
Practical computations with indefinite forms

Mathieu Dutour Sikiric

Institute Rudjer Boskovic

Definition and problems considered

We work with integral quadratic forms A defined on Zn with
signature (p, q). We consider following questions:

1. Compute a generating set of the group of inversible integral
transformations preserving A.

2. Given two forms A1 and A2 test if there is an inversible
integral transformation ϕ such that A2[x] = A1[ϕ(x)].

3. Given C ̸= 0 find the orbit representatives of solutions of
A[x] = C .

4. Find the orbit representatives of solutions of A[x] = 0 with x
primitive.

5. For k ≥ 2 find the orbit representatives of k totally isotropic
spaces.

The example that guide us is U + U(2) + E8(−2) for Moduli of
polarized Enriques surfaces – computational aspects, Mathieu
Dutour Sikirić and Klaus Hulek, in preparation.

General plan of the method

1. For positive definite and hyperbolic forms there are well
known techniques.

2. The integral group algorithms that are used everywhere.

3. The general indefinite case p, q ≥ 2.

4. The indefinite LLL speedup.

5. Isotropic vectors and k-planes.

6. Bonus: The equivariant edgewalk algorithm

All the techniques here are relatively elementary. The code is
implemented in GAP and C++.

I. Positive definite
and hyperbolic cases

Solution for positive definite (and positive negative) forms

▶ For positive definite forms, the Plesken-Souvignier algorithm
allows to test isomorphism and computing automorphism
group of positive forms.

▶ The method uses short vectors, that is computes the following
set of vectors for some λ:

Minλ(A) =

{
x ∈ Zn s.t.
A[x] ≤ λ

}
Example: For A2 lattice:(

2 1
1 2

) v
1

v
2

▶ Once we have the automorphism group we can compute the
orbit representatives of solutions of A[x] = C .

Hyperbolic cones

▶ We have a quadratic form A of signature (1, n − 1).

▶ We define the positive set

C = {x ∈ Rn − {0} s.t. A[x] ≥ 0} .

It splits into two connected components C1 and C2. We select
one and call it C+.

−

+

▶ What we work with is the integral part of this set: C+ ∩ Zn.

▶ The perfect forms correspond to the facets of conv(C+ ∩ Zn).

▶ The perfect forms have a finite number of vertices and a finite
stabilizer group.

▶ There is a finite number of perfect forms up to equivalence.

Voronoi algorithm

▶ Take again A a quadratic form of signature (1, n − 1).
▶ Suppose we have a perfect form P from a known list P with

vertices {v1, . . . , vm} with a defining linear functional lP . Then
we can compute the facets of P. From each facet F we can
▶ Compute the two-dimensional space of linear forms that

contains F in their kernel.
▶ Find the linear form that correspond to the perfect form P ′

adjacent to P on F (lifting procedure).
▶ Check if the obtained perfect form P ′ is equivalent to one we

already have. If not, insert in into P.

▶ An initial perfect form can be computed by applying the
lifting procedure, starting from just one vector and getting
upward in dimension.

▶ This is a direct analog of the Voronoi algorithm for perfect
forms in Euclidean space.

Solution of the automorphism group/equivalence problems

▶ If two forms are equivalent, then their cones C+ ∩ Zn are also
equivalent and so the perfect forms are matching.

▶ Therefore, given two forms A1 and A2 it suffices to compute
one perfect form C 1 for A1 and enumerate the perfect forms
C 2
i of A2. Then test whether one of the C 2

i is isomorphic to
C 1.

▶ A generating set of the automorphism group Aut(L) is
obtained by taking:

1. Generating sets of the stabilizer of each perfect forms Ci of L.
2. The equivalences obtained when applying Voronoi algorithm.

➠ Michael H. Mertens, Automorphism groups of hyperbolic
lattices, Journal of Algebra 408 (2014) 147–165

Enumerating vector representatives
▶ From the perfect cones we can get the vectors of zero

(isotropic vectors are vertices) and positive norm (by
copositive programming enumeration):

A[x] < 0

A[x] > 0

A[x] = 0

▶ By using the polyhedral structure given by the perfect forms,
identify the orbits by bookkeeping.

