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I A region M and finite set Σ of tile
I Does Σ tile the M?
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I Polyomino tiling problem asks it is possible to properly cover a finite

region M consisting of cells with polyomino shapes from a given set
Σ
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Simplicial complex and
polyomino type tilings

Simplicial complex

An abstract simplicial complex K
on a vertex set [m] = {1, 2, ... , m}
is a collection of subsets of [m]
such that,

(i) for each i ∈ [m], {i} ∈ [m],
(ii) for every σ ∈ K , if τ ⊂ σ then

τ ∈ K .
We assume that ∅ ∈ K .

I The elements of K are called
faces.

I The dimension of a face σ of
a simplicial complex K is
defined as dimσ = |σ| − 1,
where

I |σ| denotes the cardinality of σ.
I A face of K is maximal if it is not

contained as a subset in any other
face of K .

I The maximal faces are also called
facets.
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I The elements of simplicial complex K are called faces.
I Faces of dimension 0 are called vertices (0-simplex):

({1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12})
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I edges (1-simplex): ({1,2}, {1,3}, {1,5}, {1,6}, {1,8}, {1,11}, {2,3},
{2,5}, {2,6}, {2,9}, {2,12}, {3,4}, {3,6}, {3,7}, {3,10}, {4,5}, {4,6},
{4,8}, {4,11}, {5,6}, {5,9}, {5,12}, {6,7}, {6,10}, {7,10}, {7,11},
{7,12}, {8,10}, {8,11}, {8,12}, {9,10}, {9,11}, {9,12}

I Faces of dimension 1 in simplicial complex K are called edges
I faces (2-simplex): {1,2,3}, {1,2,6}, {1,3,5}, {1,5,6}, {1,8,11},

{2,3,4}, {2,4,6}, {2,9,12}, {3,4,5}, {3,7,10}, {4,5,6}, {4,8,11},
{5,9,12}, {6,7,10}

I The dimension of K , dim K , is defined as the maximum
dimension of the faces of K .
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I Simplicial complex KI2(T2×3)

Figure: Simplices complex KI2 (T2×3) presented in Sage 9.0
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Simplicial complex of a polyomino
tiling problem

I We consider polyomino tiling problem of a finite subset M of
square grids by given set of T of polyomino shapes.

I K (M; T ) is a simplicial complex whose i-faces correspond to a
placement of i + 1 polyomino shapes from T onto M without
overlapping.

I By definition, we have:

Proposition
K (M; T ) is a flag simplicial complex.

Proposition
Maximal number of polyomino shapes from T that may be placed on
M without overlapping is dim(K (M; T )) + 1.

Edin Lid̄an Simplicial complex of polyomino type tilings KP (T2×n) Zagreb, 23.9.2022.
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f-vector of simplicial complex

I The f-vector of an (n − 1)-dimensional simplicial complex K n−1

is the integer vector

f(K n−1) = (f−1, f0, f1, ... , fn−1) ,

where f−1 = 1 and fi = fi(K n−1) denotes the number of i-faces of
K n−1 for all i = 1, ... , n − 1.

I The f-polynomial of an (n − 1)-dimensional simplicial complex K
is

f(t) = tn + f0tn−1 + · · ·+ fn−1.
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Theorem
f–vector of simplicial complex KIm(T1×n) is given by

fk (KIm(T1×n)) = (m − 1)
(

n + (1−m)k −m
k

)
+

(
n − (m − 1)(k + 1)

k + 1

)
.

I Proof: Let us consider placements of 1×m shapes on 1× n
square torus grid. We will consider two case.

1. Placement of k + 1 1 × m I–minoes on the square torus grid
without overlapping.

Edin Lid̄an Simplicial complex of polyomino type tilings KP (T2×n) Zagreb, 23.9.2022.
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I Every placement of k + 1 1×m polyominoes on the square torus
grid yields to a k + 2-tuple of nonegative integers
(a1, a2, ... , ak+2) satisfying (1),

I where ai is the number of noncovered cells between i th and
(i + 1)th shape as seen from the left to the right.

I Also, any k + 2-tuple of nonegative integers such that

a1 + a2 + a3 + ... + ak+2 = n −mk −m, (1)

defines a placement of k + 1 1×m I-minoes on the board
without overlapping.

I Indeed, the number of k -simplices of is equal to the number of
nonegative integer solutions of the equation (1) so(

n − (m − 1)(k + 1)
k + 1

)
.

Edin Lid̄an Simplicial complex of polyomino type tilings KP (T2×n) Zagreb, 23.9.2022.



14

I Every placement of k + 1 1×m polyominoes on the square torus
grid yields to a k + 2-tuple of nonegative integers
(a1, a2, ... , ak+2) satisfying (1),

I where ai is the number of noncovered cells between i th and
(i + 1)th shape as seen from the left to the right.

I Also, any k + 2-tuple of nonegative integers such that

a1 + a2 + a3 + ... + ak+2 = n −mk −m, (1)

defines a placement of k + 1 1×m I-minoes on the board
without overlapping.

