Pairwise balanced designs and periodic Golay pairs

Doris Dumičić Danilović

e-mail: ddumicic@math.uniri.hr

Faculty of mathematics
University of Rijeka, Croatia

(joint work with D.Crnković, A.Švob (each from Faculty of mathematics, UNIRI) and R.Egan (Dublin City University, Ireland))

4th Croatian Combinatorial Days
Zagreb, September 22-23, 2022
*This work has been supported by Croatian Science Foundation under the project no. 6732.

- D. Crnković, D. Dumičić Danilović, R. Egan, A. Švob, Periodic Golay pairs and pairwise balanced designs, J. Algebraic Combin. 55 (2022), 245-257.

Periodic Golay pair

Let $a=\left[a_{0}, \ldots, a_{v-1}\right]$ be a $\{ \pm 1\}$-sequence of length v.
The periodic autocorrelation function of a for a given shift s is defined to be $\operatorname{PAF}_{s}(a)=\sum_{i=0}^{v-1} a_{i} a_{i+s}$.

Periodic Golay pair

Let $a=\left[a_{0}, \ldots, a_{v-1}\right]$ be a $\{ \pm 1\}$-sequence of length v.
The periodic autocorrelation function of a for a given shift s is defined to be $\operatorname{PAF}_{s}(a)=\sum_{i=0}^{v-1} a_{i} a_{i+s}$.

For example: $s=2, v=8, a=[-1,1,-1,1,1,-1,1,-1] \rightarrow \operatorname{PAF}_{2}(a)=0$

a_{0}	a_{1}	a_{2}	\ldots	a_{6}	a_{7}	$=$	-1	1	-1	1	1	-1	1	-1
a_{2}	a_{3}	a_{4}	\ldots	a_{0}	a_{1}	$=$	-1	1	1	-1	1	-1	-1	1

Periodic Golay pair

Let $a=\left[a_{0}, \ldots, a_{v-1}\right]$ be a $\{ \pm 1\}$-sequence of length v.
The periodic autocorrelation function of a for a given shift s is defined to be $\operatorname{PAF}_{s}(a)=\sum_{i=0}^{v-1} a_{i} a_{i+s}$.

For example: $s=2, v=8, a=[-1,1,-1,1,1,-1,1,-1] \rightarrow \operatorname{PAF}_{2}(a)=0$

a_{0}	a_{1}	a_{2}	\ldots	a_{6}	a_{7}	$=$	-1	1	-1	1	1	-1	1	-1
a_{2}	a_{3}	a_{4}	\ldots	a_{0}	a_{1}	$=$	-1	1	1	-1	1	-1	-1	1

A pair (a, b) of $\{ \pm 1\}$-sequences is a periodic Golay pair $(\operatorname{PGP}(v))$ if $\operatorname{PAF}_{s}(a)+\operatorname{PAF}_{s}(b)=0$ for all $1 \leq s \leq v-1$.

Periodic Golay pair

Let $a=\left[a_{0}, \ldots, a_{v-1}\right]$ be a $\{ \pm 1\}$-sequence of length v.
The periodic autocorrelation function of a for a given shift s is defined to be $\operatorname{PAF}_{s}(a)=\sum_{i=0}^{v-1} a_{i} a_{i+s}$.

For example: $s=2, v=8, a=[-1,1,-1,1,1,-1,1,-1] \rightarrow \operatorname{PAF}_{2}(a)=0$

a_{0}	a_{1}	a_{2}	\ldots	a_{6}	a_{7}	$=$	-1	1	-1	1	1	-1	1	-1
a_{2}	a_{3}	a_{4}	\ldots	a_{0}	a_{1}	$=$	-1	1	1	-1	1	-1	-1	1

A pair (a, b) of $\{ \pm 1\}$-sequences is a periodic Golay pair $(\operatorname{PGP}(v))$ if $\operatorname{PAF}_{s}(a)+\operatorname{PAF}_{s}(b)=0$ for all $1 \leq s \leq v-1$.

PGP(v)

$\operatorname{PGP}(v)$ - set of all periodic Golay pairs of length v.

PGP(v)

$\operatorname{PGP}(v)$ - set of all periodic Golay pairs of length v.

- M. J. E. Golay, Multi-Slit Spectrometry, J. Opt. Soc. Am. 39 (1949), 437-444.
- D. Ž. Doković, I. S. Kotsireas, Some new periodic Golay pairs, Numer. Algor. 69 (2015), 523-530.

PGP(v)

$\operatorname{PGP}(v)$ - set of all periodic Golay pairs of length v.