▶ An alternative strategy for testing isomorphism of two vectors
x and y is to compute their orthogonal lattice x⊥ and y⊥

check existence of an isomorphism ϕ and if so:
1. If x , y are isotropic then extend ϕ from x⊥ to y⊥ and check

for integrality.
2. If x , y are of positive norm, extend ϕ from Zx + x⊥ and

Zy + y⊥ and int. check.
▶ For negative norms, no known strategies.

II. Integral group
algorithms

Linear symmetry groups of a vector configuration

▶ We work with full dimensional vector configuration (vi)1≤i≤N

in Rn.

▶ The linear symmetry group Lin((vi)) is the group of
transformations σ ∈ Sym(N) such that there exist
A ∈ GLn(R) with Avi = vσ(i).

▶ Define the form

Q =
N∑
i=1

tvivi

▶ Define the edge colored graph E ((vi)) on N vertices with
vertex and edge color

cij = viQ
−1tvj

▶ The automorphism group of the edge colored graph is
Lin((vi)).

Integral groups problems

We will need to resolve many times following kind of problems for
a group G ⊂ GLn(Q):

1. Compute the intersection G ∩ GLn(Z).
2. For h ∈ GLn(Q) find g ∈ G such that gh ∈ GLn(Z) if it exists.
3. Compute the right cosets of G ∩ GLn(Z) in G .

Notes:

▶ For a general group G there is no reason to expect an
algorithm to exist.

▶ What we require for it to work is that there exist a lattice
L ⊂ Zn which is preserved by G .

▶ This condition is satisfied by finite groups and all groups of
this study.

Computing G ∩ GLn(Z)
▶ Let L be an integral lattice left invariant by G .

▶ We express G within L and it becomes an integral linear
group.

▶ The lattice L′ = Zn satisfies L ⊂ L′.

▶ Define d the smallest integer such that L ⊂ L′ ⊂ 1
d L.

▶ We have a natural mapping of G into GLn(Zd) and L′

corresponds to a subset of (Zd)
n.

▶ We can apply the partition backtracking technique and find
the stabilizer of L′. Remarks:
▶ If the group is infinite we have to use Schreier’s Lemma which

leads to huge generating sets, for finite groups, this is simpler.
▶ We can go prime by prime in the prime factorization of d .
▶ We can go orbit of vector by orbit of vector in L′.
▶ We can also use subspace filtration if known.
▶ Sometimes those techniques are insufficient.

▶ An alternative approach is to compute the stabilizer directly
by computing the orbit of L′ under G .

III. Full indefinite case
p, q ≥ 2

Exceptional isomorphisms
▶ Define the Lie group SO(p, q) to be the group of real

automorphisms of a quadratic form of signature (p, q) of
determinant 1. Then we have the exceptional isomorphisms:
SO(2, 2) = SL(2,R)2 SO(2, 1) = SL(2,R)
SO(3, 1) = SL(2,C) SO(4, 1) = Sp(1, 1)
SO(5, 1) = SU∗(4) SO(3, 2) = Sp(2,R)
SO(3, 3) = SL(4,R) SO(4, 2) = SU(2, 2)

▶ What we use for later is SO(2, 2) = SL(2,R)× SL(2,R).
▶ Define M2(R) the set of 2× 2-matrices. We have

det

(
a b
c d

)
= ad−bc = (abcd)

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

a
b
c
d

 /2

▶ So, M2(R) equipped with det is of signature (2, 2) and
multiplication on the left right by matrices of determinant 1
preserve it which gives us the identification.

Eichler’s criterion

▶ Defines U the quadratic form

(
0 1
1 0

)
which corresponds to

an hyperbolic plane.
▶ Eichler’s criterion applies to lattices of the form

L = U +U +W with W an even lattice (integral and even on
the diagonal). It gives:
▶ A set of generators named Eicher’s transvection that defines a

subgroup K of O(L).
▶ For each h ̸= 0 a finite list of orbit representatives and for

h = 0 of primitive orbit representatives for the group K .

