.

Solution

▶ Graph is symmetric about every line which passes through the
pole and self-intersections of the curve.

▶ Petal is symmetric about every line which passes through the
pole and petal’s peak, y = tg

(
(k+2l)π
2(k+1)

)
x, where l = 0, 1, 2, ....

▶ Consider sectors from (l−1)π
2(k+1)

to lπ
2(k+1)

, where l = 1, ..., n.

The total shaded area is equal to π
2 and obtained by formula:

P (k + 1, k) = 2(k + 1)

 k∑
l=1

(−1)l+1
∫ lπ

2(k+1)

(l−1)π
2(k+1)

sin2
(
(k + 1)θ

k

)
dθ

 .

After integration and summation we have:

P (k + 1, k) =
π(−1)k+1 − 2k sin(kπ)− 2k(cos(kπ) + 1)tg

( π
2k

)
+ π

4
.

Since k is an integer, it follows that sin(kπ) = 0, while
cos(kπ) = −1 since k is an odd integer.
Thus we have:

P (k + 1, k) =
π

2
.
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Generalization of proposed problem

Let r = sin(mθ/n), where n > 0 is an odd integer, m > n is an even integer, m and n are relatively prime.
▶ Graph is symmetric about every line which passes through the

pole and self-intersections of the curve.
▶ Petal is symmetric about every line which passes through the pole

and petal’s peak, y = tg
(
(n+2k)π

2m

)
x, where k = 0, 1, 2, ....

▶ Consider sectors from (k−1)π
2m to kπ

2m, where k = 1, ..., n.
The total shaded area is equal to π

2 and obtained by formula:

P (m,n) = 2m

 n∑
k=1

(−1)k+1
∫ kπ

2m

(k−1)π
2m

sin2
(
mθ

n

)
dθ

 .

After integration and summation we have:

P (m,n) = 2m
π(−1)n+1 − 2n sin(nπ)− 2n(cos(nπ) + 1)tg

( π
2n

)
+ π

8m
.

Since n is an integer, it follows that sin(nπ) = 0, while cos(nπ) = −1 since n is an odd integer.
Thus we have:

P (m,n) =
π

2
.

What if m is an odd integer?

Let r = sin(mθ/n), where n > 0 and m > n are relatively prime, odd integers.

▶ Graph is symmetric about every line which passes through the
pole and self-intersections of the curve.

▶ Petal is symmetric about every line which passes through the pole
and petal’s peak, y = tg

(
(n+4k)π

2m

)
x, where je k = 0, 1, 2, ....

▶ Consider sectors from (n−2k−2)π
2m to (n−2k)π

2m , where k = 0, ..., n−3
2 .

The total shaded area is obtained by formula:

P (m,n) = m


n−3
2∑

k=0

(−1)k
∫ (n−2k)π

2m

(n−2k−2)π
2m

sin2
(
mθ

n

)
dθ + (−1)

n−1
2

∫ π
2m

0
sin2

(
mθ

n

)
dθ

 .

After integration and summation we have:

P (m,n) =
m

[
2
(
in+1n sin

(π
n

)
+ ntg

(π
n

)
+ π

)
− n cos

(nπ
2

)
sec

(π
n

)
+ n cos

(
2π
n − nπ

2

)
sec

(π
n

)]
8m

.

After applying trigonometric identities we have:

P (m,n) =
ntg

(π
n

)
+ π

4
.

What if n is an even integer?

Let r = (sinmθ/n), where n > 0 is an even integer, m > n and n are relatively prime. Hence m is an odd
integer.

▶ Graph is symmetric about every line which passes through
the pole and self-intersections of the curve.

▶ Petal is symmetric about every line which passes through
the pole and petal’s peak, y = tg

(
(n+2k)π

2m

)
x, where

k = 0, 1, 2, ....
▶ Consider sectors from (k−1)π

2m to kπ
2m, where k = 1, ..., n.

The total shaded area is obtained by formula:

P (m,n) = 2m

 n∑
k=1

(−1)k
∫ kπ

2m

(k−1)π
2m

sin2
(
mθ

n

)
dθ

 .

After integration and summation we have:

P (m,n) = 2m
π((−1)n − 1) + 2n sin(nπ) + 2n(cos(nπ) + 1)tg

( π
2n

)
8m

.

Since n is an integer, it follows that sin(nπ) = 0, while cos(nπ) = 1 since n is an even integer.
Thus we have:

P (m,n) = ntg
( π

2n

)
.

Remarks

P (m,n) tends to π
2 as n tends to infinity, whenever P (m,n) is not a constant.
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