Simplicial complex of polyomino type tilings $K_{P}\left(\mathbb{T}_{2 \times n}\right)$

(This is joint work with Đorđe Baralić)

4th Croatian Combinatorial Days

University of Bihać
Edin Liđan
lidjan_edin@hotmail.com
lidan.edin@gmail.com

Zagreb, September 22-23, 2022

Contents

Contents

- Introduction

Contents

- Introduction
- Polyomino

Contents

- Introduction
- Polyomino
- Polyomino type tilings

Contents

- Introduction
- Polyomino
- Polyomino type tilings
- Simplicial complex and polyomino type tilings

Contents

- Introduction
- Polyomino
- Polyomino type tilings
- Simplicial complex and polyomino type tilings
- Simplicial complex of polyomino type tilings

Contents

- Introduction
- Polyomino
- Polyomino type tilings
- Simplicial complex and polyomino type tilings
- Simplicial complex of polyomino type tilings
- f-vector of simplicial complex

Contents

- Introduction
- Polyomino
- Polyomino type tilings
- Simplicial complex and polyomino type tilings
- Simplicial complex of polyomino type tilings
- f-vector of simplicial complex
- Join of simplicial complex

Contents

- Introduction
- Polyomino
- Polyomino type tilings
- Simplicial complex and polyomino type tilings
- Simplicial complex of polyomino type tilings
- f-vector of simplicial complex
- Join of simplicial complex
- Other properties of simplicial complex of polyomino type tilings

Contents

- Introduction
- Polyomino
- Polyomino type tilings
- Simplicial complex and polyomino type tilings
- Simplicial complex of polyomino type tilings
- f-vector of simplicial complex
- Join of simplicial complex
- Other properties of simplicial complex of polyomino type tilings
- References

Introduction

Introduction

Introduction

Introduction

Introduction

Polyomino

Polyomino

- Polyomino

Polyomino

- Polyomino

Figure: Polyomino

Polyomino

- Polyomino

Figure: Polyomino

Figure: Not a polyomino

Polyomino

- Polyomino

Figure: Polyomino

Figure: Not a polyomino

- Solomon W. Golomb (1965.)

Polyomino

- Polyomino

Figure: Polyomino

Figure: Not a polyomino

- Solomon W. Golomb (1965.)
- Martin Gardner Scientific American, "Mathematical Games"

Polyomino type tilings

Polyomino type tilings

- Tiling problem

Polyomino type tilings

- Tiling problem
- A region M and finite set Σ of tile

Polyomino type tilings

- Tiling problem
- A region M and finite set Σ of tile
- Does Σ tile the M ?

Polyomino type tilings

- Tiling problem
- A region M and finite set Σ of tile
- Does Σ tile the M ?
- Polyomino type tilings

Polyomino type tilings

- Tiling problem
- A region M and finite set Σ of tile
- Does Σ tile the M ?
- Polyomino type tilings
- Polyomino tiling problem asks it is possible to properly cover a finite region M consisting of cells with polyomino shapes from a given set Σ

Polyomino type tilings

- Tiling problem
- A region M and finite set Σ of tile
- Does Σ tile the M ?
- Polyomino type tilings
- Polyomino tiling problem asks it is possible to properly cover a finite region M consisting of cells with polyomino shapes from a given set Σ
- M - table in plane, surface, surface with boundary...

Polyomino type tilings

- Tiling problem
- A region M and finite set Σ of tile
- Does Σ tile the M ?
- Polyomino type tilings
- Polyomino tiling problem asks it is possible to properly cover a finite region M consisting of cells with polyomino shapes from a given set Σ
- M - table in plane, surface, surface with boundary...
- Σ - finite set of polyomino shapes

Polyomino type tilings

- Tiling problem
- A region M and finite set Σ of tile
- Does Σ tile the M ?
- Polyomino type tilings
- Polyomino tiling problem asks it is possible to properly cover a finite region M consisting of cells with polyomino shapes from a given set Σ
- M - table in plane, surface, surface with boundary...
- Σ - finite set of polyomino shapes

