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Equidistant walks

Arithmetical progressions can be considered as equidistant walks
to infinity with a common difference d being "the length of the
step":

a, a + d , (a + d) + d , . . .

Example
Equidistant walks with the length of the step equal to 2:

1, 3, 5, 7, 9, . . .

2, 4, 6, 8, 10, . . .
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Grids of equidistant walks

A grid of odd numbers and a grid of alternate columns of odd and
even numbers, respectively:

1 3 5 · · ·
3 5 7 · · ·
5 7 9 · · ·
7 9 11 · · ·
...

...
... . . .

1 2 3 4 · · ·
3 4 5 6 · · ·
5 6 7 8 · · ·
7 8 9 10 · · ·
...

...
...

... . . .



Walks over grids

Given natural numbers R, D an (R, D)-walk is a walk that starts
anywhere in a grid: R gives a move to the right and D a move
down to get from one number of the walk to another.

There are:
▶ (R, 0)-walks or horizontal walks
▶ (0, D)-walks or vertical walks
▶ (R, D)-walks or diagonal walks (including a walk in a direction

of the main diagonal R = D)
A grid is called equidistant if all walks in it are equidistant.
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Equidistant grids made of equidistant walks of odd and
even numbers

1 6
3 8
5 10
7 12
9 14
11 16
...

...

−→

1 6 11 16 · · ·
3 8 13 18 · · ·
5 10 15 20 · · ·
7 12 17 22 · · ·
9 14 19 24 · · ·
11 16 21 26 · · ·
...

...
...

... . . .



Equidistant grids made of equidistant walks of odd and
even numbers

1 6
3 8
5 10
7 12
9 14
11 16
...

...

−→

1 6 11 16 · · ·
3 8 13 18 · · ·
5 10 15 20 · · ·
7 12 17 22 · · ·
9 14 19 24 · · ·
11 16 21 26 · · ·
...

...
...

... . . .



Equidistant grids made of alternate equidistant walks

Let us have two equidistant walks that start with a1 and a′
1 and

have lengths of the step equal to d , d ′, respectively. Let
s = a′

1 − a1, k be the shift up. One can form a grid:

a1 a′
1 a1 + kd a′

1 + kd ′ · · ·
a1 + d a′

1 + d ′ a1 + d(k + 1) a′
1 + d ′(k + 1) · · ·

a1 + 2d a′
1 + 2d ′ a1 + d(k + 2) a′

1 + d ′(k + 2) · · ·
a1 + 3d a′

1 + 3d ′ a1 + d(k + 3) a′
1 + d ′(k + 3) · · ·

...
...

...
... . . .

When is this grid an equidistant grid?
▶ a1 + kd − a′

1 = s iff kd = 2s
▶ a′

1 + kd ′ − (a1 + kd) = s iff d = d ′
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The number of equidistant grids for prime s
The condition dk = 2s relates the length of the step d of
equidistant walks in columns, the column shift k and the difference
s of initial terms.
For prime s, s ̸= 2, there are four possible cases for d and k:

▶ Cases d = 1, k = 2s and d = 2s, k = 1
▶ The case d = 2, k = s gives already treated equidistant grids:

a1 a1 + s a1 + 2s · · ·
a1 + 2 a1 + s + 2 a1 + 2s + 2 · · ·
a1 + 4 a1 + s + 4 a1 + 2s + 4 · · ·

...
...

... . . .
▶ The case d = s, k = 2 gives the equidistant grid of a

symmetrical layout:
a1 a1 + s a1 + 2s · · ·

a1 + s a1 + 2s a1 + 3s · · ·
a1 + 2s a1 + 3s a1 + 4s · · ·

...
...

... . . .
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The number of equidistant grids for composite s

The number of all ordered pairs (d , k) such that dk = 2s equals
the number D(2s) of all divisors of 2s.

Indeed, we can arrange prime factors of 2s to an increasing
sequence: p1, p2, . . . , pl−1, pl with l = D(2s), p1 = 1 and pl = 2s.
Then pairs of (d , k) are given by:
▶ (p1, pl), (p2pl−1), . . . and
▶ (pl , p1), (pl−1, p2), . . .

Remark: The sequence D(n) can be found in the On-Line
Encyclopedia of Integer Sequences with the label A000005.



The number of equidistant grids for composite s

The number of all ordered pairs (d , k) such that dk = 2s equals
the number D(2s) of all divisors of 2s.
Indeed, we can arrange prime factors of 2s to an increasing
sequence: p1, p2, . . . , pl−1, pl with l = D(2s), p1 = 1 and pl = 2s.
Then pairs of (d , k) are given by:
▶ (p1, pl), (p2pl−1), . . . and
▶ (pl , p1), (pl−1, p2), . . .

Remark: The sequence D(n) can be found in the On-Line
Encyclopedia of Integer Sequences with the label A000005.



The number of equidistant grids for composite s

The number of all ordered pairs (d , k) such that dk = 2s equals
the number D(2s) of all divisors of 2s.
Indeed, we can arrange prime factors of 2s to an increasing
sequence: p1, p2, . . . , pl−1, pl with l = D(2s), p1 = 1 and pl = 2s.
Then pairs of (d , k) are given by:
▶ (p1, pl), (p2pl−1), . . . and
▶ (pl , p1), (pl−1, p2), . . .

Remark: The sequence D(n) can be found in the On-Line
Encyclopedia of Integer Sequences with the label A000005.