- M. J. E. Golay, Multi-Slit Spectrometry, J. Opt. Soc. Am. 39 (1949), 437-444.
- D. Ž. Doković, I. S. Kotsireas, Some new periodic Golay pairs, Numer. Algor. 69 (2015), 523-530.

Recent progress on PGPs:
(1) D. Ž. Doković, I. S. Kotsireas, Periodic Golay Pairs of Length 72, in: C. J. Colbourn, (Ed.), Algebraic Design Theory and Hadamard Matrices, Springer Proceedings in Mathematics and Statistics, vol 133, Springer, Cham, 2015, pp. 83-92.
(2) D. Ž. Đoković, I. S. Kotsireas, Some new periodic Golay pairs, Numer. Algor. 69 (2015), 523-530.
(3) D. Ž. Đoković, I. S. Kotsireas, Compression of periodic complementary sequences and applications, Des. Codes Cryptogr. 74 (2015), 365-377.

Pairwise balanced design

Let K be a set of positive integers.
A pairwise balanced design $\operatorname{PBD}(v, K, \lambda)$ is a finite incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ where \mathcal{P} and \mathcal{B} are disjoint sets and $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{B}$, with the following properties:

- $|\mathcal{P}|=v$,
- if an element of \mathcal{B} is incident with k elements of \mathcal{P}, then $k \in K$,
- every pair of distinct elements of \mathcal{P} is incident with exactly λ elements of \mathcal{B}.

Elements of \mathcal{P} and \mathcal{B} are called points and blocks, respectively.

Pairwise balanced design

Let K be a set of positive integers.
A pairwise balanced design $\operatorname{PBD}(v, K, \lambda)$ is a finite incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ where \mathcal{P} and \mathcal{B} are disjoint sets and $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{B}$, with the following properties:

- $|\mathcal{P}|=v$,
- if an element of \mathcal{B} is incident with k elements of \mathcal{P}, then $k \in K$,
- every pair of distinct elements of \mathcal{P} is incident with exactly λ elements of \mathcal{B}.

Elements of \mathcal{P} and \mathcal{B} are called points and blocks, respectively.
Example: $\operatorname{APBD}(v,\{k\}, \lambda)$ is also known as a balanced incomplete block design (BIBD) and is denoted as a 2-($v, k, \lambda)$ design.

Pairwise balanced design

Let K be a set of positive integers.
A pairwise balanced design $\operatorname{PBD}(v, K, \lambda)$ is a finite incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ where \mathcal{P} and \mathcal{B} are disjoint sets and $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{B}$, with the following properties:

- $|\mathcal{P}|=v$,
- if an element of \mathcal{B} is incident with k elements of \mathcal{P}, then $k \in K$,
- every pair of distinct elements of \mathcal{P} is incident with exactly λ elements of \mathcal{B}.

Elements of \mathcal{P} and \mathcal{B} are called points and blocks, respectively.
Example: $\operatorname{APBD}(v,\{k\}, \lambda)$ is also known as a balanced incomplete block design (BIBD) and is denoted as a 2-($v, k, \lambda)$ design.

Incidence matrix
An incidence matrix of a finite incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ is a $\{0,1\}$ matrix $M=\left[m_{i, j}\right]$ of type $|\mathcal{P}| \times|\mathcal{B}|$ defined by the rule

$$
m_{i, j}= \begin{cases}1, & \text { if }\left(P_{i}, B_{j}\right) \in \mathcal{I} \\ 0, & \text { if }\left(P_{i}, B_{j}\right) \notin \mathcal{I}\end{cases}
$$

Incidence matrix
An incidence matrix of a finite incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ is a $\{0,1\}$ matrix $M=\left[m_{i, j}\right]$ of type $|\mathcal{P}| \times|\mathcal{B}|$ defined by the rule

$$
m_{i, j}= \begin{cases}1, & \text { if }\left(P_{i}, B_{j}\right) \in \mathcal{I} \\ 0, & \text { if }\left(P_{i}, B_{j}\right) \notin \mathcal{I}\end{cases}
$$

- Isomorphism between designs
- Automorphism of a design $\mathcal{D} ; \operatorname{Aut}(\mathcal{D})$

The main result

- By constructing PBDs with appropriate parameters and a presumed cyclic automorphism group, we can construct PGPs.
- We completely classified PBDs with appropriate parameters and a presumed cyclic automorphism group, which correspond to $\operatorname{PGP}(v) s$ for all $v \leq 34$, and we noted that there are no periodic Golay pairs of length 36 and 38.
- We constructed a new $\operatorname{PGP}(74)$.