Figure: Torus $g=1$

Polyomino type tilings

- Tiling problem
- A region M and finite set Σ of tile
- Does Σ tile the M ?
- Polyomino type tilings
- Polyomino tiling problem asks it is possible to properly cover a finite region M consisting of cells with polyomino shapes from a given set Σ
- M - table in plane, surface, surface with boundary...
- Σ - finite set of polyomino shapes

Figure: Torus $g=1$
Figure: Plane model

Polyomino type tilings

- Tiling problem
- A region M and finite set Σ of tile
- Does Σ tile the M ?
- Polyomino type tilings
- Polyomino tiling problem asks it is possible to properly cover a finite region M consisting of cells with polyomino shapes from a given set Σ
- M - table in plane, surface, surface with boundary...
- Σ - finite set of polyomino shapes

Figure: Torus $g=1$

Figure: Square torus grid

Example

Example

Is possible to tile square torus grid 5×5 with L-pentominoes?

Example

Is possible to tile square torus grid 5×5 with L-pentominoes?

Simplicial complex and polyomino type tilings

Simplicial complex

An abstract simplicial complex K on a vertex set $[m]=\{1,2, \ldots, m\}$ is a collection of subsets of $[m]$
such that,

Simplicial complex and polyomino type tilings

Simplicial complex

An abstract simplicial complex K on a vertex set $[m]=\{1,2, \ldots, m\}$ is a collection of subsets of $[m]$
such that,
(i) for each $i \in[m],\{i\} \in[m]$,

Simplicial complex and polyomino type tilings

Simplicial complex

An abstract simplicial complex K on a vertex set $[m]=\{1,2, \ldots, m\}$ is a collection of subsets of [m]
such that,
(i) for each $i \in[m],\{i\} \in[m]$,
(ii) for every $\sigma \in K$, if $\tau \subset \sigma$ then $\tau \in K$.

Simplicial complex and polyomino type tilings

Simplicial complex

An abstract simplicial complex K on a vertex set $[m]=\{1,2, \ldots, m\}$ is a collection of subsets of $[m]$
such that,
(i) for each $i \in[m],\{i\} \in[m]$,
(ii) for every $\sigma \in K$, if $\tau \subset \sigma$ then

$$
\tau \in K
$$

We assume that $\varnothing \in K$.

Simplicial complex and polyomino type tilings

Simplicial complex

An abstract simplicial complex K on a vertex set $[m]=\{1,2, \ldots, m\}$ is a collection of subsets of [m]
such that,
(i) for each $i \in[m]$, $\{i\} \in[m]$,
(ii) for every $\sigma \in K$, if $\tau \subset \sigma$ then $\tau \in K$.
We assume that $\varnothing \in K$.

- The elements of K are called faces.

Simplicial complex and polyomino type tilings

Simplicial complex

An abstract simplicial complex K on a vertex set $[m]=\{1,2, \ldots, m\}$ is a collection of subsets of [m]
such that,
(i) for each $i \in[m]$, $\{i\} \in[m]$,
(ii) for every $\sigma \in K$, if $\tau \subset \sigma$ then $\tau \in K$.

We assume that $\varnothing \in K$.

- The elements of K are called faces.
- The dimension of a face σ of a simplicial complex K is defined as $\operatorname{dim} \sigma=|\sigma|-1$, where

Simplicial complex and polyomino type tilings

Simplicial complex

An abstract simplicial complex K on a vertex set $[m]=\{1,2, \ldots, m\}$ is a collection of subsets of [m] such that,
(i) for each $i \in[m]$, $\{i\} \in[m]$,
(ii) for every $\sigma \in K$, if $\tau \subset \sigma$ then $\tau \in K$.
We assume that $\varnothing \in K$.

- The elements of K are called faces.
- The dimension of a face σ of a simplicial complex K is defined as $\operatorname{dim} \sigma=|\sigma|-1$, where

Simplicial complex and polyomino type tilings

Simplicial complex

An abstract simplicial complex K on a vertex set $[m]=\{1,2, \ldots, m\}$ is a collection of subsets of $[\mathrm{m}]$ such that,
(i) for each $i \in[m],\{i\} \in[m]$,
(ii) for every $\sigma \in K$, if $\tau \subset \sigma$ then $\tau \in K$.

