On a coloring problem in the plane Mirijam Demirović (joint work with T. Dos̆lićć)

Proposed problem

Shown below (from left to right) are graphs of $r=\sin (4 \theta / 3)$ and $r=\sin (6 \theta / 5)$, where every other adjacent region (starting from the outside) is shaded black. Find the total shaded area for any such graph $r=\sin (k+1) \theta / k$, where $k>0$ is an odd integer and θ ranges from 0 to $2 k \pi$. [1] [2]

About rhodonea curve

Rhodonea curve is a sinusoid specified by either the cosine or sine functions with no phase angle that is plotted in polar coordinates.

Let $r=\sin (m \theta / n)$, where n and $m>n$ are relatively prime, non-zero integeres.

- Graph of rhodonea curve is composed of petals
- Petal is the shape formed by the graph of a half-cycle of the sinusoid.
- A cycle is a portion of a sinusoid that is one period $T=2 n \pi / m$ long and consists of a positive half-cycle, the continuous set of points, $T / 2=n \pi / m$
- For an even integer m, the curve will be rose-shaped with $2 m$ petals. For an odd integer m, the curve will be rose-shaped with m petals.
Consider the petal which is symmetric about the line $y=\operatorname{tg}\left(\frac{n \pi}{2 m}\right) x$. All other petals are given by rotation of this petal about the pole by $\frac{k \pi}{m}$ radians.

Solution

- Graph is symmetric about every line which passes through the pole and self-intersections of the curve.
- Petal is symmetric about every line which passes through the pole and petal's peak, $y=\operatorname{tg}\left(\frac{(k+2 l) \pi}{2(k+1)}\right) x$, where $l=0,1,2$,
- Consider sectors from $\frac{(l-1) \pi}{2(k+1)}$ to $\frac{l \pi}{2(k+1)}$, where $l=1, \ldots, n$.

The total shaded area is equal to $\frac{\pi}{2}$ and obtained by formula:
$P(k+1, k)=2(k+1)\left[\sum_{l=1}^{k}(-1)^{l+1} \int_{\frac{(l-1) \pi}{2(k+1)}}^{\frac{l \pi}{2(k+1)}} \sin ^{2}\left(\frac{(k+1) \theta}{k}\right) d \theta\right]$ After integration and summation we have: $P(k+1, k)=\frac{\pi(-1)^{k+1}-2 k \sin (k \pi)-2 k(\cos (k \pi)+1) \operatorname{tg}\left(\frac{\pi}{2 k}\right)+\pi}{4}$.

Since k is an integer, it follows that $\sin (k \pi)=0$, while $\cos (k \pi)=-1$ since k is an odd integer.
Thus we have:

$$
P(k+1, k)=\frac{\pi}{2} .
$$

References

Let $r=\sin (m \theta / n)$, where $n>0$ is an odd integer, $m>n$ is an even integer, m and n are relatively prime

- Graph is symmetric about every line which passes through the pole and self-intersections of the curve.

- Petal is symmetric about every line which passes through the pole and petal's peak, $y=\operatorname{tg}\left(\frac{(n+2 k) \pi}{2 m}\right) x$, where $k=0,1,2$,
- Consider sectors from $\frac{(k-1) \pi}{2 m}$ to $\frac{k \pi}{2 m}$, where $k=1, \ldots, n$.

The total shaded area is equal to $\frac{\pi}{2}$ and obtained by formula:

$$
P(m, n)=2 m\left[\sum_{k=1}^{n}(-1)^{k+1} \int_{\frac{(k-1) \pi}{2 m}}^{\frac{k \pi}{2 m}} \sin ^{2}\left(\frac{m \theta}{n}\right) d \theta\right]
$$

After integration and summation we have:
$P(m, n)=2 m \frac{\pi(-1)^{n+1}-2 n \sin (n \pi)-2 n(\cos (n \pi)+1) \operatorname{tg}\left(\frac{\pi}{2 n}\right)+\pi}{8 m}$.
Since n is an integer, it follows that $\sin (n \pi)=0$, while $\cos (n \pi)=-1$ since n is an odd integer. Thus we have:

$$
P(m, n)=\frac{\pi}{2} .
$$

What if m is an odd integer

Let $r=\sin (m \theta / n)$, where $n>0$ and $m>n$ are relatively prime, odd integers.

- Graph is symmetric about every line which passes through the pole and self-intersections of the curve.
- Petal is symmetric about every line which passes through the pole and petal's peak, $y=\operatorname{tg}\left(\frac{(n+4 k) \pi}{2 m}\right) x$, where je $k=0,1,2$,
- Consider sectors from $\frac{(n-2 k-2) \pi}{2 m}$ to $\frac{(n-2 k) \pi}{2 m}$, where $k=0, \ldots, \frac{n-3}{2}$

The total shaded area is obtained by formula:

$$
P(m, n)=m\left[\sum_{k=0}^{\frac{n-3}{2}}(-1)^{k} \int_{\frac{(n-2 k-2) \pi}{2 m}}^{\frac{(n-2 k) \pi}{2 m}} \sin ^{2}\left(\frac{m \theta}{n}\right) d \theta+(-1)^{\frac{n-1}{2}} \int_{0}^{\frac{\pi}{2 m}} \sin ^{2}\left(\frac{m \theta}{n}\right) d \theta\right]
$$

After integration and summation we have:

$$
P(m, n)=\frac{m\left[2\left(i^{n+1} n \sin \left(\frac{\pi}{n}\right)+n \operatorname{tg}\left(\frac{\pi}{n}\right)+\pi\right)-n \cos \left(\frac{n \pi}{2}\right) \sec \left(\frac{\pi}{n}\right)+n \cos \left(\frac{2 \pi}{n}-\frac{n \pi}{2}\right) \sec \left(\frac{\pi}{n}\right)\right]}{8 m} .
$$

After applying trigonometric identities we have:

$$
P(m, n)=\frac{n \operatorname{tg}\left(\frac{\pi}{n}\right)+\pi}{4} .
$$

What if n is an even integer?

Let $r=(\sin m \theta / n)$, where $n>0$ is an even integer, $m>n$ and n are relatively prime. Hence m is an odd integer.

- Graph is symmetric about every line which passes through the pole and self-intersections of the curve
- Petal is symmetric about every line which passes through the pole and petal's peak, $y=\operatorname{tg}\left(\frac{(n+2 k) \pi}{2 m}\right) x$, where $k=0,1,2$,
- Consider sectors from $\frac{(k-1) \pi}{2 m}$ to $\frac{k \pi}{2 m}$, where $k=1, \ldots, n$

The total shaded area is obtained by formula:

$$
P(m, n)=2 m\left[\sum_{k=1}^{n}(-1)^{k} \int_{\frac{(k-1) \pi}{2 m}}^{\frac{k \pi}{2 m}} \sin ^{2}\left(\frac{m \theta}{n}\right) d \theta\right]
$$

After integration and summation we have:

$$
P(m, n)=2 m \frac{\pi\left((-1)^{n}-1\right)+2 n \sin (n \pi)+2 n(\cos (n \pi)+1) \operatorname{tg}\left(\frac{\pi}{2 n}\right)}{8 m} .
$$

Since n is an integer, it follows that $\sin (n \pi)=0$, while $\cos (n \pi)=1$ since n is an even integer. Thus we have:

$$
P(m, n)=n \operatorname{tg}\left(\frac{\pi}{2 n}\right)
$$

We thank Luka Podrug for his help in preparing the poster.

Remarks

$P(m, n)$ tends to $\frac{\pi}{2}$ as n tends to infinity, whenever $P(m, n)$ is not a constant