PBDs and periodic Golay pairs

Let $(a, b) \in \operatorname{PGP}(v)$, and let A and B be the circulant matrices with first rows a and b, respectively.
Then $\left[\begin{array}{ll}A & B\end{array}\right]$ is a $v \times 2 v$ matrix where the dot product of any two distinct rows is zero, i.e. the top half of a Hadamard matrix.

PBDs and periodic Golay pairs

Let $(a, b) \in \operatorname{PGP}(v)$, and let A and B be the circulant matrices with first rows a and b, respectively.
Then $\left[\begin{array}{ll}A & B\end{array}\right]$ is a $v \times 2 v$ matrix where the dot product of any two distinct rows is zero, i.e. the top half of a Hadamard matrix.

By replacing each 1 with 0 and each -1 with 1 in $\left[\begin{array}{ll}A & B\end{array}\right]$, an incidence matrix $\left[\begin{array}{ll}A^{\prime} & B^{\prime}\end{array}\right]$ of a $\operatorname{PBD}\left(v,\left\{k_{a}, k_{b}\right\}, \lambda\right)$ is obtained.
If the blocks label the columns and points label the rows of $\left[\begin{array}{ll}A^{\prime} & B^{\prime}\end{array}\right]$ we have v points, each incident with $r=k_{a}+k_{b}$ blocks and any pair of points is incident with $\lambda=r-\frac{v}{2}$ blocks.

PBDs and periodic Golay pairs

Example: $(a, b) \in \operatorname{PGP}(10)$
$\overline{a=[-1,-1,1,1,1,1,-1,1,-1,1]}, \quad b=[-1,-1,1,1,1,1,1,-1,1,1]$

1	1	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0
1	0	1	1	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	1
0	1	0	1	1	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0
1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	0	0	0	0
0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	0	0	0
0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	0	0
0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	0
0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1
1	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1

PBDs and periodic Golay pairs

Example: $(a, b) \in \operatorname{PGP}(10)$

$$
a=[-1,-1,1,1,1,1,-1,1,-1,1], \quad b=[-1,-1,1,1,1,1,1,-1,1,1]
$$

1	1	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0
1	0	1	1	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	1
0	1	0	1	1	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0
1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	0	0	0	0
0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	0	0	0
0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	0	0
0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	0
0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1
1	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1

$\mathcal{D}=\operatorname{PBD}(10,\{4,3\}, 2)$ with $k_{a}=4, k_{b}=3, r=7$ and $C_{10} \leq \operatorname{Aut}(\mathcal{D})$.

PBDs and periodic Golay pairs

Example: $(a, b) \in \operatorname{PGP}(10)$

$$
a=[-1,-1,1,1,1,1,-1,1,-1,1], \quad b=[-1,-1,1,1,1,1,1,-1,1,1]
$$

1	1	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0
1	0	1	1	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	1
0	1	0	1	1	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0
1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	0	0	0	0
0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	0	0	0
0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	0	0
0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	0
0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1
1	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1

$\mathcal{D}=\operatorname{PBD}(10,\{4,3\}, 2)$ with $k_{a}=4, k_{b}=3, r=7$ and $C_{10} \leq \operatorname{Aut}(\mathcal{D})$.
So, by constructing $\operatorname{PBD}(v, K, \lambda)$ with presumed automorphism group C_{v} acting transitively on points and with two orbits on the set of blocks, we can construct the corresponding PGP.

Construction of PBDs - tactical decomposition

- Z. Janko, Coset enumeration in groups and constructions of symmetric designs, Combinatorics '90 (Gaeta, 1990), Ann. Discrete Math. 52 (1992), 275-277.
- D. Crnković, Symmetric $(70,24,8)$ designs having Frob $_{21} \times Z_{2}$ as an automorphism group, Glas. Mat. Ser. III 34 (54) (1999), 109-121.

Construction of PBDs - tactical decomposition

- Z. Janko, Coset enumeration in groups and constructions of symmetric designs, Combinatorics '90 (Gaeta, 1990), Ann. Discrete Math. 52 (1992), 275-277.
- D. Crnković, Symmetric $(70,24,8)$ designs having Frob $_{21} \times Z_{2}$ as an automorphism group, Glas. Mat. Ser. III 34 (54) (1999), 109-121.