We assume that $\varnothing \in K$.

- The elements of K are called faces.
- The dimension of a face σ of a simplicial complex K is defined as $\operatorname{dim} \sigma=|\sigma|-1$, where
- A face of K is maximal if it is not contained as a subset in any other face of K.

Simplicial complex and polyomino type tilings

Simplicial complex

An abstract simplicial complex K on a vertex set $[m]=\{1,2, \ldots, m\}$ is a collection of subsets of [m] such that,
(i) for each $i \in[m],\{i\} \in[m]$,
(ii) for every $\sigma \in K$, if $\tau \subset \sigma$ then $\tau \in K$.

- $|\sigma|$ denotes the cardinality of σ.
- A face of K is maximal if it is not contained as a subset in any other face of K.
- The maximal faces are also called facets.

We assume that $\varnothing \in K$.

- The elements of K are called faces.
- The dimension of a face σ of a simplicial complex K is defined as $\operatorname{dim} \sigma=|\sigma|-1$, where

Simplicial complex and polyomino type tilings

Simplicial complex

An abstract simplicial complex K on a vertex set $[m]=\{1,2, \ldots, m\}$ is a collection of subsets of $[m]$ such that,
(i) for each $i \in[m],\{i\} \in[m]$,
(ii) for every $\sigma \in K$, if $\tau \subset \sigma$ then $\tau \in K$.

- $|\sigma|$ denotes the cardinality of σ.
- A face of K is maximal if it is not contained as a subset in any other face of K.
- The maximal faces are also called facets.
 a simplicial complex K is defined as $\operatorname{dim} \sigma=|\sigma|-1$, where

Simplicial complex and polyomino type tilings

Simplicial complex

An abstract simplicial complex K on a vertex set $[m]=\{1,2, \ldots, m\}$ is a collection of subsets of $[m]$ such that,
(i) for each $i \in[m],\{i\} \in[m]$,
(ii) for every $\sigma \in K$, if $\tau \subset \sigma$ then $\tau \in K$.

- $|\sigma|$ denotes the cardinality of σ.
- A face of K is maximal if it is not contained as a subset in any other face of K.
- The maximal faces are also called facets.

We assume that $\varnothing \in K$.

- The elements of K are called faces.
- The dimension of a face σ of a simplicial complex K is defined as $\operatorname{dim} \sigma=|\sigma|-1$, where

- The elements of simplicial complex K are called faces.