▶ As far as I know there is no other general results. It would be
nice to use the exceptional isomorphism SO(2, 1) = SL(2,R)
to solve the hyperbolic case faster.

Approximate models

▶ For a lattice L an approximate model is an algorithm that do
the following:
▶ Provide a finite set of generators of Aut(L) that generates an

approximate symmetry group Ap(L)
▶ Provide an oracle function Ap(L, h) that given h ̸= 0 returns a

finite list v1, . . . , vk(h) such that any vector of norm β is
equivalent by Ap(L) to one of the vi . For h = 0 the oracle
function returns a list of primitive vectors of norm 0 such that
any primitive vector of norm 0 is equivalent to one such vector
by an element of Ap(L). The vi are named the approximate
orbit representatives.

▶ Example: Eichler’s criterion provides an approximate model
for U + U +W .

▶ If we have a finite index subgroup then it would provide an
approximate symmetry group. But we need an algorithm
which is typically not known.

Approximate model for a sublattice
Theorem: Suppose L′ and L are two lattices of rank n with L′ ⊂ L
and we have an approximate model for L. Then we have an
approximate model for L′.

▶ We can compute the stabilizer S of L′ under Ap(L) by the
integral group algorithms.

▶ We compute the right coset decomposition of Ap(L) under S
with coset representatives g1, . . . , gm.

▶ For h ∈ R, the approximate model of L gives us
representatives x1, . . . , xt of the orbits of vectors of norm h.

▶ We then considers all the elements of the form gjxi and keep
the ones that are contained in L′. This gets us our
approximate orbit representatives Ap(L′, h)

Cor: U(c) + U(d) +W has an approximate model since we have
an embedding L ⊂ U + U +W by the formula

(x1, x2, y1, y2,w) 7→ (cx1, x2, dy1, y2,w)

Finding approximate models
Take a lattice L of dimension greater than 7.

▶ Take the dual L∗.

▶ It has at least two isotropic vectors v1, v2 (we can use Denis
Simon program to find them) which we can assume not
orthogonal.

▶ Apply the same argument to L∗∩ (Zv1+Zv2)⊥ and get v3, v4.

▶ Define K = L∗ ∩ (Zv1 + Zv2 + Zv3 + Zv4)⊥, take the dual
and obtain

L ⊂ U(c) + U(d) + K ∗

▶ We find a factor α > 0 such that K ∗(α) is even, αc and αd
are integers.

▶ We then have the embedding

U(αc) + U(αd) + K ∗(α) ⊂ U + U + K ∗(α)

and we have an approximate model

This is not an optimal construction.

The recursion on s(L) = min(p, q)

▶ Suppose that L is a lattice of signature (p, q) with p ≤ q.

▶ Select h > 0 such that there exist vectors of norm h. Compute
the approximate list of orbit representatives x1, . . . , xm.

▶ For such a vector x , computes the orthogonal lattice x⊥ for
which s(x⊥) = s(L)− 1.

▶ Compute the automorphism group of x⊥, computes its
embedding in Aut(Zx + x⊥) and then use the integral group
algorithm.

▶ For each pairs of orbit representatives, xi and xj test
equivalence of x⊥i and x⊥j and whether this extends to an
automorphism of L.

▶ All together, this gets us a generating set of the
automorphism group of L.

Similarly we can solve the equivalence problem and the problem of
resolving A[x] = h for h ̸= 0. For isotropic questions, more is
needed.

IV. Indefinite LLL
speedup

Memoization technique

▶ The recursive nature of the algorithm makes its practical
usage expensive.

▶ Most of our computations had been done for lattices with
s(L) = 2 and only once for a lattice with s(L) = 3.

▶ Memoization techniques rely on computing something and
keeping the result of the computation in memory so that it
can be retrieved when needed.

▶ For example for computing automorphism group, we could
keep the result of an automorphism group computation.

▶ So, if we have Aut(L) and kept it and want to compute again
Aut(L) we could use the stored value.

