On a coloring problem in the plane Mirijam Demirović (joint work with T. Došlić)

Faculty of Science and Education, University of Mostar

Proposed problem

Generalization of proposed problem

Shown below (from left to right) are graphs of $r = \sin(4\theta/3)$ and $r = \sin(6\theta/5)$, where every other adjacent region (starting) from the outside) is shaded black. Find the total shaded area for any such graph $r = \sin(k+1)\theta/k$, where k > 0 is an odd integer and θ ranges from 0 to $2k\pi$. [1] [2]

About rhodonea curve

Rhodonea curve is a sinusoid specified by either the cosine or sine functions with no phase angle that is plotted in polar coordinates.

Let $r = \sin(m\theta/n)$, where n > 0 is an odd integer, m > n is an even integer, m and n are relatively prime.

- ► Graph is symmetric about every line which passes through the pole and self-intersections of the curve.
- ▶ Petal is symmetric about every line which passes through the pole and petal's peak, $y = \operatorname{tg}\left(\frac{(n+2k)\pi}{2m}\right)x$, where $k = 0, 1, 2, \dots$
- ► Consider sectors from $\frac{(k-1)\pi}{2m}$ to $\frac{k\pi}{2m}$, where k = 1, ..., n. The total shaded area is equal to $\frac{\pi}{2}$ and obtained by formula:

$$P(m,n) = 2m \left[\sum_{k=1}^{n} (-1)^{k+1} \int_{\frac{(k-1)\pi}{2m}}^{\frac{k\pi}{2m}} \sin^2\left(\frac{m\theta}{n}\right) d\theta \right].$$

After integration and summation we have:

$$P(m,n) = 2m \frac{\pi(-1)^{n+1} - 2n\sin(n\pi) - 2n(\cos(n\pi) + 1)\operatorname{tg}\left(\frac{\pi}{2n}\right) + \pi}{8m}.$$

Since n is an integer, it follows that $\sin(n\pi) = 0$, while $\cos(n\pi) = -1$ since n is an odd integer. Thus we have:

$$P(m,n) = \frac{\pi}{2}$$

- Let $r = \sin(m\theta/n)$, where n and m > n are relatively prime, non-zero integeres.
- ► Graph of rhodonea curve is composed of petals.
- ▶ Petal is the shape formed by the graph of a half-cycle of the sinusoid.
- A cycle is a portion of a sinusoid that is one period $T = 2n\pi/m$ long and consists of a positive half-cycle, the continuous set of points, $T/2 = n\pi/m$.
- For an even integer m, the curve will be rose-shaped with 2mpetals. For an odd integer m, the curve will be rose-shaped with m petals.

Consider the petal which is symmetric about the line $y = \operatorname{tg}\left(\frac{n\pi}{2m}\right) x$. All other petals are given by rotation of this petal about the pole by $\frac{k\pi}{m}$ radians.

Solution

What if m is an odd integer?

Let $r = \sin(m\theta/n)$, where n > 0 and m > n are relatively prime, odd integers.

▶ Petal is symmetric about every line which passes through the pole and petal's peak, $y = \operatorname{tg}\left(\frac{(n+4k)\pi}{2m}\right)x$, where je $k = 0, 1, 2, \dots$

► Consider sectors from
$$\frac{(n-2k-2)\pi}{2m}$$
 to $\frac{(n-2k)\pi}{2m}$, where $k = 0, ..., \frac{n-3}{2}$.

► Graph is symmetric about every line which passes through

▶ Petal is symmetric about every line which passes through

the pole and petal's peak, $y = \operatorname{tg}\left(\frac{(n+2k)\pi}{2m}\right)x$, where

► Consider sectors from $\frac{(k-1)\pi}{2m}$ to $\frac{k\pi}{2m}$, where k = 1, ..., n.

 $P(m,n) = 2m \left| \sum_{k=1}^{n} (-1)^k \int_{\frac{(k-1)\pi}{2m}}^{\frac{k\pi}{2m}} \sin^2\left(\frac{m\theta}{n}\right) d\theta \right|.$

the pole and self-intersections of the curve.

The total shaded area is obtained by formula:

The total shaded area is obtained by formula:

$$P(m,n) = m \left[\sum_{k=0}^{\frac{n-3}{2}} (-1)^k \int_{\frac{(n-2k-2)\pi}{2m}}^{\frac{(n-2k)\pi}{2m}} \sin^2\left(\frac{m\theta}{n}\right) d\theta + (-1)^{\frac{n-1}{2}} \int_0^{\frac{\pi}{2m}} \sin^2\left(\frac{m\theta}{n}\right) d\theta \right].$$

After integration and summation we have:

$$P(m,n) = \frac{m\left[2\left(i^{n+1}n\sin\left(\frac{\pi}{n}\right) + n\operatorname{tg}\left(\frac{\pi}{n}\right) + \pi\right) - n\cos\left(\frac{n\pi}{2}\right)\sec\left(\frac{\pi}{n}\right) + n\cos\left(\frac{2\pi}{n} - \frac{n\pi}{2}\right)\sec\left(\frac{\pi}{n}\right)\right]}{8m}$$

After applying trigonometric identities we have:

$$P(m,n) = \frac{n \operatorname{tg}\left(\frac{\pi}{n}\right) + \pi}{4}.$$

What if n is an even integer?

- ► Graph is symmetric about every line which passes through the pole and self-intersections of the curve.
- ▶ Petal is symmetric about every line which passes through the pole and petal's peak, $y = \operatorname{tg}\left(\frac{(k+2l)\pi}{2(k+1)}\right)x$, where $l = 0, 1, 2, \dots$ ► Consider sectors from $\frac{(l-1)\pi}{2(k+1)}$ to $\frac{l\pi}{2(k+1)}$, where l = 1, ..., n.
- The total shaded area is equal to $\frac{\pi}{2}$ and obtained by formula:

$$P(k+1,k) = 2(k+1) \left[\sum_{l=1}^{k} (-1)^{l+1} \int_{\frac{(l-1)\pi}{2(k+1)}}^{\frac{l\pi}{2(k+1)}} \sin^2 \left(\frac{(k+1)\theta}{k} \right) d\theta \right]$$

After integration and summation we have:

$$P(k+1,k) = \frac{\pi(-1)^{k+1} - 2k\sin(k\pi) - 2k(\cos(k\pi) + 1)\operatorname{tg}\left(\frac{\pi}{2k}\right) + \pi}{4}.$$

Since k is an integer, it follows that $sin(k\pi) = 0$, while $\cos(k\pi) = -1$ since k is an odd integer. Thus we have:

$$P(k+1,k) = \frac{\pi}{2}.$$

References

- 1. https://dresden.academic.wlu.edu/studentresearch/
- 2. G. Dresden, Problem 1221, College Math. J. 53 (2022) 152.

Let $r = (\sin m\theta/n)$, where n > 0 is an even integer, m > n and n are relatively prime. Hence m is an odd integer.

 $k = 0, 1, 2, \dots$

After integration and summation we have:

$$P(m,n) = 2m \frac{\pi((-1)^n - 1) + 2n\sin(n\pi) + 2n(\cos(n\pi) + 1)\operatorname{tg}\left(\frac{\pi}{2n}\right)}{8m}.$$

teger, it follows that $\sin(n\pi) = 0$, while $\cos(n\pi) = 1$ since *n* is an even integer.

Since n is an in

$$P(m,n) = n \operatorname{tg}\left(\frac{\pi}{2n}\right)$$

Remarks

P(m,n) tends to $\frac{\pi}{2}$ as n tends to infinity, whenever P(m,n) is not a constant.