- The elements of simplicial complex K are called faces.
- Faces of dimension 0 are called vertices (0 -simplex): (\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{7\},\{8\},\{9\},\{10\},\{11\},\{12\})
- edges (1-simplex): (\{1,2\}, \{1,3\}, \{1,5\}, \{1,6\}, \{1,8\}, \{1,11\}, \{2,3\}, $\{2,5\},\{2,6\},\{2,9\},\{2,12\},\{3,4\},\{3,6\},\{3,7\},\{3,10\},\{4,5\},\{4,6\}$, $\{4,8\},\{4,11\},\{5,6\},\{5,9\},\{5,12\},\{6,7\},\{6,10\},\{7,10\},\{7,11\}$, $\{7,12\},\{8,10\},\{8,11\},\{8,12\},\{9,10\},\{9,11\},\{9,12\}$
- edges (1-simplex): (\{1,2\}, \{1,3\}, \{1,5\}, \{1,6\}, \{1,8\}, \{1,11\}, \{2,3\}, $\{2,5\},\{2,6\},\{2,9\},\{2,12\},\{3,4\},\{3,6\},\{3,7\},\{3,10\},\{4,5\},\{4,6\}$, $\{4,8\},\{4,11\},\{5,6\},\{5,9\},\{5,12\},\{6,7\},\{6,10\},\{7,10\},\{7,11\}$, $\{7,12\},\{8,10\},\{8,11\},\{8,12\},\{9,10\},\{9,11\},\{9,12\}$
- Faces of dimension 1 in simplicial complex K are called edges
- edges (1-simplex): (\{1,2\}, \{1,3\}, \{1,5\}, \{1,6\}, \{1,8\}, \{1,11\}, \{2,3\}, $\{2,5\},\{2,6\},\{2,9\},\{2,12\},\{3,4\},\{3,6\},\{3,7\},\{3,10\},\{4,5\},\{4,6\}$, $\{4,8\},\{4,11\},\{5,6\},\{5,9\},\{5,12\},\{6,7\},\{6,10\},\{7,10\},\{7,11\}$, $\{7,12\},\{8,10\},\{8,11\},\{8,12\},\{9,10\},\{9,11\},\{9,12\}$
- Faces of dimension 1 in simplicial complex K are called edges
- faces (2-simplex): \{1,2,3\}, \{1,2,6\}, \{1,3,5\}, \{1,5,6\}, \{1,8,11\}, $\{2,3,4\},\{2,4,6\},\{2,9,12\},\{3,4,5\},\{3,7,10\},\{4,5,6\},\{4,8,11\}$, $\{5,9,12\},\{6,7,10\}$
- edges (1-simplex): (\{1,2\}, \{1,3\}, \{1,5\}, \{1,6\}, \{1,8\}, \{1,11\}, \{2,3\}, $\{2,5\},\{2,6\},\{2,9\},\{2,12\},\{3,4\},\{3,6\},\{3,7\},\{3,10\},\{4,5\},\{4,6\}$, $\{4,8\},\{4,11\},\{5,6\},\{5,9\},\{5,12\},\{6,7\},\{6,10\},\{7,10\},\{7,11\}$, $\{7,12\},\{8,10\},\{8,11\},\{8,12\},\{9,10\},\{9,11\},\{9,12\}$
- Faces of dimension 1 in simplicial complex K are called edges
- faces (2-simplex): \{1,2,3\}, \{1,2,6\}, \{1,3,5\}, \{1,5,6\}, \{1,8,11\}, $\{2,3,4\},\{2,4,6\},\{2,9,12\},\{3,4,5\},\{3,7,10\},\{4,5,6\},\{4,8,11\}$, $\{5,9,12\},\{6,7,10\}$
- The dimension of $K, \operatorname{dim} K$, is defined as the maximum dimension of the faces of K.
- Simplicial complex $K_{12}\left(\mathbb{T}_{2 \times 3}\right)$
- Simplicial complex $K_{12}\left(\mathbb{T}_{2 \times 3}\right)$

Figure: Simplices complex $K_{1_{2}}\left(\mathbb{T}_{2 \times 3}\right)$ presented in Sage 9.0

Simplicial complex of a polyomino tiling problem

Simplicial complex of a polyomino tiling problem

- We consider polyomino tiling problem of a finite subset M of square grids by given set of \mathcal{T} of polyomino shapes.

Simplicial complex of a polyomino tiling problem

- We consider polyomino tiling problem of a finite subset M of square grids by given set of \mathcal{T} of polyomino shapes.
- $K(M ; \mathcal{T})$ is a simplicial complex whose i-faces correspond to a placement of $i+1$ polyomino shapes from \mathcal{T} onto M without overlapping.

Simplicial complex of a polyomino tiling problem

- We consider polyomino tiling problem of a finite subset M of square grids by given set of \mathcal{T} of polyomino shapes.
- $K(M ; \mathcal{T})$ is a simplicial complex whose i-faces correspond to a placement of $i+1$ polyomino shapes from \mathcal{T} onto M without overlapping.
- By definition, we have:

Simplicial complex of a polyomino tiling problem

- We consider polyomino tiling problem of a finite subset M of square grids by given set of \mathcal{T} of polyomino shapes.
- $K(M ; \mathcal{T})$ is a simplicial complex whose i-faces correspond to a placement of $i+1$ polyomino shapes from \mathcal{T} onto M without overlapping.
- By definition, we have:

Proposition

$K(M ; \mathcal{T})$ is a flag simplicial complex.