Let \mathcal{D} be a $\operatorname{PBD}(v, K, \lambda)$ with a replication number r, and $G \leq \operatorname{Aut}(\mathcal{D})$. G-orbits of points $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m}, G$-orbits of blocks $\mathcal{B}_{1}, \ldots, \mathcal{B}_{n}$, and $\left|\mathcal{P}_{i}\right|=\omega_{i},\left|\mathcal{B}_{j}\right|=\Omega_{j}, 1 \leq i \leq m, 1 \leq j \leq n$, and $\gamma_{i j}$ is the number of blocks of \mathcal{B}_{j} incident with a representative of the point orbit \mathcal{P}_{i}.

The following equalities hold:

$$
\begin{align*}
& 0 \leq \gamma_{i j} \leq \Omega_{j}, \quad 1 \leq i \leq m, 1 \leq j \leq n \tag{1}\\
& \sum_{j=1}^{n} \gamma_{i j}=r, \quad 1 \leq i \leq m \tag{2}\\
& \sum_{i=1}^{m} \frac{\omega_{i}}{\Omega_{j}} \gamma_{i j} \in K, \quad 1 \leq j \leq n \tag{3}\\
& \sum_{j=1}^{n} \frac{\omega_{t}}{\Omega_{j}} \gamma_{s j} \gamma_{t j}=\lambda \omega_{t}+\delta_{s t} \cdot(r-\lambda), \quad 1 \leq s, t \leq m \tag{4}
\end{align*}
$$

A $(m \times n)$-matrix $M=\left(\gamma_{i j}\right)$ with entries satisfying conditions $(1)-(4)$ is called a point orbit matrix of a pairwise balanced design $\operatorname{PBD}(v, K, \lambda)$ with orbit length distributions $\left(\omega_{1}, \ldots, \omega_{m}\right)$ and $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$.

Main construction

The construction of PBDs corresponding to PGPs of length v using orbit matrices:

Main construction

The construction of PBDs corresponding to PGPs of length v using orbit matrices:
(1) Find all possible combinations of numbers k_{a} and k_{b} of a $\operatorname{PBD}\left(v,\left\{k_{a}, k_{b}\right\}, \lambda\right)$ corresponding to PGPs. For a fixed combination of such numbers k_{a} and k_{b}, we are proceeding with the construction of PBD. The cyclic group $G \cong C_{v}$ acts transitively on points and has two orbits on the set of blocks. For the cyclic group G there is exactly one orbit matrix $M=\left[\begin{array}{ll}k_{a} & k_{b}\end{array}\right]$.

Main construction

The construction of PBDs corresponding to PGPs of length v using orbit matrices:
(1) Find all possible combinations of numbers k_{a} and k_{b} of a
$\operatorname{PBD}\left(v,\left\{k_{a}, k_{b}\right\}, \lambda\right)$ corresponding to PGPs.
For a fixed combination of such numbers k_{a} and k_{b}, we are proceeding with the construction of PBD. The cyclic group $G \cong C_{v}$ acts transitively on points and has two orbits on the set of blocks. For the cyclic group G there is exactly one orbit matrix $M=\left[\begin{array}{ll}k_{a} & k_{b}\end{array}\right]$.
(2) Construction of $\operatorname{PBDs}\left(v,\left\{k_{a}, k_{b}\right\}, \lambda\right)$ for the orbit matrix M. A principal series $\{1\}=G_{0} \triangleleft G_{1} \triangleleft G_{2} \triangleleft \ldots \triangleleft G_{n}=G, G_{i} \cong C_{v_{1}} \times \ldots \times C_{v_{i}}$, of the group G can be used to construct refinements of the matrix M.
In ith iteration of the refinements we construct all the orbit matrices for the group G_{n-i}, having in mind the action of the group G.In the last iteration we obtain the orbit matrices for the trivial group i.e. incidence matrices of $\operatorname{PBDs}\left(v,\left\{k_{a}, k_{b}\right\}, \lambda\right)$.

- D. Ž. Doković, I. S. Kotsireas, Compression of periodic complementary sequences and applications, Des. Codes Cryptogr. 74 (2015), 365-377.
- $\operatorname{PGP}(v)$ for $v>1$ can exist only if v is even.
- Length v of a $\operatorname{PGP}(v)$ must be a sum of two squares.
- If there exists a $\operatorname{PGP}(v)$ where $v=p^{t} u>1, p \equiv 3 \bmod 4$ is prime, and $\operatorname{gcd}(p, u)=1$, then $u \geq 2 p^{t / 2}$. (Arasu, Xiang, 1992.)
- If $(a, b) \in \operatorname{PGP}(v)$, then where r_{a} and r_{b} denote the sum of the entries in a and b respectively, it holds that $r_{a}^{2}+r_{b}^{2}=2 v$. It follows that we can limit the possible choices of k_{a} and k_{b} so that $2\left(k_{a}-\frac{v}{2}\right)^{2}+2\left(k_{b}-\frac{v}{2}\right)^{2}=v$.