I Indeed, the number of k -simplices of is equal to the number of
nonegative integer solutions of the equation (1) so(

n − (m − 1)(k + 1)
k + 1

)
.

Edin Lid̄an Simplicial complex of polyomino type tilings KP (T2×n) Zagreb, 23.9.2022.



14

I Every placement of k + 1 1×m polyominoes on the square torus
grid yields to a k + 2-tuple of nonegative integers
(a1, a2, ... , ak+2) satisfying (1),

I where ai is the number of noncovered cells between i th and
(i + 1)th shape as seen from the left to the right.

I Also, any k + 2-tuple of nonegative integers such that

a1 + a2 + a3 + ... + ak+2 = n −mk −m, (1)

defines a placement of k + 1 1×m I-minoes on the board
without overlapping.

I Indeed, the number of k -simplices of is equal to the number of
nonegative integer solutions of the equation (1) so(

n − (m − 1)(k + 1)
k + 1

)
.

Edin Lid̄an Simplicial complex of polyomino type tilings KP (T2×n) Zagreb, 23.9.2022.



14

I Every placement of k + 1 1×m polyominoes on the square torus
grid yields to a k + 2-tuple of nonegative integers
(a1, a2, ... , ak+2) satisfying (1),

I where ai is the number of noncovered cells between i th and
(i + 1)th shape as seen from the left to the right.

I Also, any k + 2-tuple of nonegative integers such that

a1 + a2 + a3 + ... + ak+2 = n −mk −m, (1)

defines a placement of k + 1 1×m I-minoes on the board
without overlapping.

I Indeed, the number of k -simplices of is equal to the number of
nonegative integer solutions of the equation (1) so(

n − (m − 1)(k + 1)
k + 1

)
.

Edin Lid̄an Simplicial complex of polyomino type tilings KP (T2×n) Zagreb, 23.9.2022.



14

I Every placement of k + 1 1×m polyominoes on the square torus
grid yields to a k + 2-tuple of nonegative integers
(a1, a2, ... , ak+2) satisfying (1),

I where ai is the number of noncovered cells between i th and
(i + 1)th shape as seen from the left to the right.

I Also, any k + 2-tuple of nonegative integers such that

a1 + a2 + a3 + ... + ak+2 = n −mk −m, (1)

defines a placement of k + 1 1×m I-minoes on the board
without overlapping.

I Indeed, the number of k -simplices of is equal to the number of
nonegative integer solutions of the equation (1) so(

n − (m − 1)(k + 1)
k + 1

)
.

Edin Lid̄an Simplicial complex of polyomino type tilings KP (T2×n) Zagreb, 23.9.2022.



15

2. Placement of k + 1 1×m I–minoes on the square torus grid with
overlapping.

Edin Lid̄an Simplicial complex of polyomino type tilings KP (T2×n) Zagreb, 23.9.2022.
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I We can do that on m − 1 different ways
I So we need consider only puting k polyominoes shapes 1× n on

the square torus grid of dimension 1× (n −m)

I That is satisfeid

a1 + a2 + a3 + ... + ak+2 = n −mk −m, (2)

I Analoguous like in the first case, we obtained the number of
k -simplices of is equal to the number of nonegative integer
solutions of the equation (2) so(

n + (1−m)k −m
k

)
.
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Join of simplicial complex

Definition
Let K and L be simplicial complex with vertices S and S′, where S
and S′ are mutually disjoint. Simplicial complex

K ∗ L = {A ∪ B : A ∈ K , B ∈ L}

we call join complexes K and L.

Proposition
Let K and L be simplicial complex. Then it is valid

f(K ∗ L) = f(K ) ∗ f(L).
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Theorem
f–vector of simplicial complex KI3(T2×n) is given by

fk (KI3(T2×n)) = 4
k∑

j=0

(
n − j − 2

j

)(
n − k + j − 3

k − j + 1

)

+ 2
k∑

j=0

(
n − j − 2

j

)(
n − k + j − 3

k − j + 2

)

+ 2
k∑

j=0

(
n − j − 2

j + 1

)(
n − k + j + 3

k − j + 1

)

+
k∑

j=0

(
n − j − 2

j + 1

)(
n − k + j + 3

k − j + 2

)
.
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I Example: f(KI2(T2,3)) = (12, 33, 14).
I for some other n

Table: Review f–vector simplicial complex KI2 (T2×n) for some concrete value
of n

n f0 f1 f2 f3 f4

3 12 33 14
4 16 76 112 36
5 20 136 371 376 102

Proposition

f0(T2×n) = 4n,
f1(T2×n) = 8n2 − 13n.
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Other properties of simplicial complex
of polyomino type tilings

I Pure simplicial complex of simplicial polyomino type tilings
I Balanced simplicial complex of polyomino type tilings
I Cohen-Macualay properties of simplicial complex of polyomino

type tilings
I Connectivity of simplicial complex of polyomino type tilings
I Homotopy of simplicial complex of polyomino type tilings
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Thank you for your attention.
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