Simplicial complex of a polyomino tiling problem

- We consider polyomino tiling problem of a finite subset M of square grids by given set of \mathcal{T} of polyomino shapes.
- $K(M ; \mathcal{T})$ is a simplicial complex whose i-faces correspond to a placement of $i+1$ polyomino shapes from \mathcal{T} onto M without overlapping.
- By definition, we have:

Proposition

$K(M ; \mathcal{T})$ is a flag simplicial complex.

Proposition

Maximal number of polyomino shapes from \mathcal{T} that may be placed on M without overlapping is $\operatorname{dim}(K(M ; \mathcal{T}))+1$.

f-vector of simplicial complex

f-vector of simplicial complex

- The f -vector of an ($n-1$)-dimensional simplicial complex K^{n-1} is the integer vector

$$
\mathbf{f}\left(K^{n-1}\right)=\left(f_{-1}, f_{0}, f_{1}, \ldots, f_{n-1}\right)
$$

where $f_{-1}=1$ and $f_{i}=f_{i}\left(K^{n-1}\right)$ denotes the number of i-faces of K^{n-1} for all $i=1, \ldots, n-1$.

f-vector of simplicial complex

- The f -vector of an ($n-1$)-dimensional simplicial complex K^{n-1} is the integer vector

$$
\mathbf{f}\left(K^{n-1}\right)=\left(f_{-1}, f_{0}, f_{1}, \ldots, f_{n-1}\right)
$$

where $f_{-1}=1$ and $f_{i}=f_{i}\left(K^{n-1}\right)$ denotes the number of i-faces of K^{n-1} for all $i=1, \ldots, n-1$.

- The f-polynomial of an ($n-1$)-dimensional simplicial complex K is

$$
\mathbf{f}(t)=t^{n}+f_{0} t^{n-1}+\cdots+f_{n-1} .
$$

Theorem

\mathbf{f}-vector of simplicial complex $K_{l_{m}}\left(\mathbb{T}_{1 \times n}\right)$ is given by

$$
\mathbf{f}_{k}\left(K_{l_{m}}\left(\mathbb{T}_{1 \times n}\right)\right)=(m-1)\binom{n+(1-m) k-m}{k}+\binom{n-(m-1)(k+1)}{k+1}
$$

Theorem

\mathbf{f}-vector of simplicial complex $K_{l_{m}}\left(\mathbb{T}_{1 \times n}\right)$ is given by
$\mathbf{f}_{k}\left(K_{l_{m}}\left(\mathbb{T}_{1 \times n}\right)\right)=(m-1)\binom{n+(1-m) k-m}{k}+\binom{n-(m-1)(k+1)}{k+1}$.

- Proof: Let us consider placements of $1 \times m$ shapes on $1 \times n$ square torus grid. We will consider two case.

Theorem

\mathbf{f}-vector of simplicial complex $K_{l_{m}}\left(\mathbb{T}_{1 \times n}\right)$ is given by
$\mathbf{f}_{k}\left(K_{l_{m}}\left(\mathbb{T}_{1 \times n}\right)\right)=(m-1)\binom{n+(1-m) k-m}{k}+\binom{n-(m-1)(k+1)}{k+1}$.

- Proof: Let us consider placements of $1 \times m$ shapes on $1 \times n$ square torus grid. We will consider two case.

1. Placement of $k+11 \times m \mathrm{I}-$ minoes on the square torus grid without overlapping.

Theorem

\mathbf{f}-vector of simplicial complex $K_{l_{m}}\left(\mathbb{T}_{1 \times n}\right)$ is given by
$\mathbf{f}_{k}\left(K_{l_{m}}\left(\mathbb{T}_{1 \times n}\right)\right)=(m-1)\binom{n+(1-m) k-m}{k}+\binom{n-(m-1)(k+1)}{k+1}$.

- Proof: Let us consider placements of $1 \times m$ shapes on $1 \times n$ square torus grid. We will consider two case.