List of all equidistant grids for s = 5, a1 = 1

There are four divisors of 2s = 10: 1, 2, 5, 10. There are also four
possible choices for (d , k): (1, 10), (10, 1), (2, 5) and (5, 2).

1 6 11 16 · · ·
2 7 12 17 · · ·
3 8 13 18 · · ·
...

...
...

... . . .

,

1 6 11 16 · · ·
11 16 21 26 · · ·
21 26 31 36 · · ·
...

...
...

... . . .

,

1 6 11 16 · · ·
3 8 13 18 · · ·
5 10 15 20 · · ·
...

...
...

... . . .

,

1 6 11 16 · · ·
6 11 16 21 · · ·
11 16 21 26 · · ·
...

...
...

... . . .

.



List of all equidistant grids for s = 6, a1 = 1
There are six divisors of 2s = 12: 1, 2, 3, 4, 6, 12 and six choices for
(d , k): (1, 12), (12, 1), (2, 6), (6, 2), (3, 4) and (4, 3).

1 7 13 19 · · ·
2 8 14 20 · · ·
3 9 15 21 · · ·
...

...
...

... . . .

,

1 7 13 19 · · ·
13 19 25 28 · · ·
25 31 37 40 · · ·
...

...
...

... . . .

,

1 7 13 19 · · ·
3 9 15 21 · · ·
5 11 17 23 · · ·
...

...
...

... . . .

,

1 7 13 19 · · ·
7 13 19 25 · · ·
13 19 25 31 · · ·
...

...
...

... . . .

,

1 7 13 19 · · ·
4 10 16 22 · · ·
7 13 19 25 · · ·
...

...
...

... . . .

,

1 7 13 19 · · ·
5 11 17 23 · · ·
9 15 21 27 · · ·
...

...
...

... . . .

.



Zigzag walks over two equidistant walks
The following walks are of interest:

a1 a′
1

a1 + d a′
1 + d

... ↘
...

a1 + rd a′
1 + rd

... ↙
...

a1 + (r + l)d a′
1 + (r + l)d

... ↘
...

a1 + (2r + l)d a′
1 + (2r + l)d

...
...

When is a zigzag walk equidistant? Let s = a′
1 − a1 and assume

s > 0. The zigzag walk is equidistant if and only if 2s = (l − r)d .
Consequently l − r = 2s

d , so d must be a divisor of 2s.



Zigzag walks over two equidistant walks
The following walks are of interest:

a1 a′
1

a1 + d a′
1 + d

... ↘
...

a1 + rd a′
1 + rd

... ↙
...

a1 + (r + l)d a′
1 + (r + l)d

... ↘
...

a1 + (2r + l)d a′
1 + (2r + l)d

...
...

When is a zigzag walk equidistant? Let s = a′
1 − a1 and assume

s > 0. The zigzag walk is equidistant if and only if 2s = (l − r)d .
Consequently l − r = 2s

d , so d must be a divisor of 2s.



Zigzag walks placed into an equidistant grid

One can obtain an eqidistant grid in which given zigzag walk
appears in the first row:

a1 a′
1 + rd a1 + (r + l)d a′

1 + (2r + l)d a1 + (2r + 2l)d · · ·
...

...
...

...
... . . .



Walks over products with overlapping factors

For given natural number n let us look at the equidistant walk over
odd numbers:

2n − 1, 2n + 1, 2n + 3, . . .

Observe products with overlapping factors and form a walk:

(2n − 1)(2n + 1), (2n + 1)(2n + 3), (2n + 3)(2n + 5), . . .

This walk is not equidistant.



Equidistant walks over products with overlapping odd and
even factors

Look at equidistant walks of differences of two by two successive
products with overlapping odd and even factors:

(2n − 1)(2n + 1)↖ 2n(2n + 2) ↖
8n + 4 8n + 8

(2n + 1)(2n + 3)↗↖ (2n + 2)(2n + 4)↗↖
8n + 12 8n + 16

(2n + 3)(2n + 5)↗ (2n + 4)(2n + 6)↗
...

...
...

...



Distance between equidistant walks over products with
overlapping odd and even factors (1)

One can also look at distances between differences of products
with overlapping factors with odd and even numbers after shifting
the second by k (k > 0 denotes shifts up, k < 0 shifts down by |k|;
here k ≥ 1 − n).

(2n − 1)(2n + 1) (2n + 2k)(2n + 2(k + 1))
(2n + 1)(2n + 3) (2n + 2(k + 1))(2n + 2(k + 2))

...
...



Distance between equidistant walks over products with
overlapping factors (2)

For the distance of differences of products with overlapping factors
of odd numbers and products with overlapping factors of even
numbers shifted by k the following holds:

Theorem
For a natural number n and an integer k ≥ 1 − n,

[(2n + 2(k + 1))(2n + 2(k + 2)) − (2n + 2k)(2n + 2(k + 1))]−
−[(2n + 1)(2n + 3) − (2n − 1)(2n + 1)] = 8k + 4.



Distance between equidistant walks over products with
overlapping odd and even factors (3)

▶ The notion of products of overlaping factors can be
generalized: we can speak of products of n consecutive odd or
even numbers that overlapp in m factors, m < n i. e. of
m-overlapping n-products.

▶ In this notation the above overlapping products are
1-overlapping 2-products.

▶ In general, if we have progression of differences of two
succesive m-overlapping n-products of even numbers and
progression of differences of two succesive m-overlapping
n-products of odd numbers, their distance is constant.
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