Isomorph rejection

For isomorph rejection we use the elements of the normalizer $N_{S}(G)$ of the group $G \cong C_{v}$ in $\operatorname{Sym}(v)$.

Given a periodic Golay pair (a, b) of length v, we can construct a new periodic Golay pair of length v by applying certain equivalence operations.

- D. Ž. Doković, Equivalence classes and representatives of Golay sequences, Discrete Math. 189 (1998), 79-93.
- R. Egan, On equivalence of negaperiodic Golay pairs, Des. Codes Cryptogr., 85 (2017), 523-532.

Equivalence operations on PGPs

Let C be the circulant $v \times v$ matrix

$$
\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & & 0 & 0 \\
0 & 0 & 0 & & 0 & 0 \\
\vdots & & & \ddots & & \vdots \\
0 & 0 & 0 & & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right] .
$$

We define that two periodic Golay pairs (a, b) and (c, d) of length v are equivalent if (c, d) is obtained from (a, b) by any combination of the following operations:
(1) Swap a and b.
(2) Replace a with $a C$.
(3) Reverse a.
(9) For any $k<v$ coprime to v replace both a and b with $\left[a_{k i}\right]_{0 \leq i \leq v-1}$ and $\left[b_{k i}\right]_{0 \leq i \leq v-1}$ respectively (decimation of a and b).
(3) Negate every odd indexed entry of both a and b.

Results

With the construction of PBDs using orbit matrices all equivalence classes of PGPs of length v are constructed.

PBD classifications corresponding to PGPs

v	4	8	10	16	20	26	32	34	40
Isom.classes	3	4	8	62	448	816	10208	5856	≥ 565

The number of equivalence classes of PGPs of length v :

v	2	4	8	10	16	20	26	32	34	40
Classes	1	1	2	1	11	34	53	838	373	≥ 323

All our results:
http://www.math.uniri.hr/~ddumicic/results/PGpairs_PBDs.html

Results on PGP of length 74

The first two noneqivalent PGP(74) were constructed by:

- D. Ž. Đoković, I. S. Kotsireas, Some new periodic Golay pairs, Numer. Algor. 69 (2015), 523-530.

A search for pairs using the orbit matrix $M=\left[\begin{array}{ll}k_{a} & k_{b}\end{array}\right]=\left[\begin{array}{ll}38 & 43\end{array}\right]$ of a $\operatorname{PBD}(74,\{38,43\}, 42)$ with presumed automorphism group C_{74} returned a third inequivalent class represented by the pair:

$$
\begin{aligned}
& {\left[4,1^{2}, 5,1^{5}, 2,3,1^{4}, 2,3,1,2,3,2,1^{4}, 5,2^{3}, 1,2,1,2^{2}, 4,2,1^{3}, 2^{2}\right],} \\
& {\left[2^{2}, 5,2,1^{2}, 3^{2}, 1,7,5,1,2,1^{2}, 2^{2}, 1^{4}, 2^{2}, 1,2,3,4,1,5,1^{3}, 4,1^{2}\right] .}
\end{aligned}
$$

(Notation: For example the sequence $[1,1,-, 1,-,-,-, 1,-, 1,-]$ would be written as [$\left.2,1^{2}, 3,1^{4}\right]$).

Results on PGP of length 90

- Existence of a PGP(90)?

Results on PGP of length 90

- Existence of a PGP(90)?

We used the orbit matrices of the corresponding $\operatorname{PBD}\left(90,\left\{k_{a}, k_{b}\right\}, \lambda\right)$ under the action of the cyclic automorphism group
$G \cong C_{90} \cong C_{2} \times C_{5} \times C_{9}$ which acts with the point and block orbit lengths distributions (90) and (90, 90), respectively.
$\operatorname{PBD}(90,\{39,42\}, 36), \operatorname{PBD}(90,\{39,48\}, 42), \operatorname{PBD}(90,\{42,51\}, 48)$ and $\operatorname{PBD}(90,\{48,51\}, 54)$

$$
\{1\} \triangleleft C_{5} \triangleleft C_{2} \times C_{5} \triangleleft C_{2} \times C_{5} \times C_{9}
$$

r	81	87	93	99
\# orbit matrices for $C_{2} \times C_{5}$	362	361	356	363
\# orbit matrices for C_{5}	16232	15331	16536	15330

Thank you for your attention!