1. Placement of $k+11 \times m \mathrm{I}$-minoes on the square torus grid without overlapping.

- Every placement of $k+11 \times m$ polyominoes on the square torus grid yields to a $k+2$-tuple of nonegative integers ($a_{1}, a_{2}, \ldots, a_{k+2}$) satisfying (1),
- Every placement of $k+11 \times m$ polyominoes on the square torus grid yields to a $k+2$-tuple of nonegative integers $\left(a_{1}, a_{2}, \ldots, a_{k+2}\right)$ satisfying (1),
- where a_{i} is the number of noncovered cells between i th and $(i+1)$ th shape as seen from the left to the right.
- Every placement of $k+11 \times m$ polyominoes on the square torus grid yields to a $k+2$-tuple of nonegative integers $\left(a_{1}, a_{2}, \ldots, a_{k+2}\right)$ satisfying (1),
- where a_{i} is the number of noncovered cells between i th and $(i+1)$ th shape as seen from the left to the right.
- Also, any $k+2$-tuple of nonegative integers such that

$$
\begin{equation*}
a_{1}+a_{2}+a_{3}+\ldots+a_{k+2}=n-m k-m \tag{1}
\end{equation*}
$$

defines a placement of $k+11 \times m \mathrm{l}$-minoes on the board without overlapping.

- Every placement of $k+11 \times m$ polyominoes on the square torus grid yields to a $k+2$-tuple of nonegative integers $\left(a_{1}, a_{2}, \ldots, a_{k+2}\right)$ satisfying (1),
- where a_{i} is the number of noncovered cells between i th and $(i+1)$ th shape as seen from the left to the right.
- Also, any $k+2$-tuple of nonegative integers such that

$$
\begin{equation*}
a_{1}+a_{2}+a_{3}+\ldots+a_{k+2}=n-m k-m \tag{1}
\end{equation*}
$$

defines a placement of $k+11 \times m \mathrm{l}$-minoes on the board without overlapping.

- Indeed, the number of k-simplices of is equal to the number of nonegative integer solutions of the equation (1) so

$$
\binom{n-(m-1)(k+1)}{k+1} .
$$

2. Placement of $k+11 \times m$ I-minoes on the square torus grte with overlapping.
3. Placement of $k+11 \times m$ l-minoes on the square torus grid with overlapping.

- We can do that on $m-1$ different ways
- We can do that on $m-1$ different ways
- So we need consider only puting k polyominoes shapes $1 \times n$ on the square torus grid of dimension $1 \times(n-m)$
- We can do that on $m-1$ different ways
- So we need consider only puting k polyominoes shapes $1 \times n$ on the square torus grid of dimension $1 \times(n-m)$
- That is satisfeid

$$
\begin{equation*}
a_{1}+a_{2}+a_{3}+\ldots+a_{k+2}=n-m k-m, \tag{2}
\end{equation*}
$$

- We can do that on $m-1$ different ways
- So we need consider only puting k polyominoes shapes $1 \times n$ on the square torus grid of dimension $1 \times(n-m)$
- That is satisfeid

$$
\begin{equation*}
a_{1}+a_{2}+a_{3}+\ldots+a_{k+2}=n-m k-m, \tag{2}
\end{equation*}
$$

- Analoguous like in the first case, we obtained the number of k-simplices of is equal to the number of nonegative integer solutions of the equation (2) so

$$
\binom{n+(1-m) k-m}{k}
$$

$$
\mathbf{f}_{k}\left(K_{l_{m}}\left(\mathbb{T}_{1 \times n}\right)\right)=(m-1)\binom{n+(1-m) k-m}{k}+\binom{n-(m-1)(k+1)}{k+1}
$$

\square

Join of simplicial complex

Join of simplicial complex

Definition

Let K and L be simplicial complex with vertices S and S^{\prime}, where S and S^{\prime} are mutually disjoint. Simplicial complex

$$
K * L=\{A \cup B: A \in K, B \in L\}
$$

we call join complexes K and L.

Join of simplicial complex

Definition

Let K and L be simplicial complex with vertices S and S^{\prime}, where S and S^{\prime} are mutually disjoint. Simplicial complex

$$
K * L=\{A \cup B: A \in K, B \in L\}
$$

we call join complexes K and L.

