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Proper edge-coloring

m Adjacent edges receive distinct colors;

m Edges of every color form a matching;

m The smallest k for which a graph G admits an edge-coloring
with k colors is the chromatic index of G, \/(G);

m By Vizing's theorem [15], for every subcubic graph G it holds
3<Y(G)<4

(subcubic graphs being the graphs with max. degree 3)
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Suppose that we have 5 colors.



Suppose that we have 5 colors.

What can we do with an extra color?




Acyclic edge-coloring

m Proper edge-coloring with no bichromatic cycle;
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Acyclic edge-coloring

Proper edge-coloring with no bichromatic cycle;

The smallest k for which G admits an acyclic k-edge coloring
is denoted \/,(G).

Due to Burnstein (1979) [6]:
For every subcubic graph G we have x,(G) <5.

In fact, by Andersen, Ma&ajova & Mazdk (2012) [2]:
If G is not Ky or K33, then we have x,(G) < 4.
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Strong edge-coloring

m Edges at distance at most 2 receive distinct colors;

(We take distance between the corresponding vertices in the line graph)
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Strong edge-coloring

m Edges at distance at most 2 receive distinct colors;

(We take distance between the corresponding vertices in the line graph)

m Edges of every color form an induced matching,
i.e., the graph induced on their endvertices is a matching;

m The smallest k for which G admits a strong k-edge-coloring is
denoted \L(G);

m Andersen (1992) [1], and Hordk, Qing, and Trotter (1993) [9]:
For every subcubic graph G, we have

xs(G) < 10.
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5 colors for strong edge-coloring?

Theorem 1 (BL, Mécajova, Skoviera & Soték

A cubic graph G is a cover of the Petersen graph if and only if

Xs(G) =5.

A graph G covers a graph H if there is a graph homomorphism from G to H that is locally bijective.
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Normal edge-coloring

m Proper edge-coloring in which for every edge uv the number
of distinct colors on the edges adjacent to uv together with
the color of uv is either 3 (poor edge) or 5 (rich edge);

m Poor edge:

m Rich edge:

7/25



Normal edge-coloring

m Proper edge-coloring in which for every edge uv the number
of distinct colors on the edges adjacent to uv together with
the color of uv is either 3 (poor edge) or 5 (rich edge);

m Poor edge:

m Rich edge:

7/25



Normal edge-coloring

m Proper edge-coloring in which for every edge uv the number
of distinct colors on the edges adjacent to uv together with
the color of uv is either 3 (poor edge) or 5 (rich edge);

m Poor edge:

m Rich edge:

7/25



Normal edge-coloring

m Proper edge-coloring in which for every edge uv the number
of distinct colors on the edges adjacent to uv together with
the color of uv is either 3 (poor edge) or 5 (rich edge);

m Poor edge:

m Rich edge:

7/25



Normal edge-coloring

m Proper edge-coloring in which for every edge uv the number
of distinct colors on the edges adjacent to uv together with
the color of uv is either 3 (poor edge) or 5 (rich edge);

m Poor edge:

m Rich edge:

7/25



Normal edge-coloring

m Proper edge-coloring in which for every edge uv the number
of distinct colors on the edges adjacent to uv together with
the color of uv is either 3 (poor edge) or 5 (rich edge);

m Poor edge:

m Rich edge:

7/25



Normal edge-coloring

m Proper edge-coloring in which for every edge uv the number
of distinct colors on the edges adjacent to uv together with
the color of uv is either 3 (poor edge) or 5 (rich edge);

m Poor edge:

m Rich edge:

7/25



Normal edge-coloring

m Proper edge-coloring in which for every edge uv the number
of distinct colors on the edges adjacent to uv together with
the color of uv is either 3 (poor edge) or 5 (rich edge);

m Poor edge:

m Rich edge:

7/25



Normal edge-coloring

m Proper edge-coloring in which for every edge uv the number
of distinct colors on the edges adjacent to uv together with
the color of uv is either 3 (poor edge) or 5 (rich edge);

m Poor edge:

m Rich edge:

7/25



Normal edge-coloring

m Proper edge-coloring in which for every edge uv the number
of distinct colors on the edges adjacent to uv together with
the color of uv is either 3 (poor edge) or 5 (rich edge);

m Poor edge:

m Rich edge:

7/25



Normal edge-coloring

m Proper edge-coloring in which for every edge uv the number
of distinct colors on the edges adjacent to uv together with
the color of uv is either 3 (poor edge) or 5 (rich edge);

m Poor edge:

m Rich edge:

7/25



Normal edge-coloring

m Every class | cubic graph admits a normal 3-edge-coloring
— Every edge is poor;

8/25



Normal edge-coloring

m Every class | cubic graph admits a normal 3-edge-coloring
— Every edge is poor;

m There are cubic graphs which admit a normal 5-edge-coloring
with only rich edges. Which are they?