▶ But what about computing Aut(L′) for a new lattice L′ which
could be equivalent to L?

▶ Testing exactly for isomorphism is about as hard as computing
Aut(L′).

The indefinite LLL algorithm

▶ The LLL algorithm is a tremendous tool for simplifying
existing geometrical problem.

▶ The idea of indefinite LLL (by Denis Simon) is simply to
replace A[x] by |A[x]|.

▶ If we find an isotropic vector in the computation then we
randomly shuffle the vectors and iterate until we do not get
any further reduction in L1 norm of A.

▶ The simplified matrix is then canonicalized by action of the
group Sym(n)× Zn

2 on its coefficients.

▶ This gets us an approximate canonical form.

▶ If the approximate canonical form matches then we can use
the result of previous computations.
If not, then well we recompute, no harm.

V. Isotropic vectors
(and k-spaces)

The fundamental lemma

Lemma: If v is an isotropic vector in L then any automorphism of
v⊥ extend to a rational automorphism of L.

▶ Define H = v⊥ and g an isometry of H.

▶ We want to extend it to an isometry of L.

▶ We select a vector u not in H which gets us

g(u).g(w) = u.w for w ∈ H

▶ Thus g(u) = u′ + Cv for some C ∈ R with u′ /∈ H.

▶ g(u).g(u) = u.u is a linear equation with a unique solution
because v is isotropic and u′.v ̸= 0.

▶ So extension is unique but may not be integral.

Thus isotropic vectors are handled in the same way as
non-isotropic ones with the integral group algorithms.
Example: For U + U(2) + E8(−2) we found 2 orbits of lines.

Isotropic k-spaces with k > 1
We have e1, . . . , en a basis, Is = Zek+1 + · · ·+ Ze2k an isotropic
k-space and Is⊥ = Zek+1 + · · ·+ Zen. The lattice B is written
below with J diagonal, A non-degenerate and the automorphism P
stabilizing B as:

B =

 0 J 0
J 0 0
0 0 A

 ,P =

 P1 P2 P3

0 P4 0
0 P5 P6

▶ Entries P1 and P3 are uniquely determined by P4, P5 and P6.

▶ The equation for P2 is of the form P2J + JPT
2 = W .

▶ if k = 1 then we have an unique solution.

▶ If k > 1 then for given (P4,P5,P6) we have a continuous of
possible solutions.

▶ By selecting an adequate d the additional condition
P2 ∈ Mk(Z)/d still defines a group.

▶ So, we can apply the integral group algorithms.

Example: For U + U(2) + E8(−2) we found 2 orbits of planes.

VI. Equivariant edgewalk
algorithm (by Allcock)

The problem of hyperbolic lattices

▶ The most time intensive part of the algorithms deployed are:

1. The integer group algorithms.
2. The computation with hyperbolic lattices.

▶ One possible alternative would be to use Vinberg algorithm,
but it does not work in general:

1. For reflective lattices it works but they are very few such
lattices.

2. For non-reflective lattices, the fundamental domain has
infinitely many facets with an infinite group acting on it.

3. But: There are lattices without roots.
4. But: It is possible that there is no vertices.
5. But: The set of vertices with its adjacency relation may not be

connected

▶ Our prior is thus that one cannot use the structure of roots
for testing hyperbolic lattice isomorphism in general but it
may be useful in some cases.

The equivariant edgewalk algorithm

▶ The algorithm takes an integral hyperbolic form and returns:

1. A connected component C of the set of vertices of the
fundamental domain F of L.

2. A list of orbits of vertices of C .
3. A list of orbits of facets of F containing C in their incident

vertices.
4. A list of generating set of Stab(C ,Aut(L)).

➠ Daniel Allcock, An Alternative to Vinberg’s Algorithm,
math/arXiv:2110.03784

➠ https://github.com/MathieuDutSik/polyhedral_common

▶ If there is just one connected component of vertices then we
get a set of generating elements of Aut(L)/Cox(L).

▶ This could help getting the automorphism group of K3
surfaces.

THANK YOU

https://github.com/MathieuDutSik/polyhedral_common