Proposition

Let K and L be simplicial complex. Then it is valid

$$
\mathbf{f}(K * L)=\mathbf{f}(K) * \mathbf{f}(L) .
$$

Theorem

\mathbf{f}-vector of simplicial complex $K_{l_{3}}\left(\mathbb{T}_{2 \times n}\right)$ is given by

$$
\begin{aligned}
\mathbf{f}_{k}\left(K_{I_{3}}\left(\mathbb{T}_{2 \times n}\right)\right) & =4 \sum_{j=0}^{k}\binom{n-j-2}{j}\binom{n-k+j-3}{k-j+1} \\
& +2 \sum_{j=0}^{k}\binom{n-j-2}{j}\binom{n-k+j-3}{k-j+2} \\
& +2 \sum_{j=0}^{k}\binom{n-j-2}{j+1}\binom{n-k+j+3}{k-j+1} \\
& +\sum_{j=0}^{k}\binom{n-j-2}{j+1}\binom{n-k+j+3}{k-j+2} .
\end{aligned}
$$

- Example: $\mathbf{f}\left(K_{l_{2}}\left(\mathbb{T}_{2,3}\right)\right)=(12,33,14)$.
- Example: $\mathbf{f}\left(K_{1_{2}}\left(\mathbb{T}_{2,3}\right)\right)=(12,33,14)$.
- for some other n
- Example: $\mathfrak{f}\left(K_{1_{2}}\left(\mathbb{T}_{2,3}\right)\right)=(12,33,14)$.
- for some other n

Table: Review f-vector simplicial complex $K_{l_{2}}\left(\mathbb{T}_{2 \times n}\right)$ for some concrete value of n

n	\mathbf{f}_{0}	\mathbf{f}_{1}	\mathbf{f}_{2}	\mathbf{f}_{3}	\mathbf{f}_{4}
3	12	33	14		
4	16	76	112	36	
5	20	136	371	376	102

- Example: $\mathfrak{f}\left(K_{l_{2}}\left(\mathbb{T}_{2,3}\right)\right)=(12,33,14)$.
- for some other n

Table: Review f-vector simplicial complex $K_{12}\left(\mathbb{T}_{2 \times n}\right)$ for some concrete value of n

n	\mathbf{f}_{0}	\mathbf{f}_{1}	\mathbf{f}_{2}	\mathbf{f}_{3}	\mathbf{f}_{4}
3	12	33	14		
4	16	76	112	36	
5	20	136	371	376	102

Proposition

$$
\begin{aligned}
\mathbf{f}_{0}\left(\mathbb{T}_{2 \times n}\right) & =4 n, \\
\mathbf{f}_{1}\left(\mathbb{T}_{2 \times n}\right) & =8 n^{2}-13 n .
\end{aligned}
$$

Other properties of simplicial complex of polyomino type tilings

Other properties of simplicial complex of polyomino type tilings

- Pure simplicial complex of simplicial polyomino type tilings

Other properties of simplicial complex of polyomino type tilings

- Pure simplicial complex of simplicial polyomino type tilings
- Balanced simplicial complex of polyomino type tilings

Other properties of simplicial complex of polyomino type tilings

- Pure simplicial complex of simplicial polyomino type tilings
- Balanced simplicial complex of polyomino type tilings
- Cohen-Macualay properties of simplicial complex of polyomino type tilings

Other properties of simplicial complex of polyomino type tilings

- Pure simplicial complex of simplicial polyomino type tilings
- Balanced simplicial complex of polyomino type tilings
- Cohen-Macualay properties of simplicial complex of polyomino type tilings
- Connectivity of simplicial complex of polyomino type tilings

Other properties of simplicial complex of polyomino type tilings

- Pure simplicial complex of simplicial polyomino type tilings
- Balanced simplicial complex of polyomino type tilings
- Cohen-Macualay properties of simplicial complex of polyomino type tilings
- Connectivity of simplicial complex of polyomino type tilings
- Homotopy of simplicial complex of polyomino type tilings

References

E. Liđan: Topological characteristics of generalized polyomino tilings, Doctoral dissertation, Faculty of Natural sciences, Podgorica, 2022.

Thank you for your attention.