8/25



Normal edge-coloring

m Every class | cubic graph admits a normal 3-edge-coloring
— Every edge is poor;

m There are cubic graphs which admit a normal 5-edge-coloring
with only rich edges. Which are they?

Conjecture 2
Every bridgeless cubic graph admits a normal edge-coloring with at
most 5 colors.

8/25



Normal edge-coloring

m Every class | cubic graph admits a normal 3-edge-coloring
— Every edge is poor;

m There are cubic graphs which admit a normal 5-edge-coloring
with only rich edges. Which are they?

Conjecture 2
Every bridgeless cubic graph admits a normal edge-coloring with at
most 5 colors.

m Equivalent to the Petersen Coloring Conjecture;

m Mazzuoccolo & Mkrtchyan (2018) [12]:
Every subcubic graph admits a normal 7-edge-coloring.
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Adjacent vertex-distinguishing edge-coloring

m Proper edge-coloring where adjacent vertices meet
different sets of colors;
— Each edge sees 4 or 5 colors;

m The smallest k for which G admits such an edge-coloring with
k colors is denoted . ,(G);
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Adjacent vertex-distinguishing edge-coloring

Theorem 3 (Balister, Gyori, Lehel & Schel
For every subcubic graph G without isolated edges we have

X;wd(G) <5.

m Also known as neighbor-distinguishing edge-coloring;
m Equivalent to 2-intersection edge-coloring for cubic graphs [5];

m Two natural generalizations...
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k-distance vertex-distinguishing edge-coloring

m Proper edge-coloring where vertices at distance exactly k
meet different sets of colors;
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2-distance vertex-distinguishing edge-coloring

= Victor et al. [14]:
For every subcubic graph G, it holds x44(G) < 6;

Conjecture 4 (Victor, Wang, Wang & Chen

For every subcubic graph G, it holds that

X34a(G) <5.

m If true, also tight;

m Confirmed by Victor et al. [13]:
for every subcubic graph G with mad(G) < %;

m Not much is known for cubic graphs in general;
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k-strong edge-coloring

m Proper edge-coloring where vertices at distance at most k
meet different sets of colors;

m We are interested in 2-strong edge-coloring
— and the corresponding invariant x5.(G);

m We are not aware of any results for (sub)cubic graphs
> Just \4(G) < ¥4(6);

Conjecture 5 (Holub, BL, Mihalikové, Mockovciakovéa & Sotédk)

For every subcubic graph G on at least 9 vertices, it holds.

X25(G) < 5.
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2-strong edge-coloring

m Why at least 9 vertices?
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2-strong edge-coloring

m Why at least 9 vertices?

m There are two cubic graphs on 8 vertices of diameter 2:

B There are (g) = 10 possible triples of colors; every color appears in 6 of them; every edge contributes its
color twice; we need every color to appear on three edges; we need 8 distinct triples; but at least 4 distinct
colors are missing; four colors appear only on two edges (and one on three); we need to color 12 edges; a
contradiction.

14/25



2-strong edge-coloring

m Verified by computer that the conjecture holds for small
instances;

m For the Petersen graph there is only one coloring:

m Open even for bipartite cubic graphs with large girth;
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Star edge-coloring

m Proper edge-coloring in which there are no bichromatic
4-cycles nor 4-paths;

Conjecture 6 (Dvorak, Mohar & Sémal

Every subcubic graph admits a star edge-coloring with at most 6
colors.

m Only known to be tight for three simple bridgeless graphs —

two cubic;
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Star edge-coloring

= Dvotak, Mohar & Samal (2013) [7] proved 7 colors suffice;

Question 7

Does every bridgeless cubic graph, distinct from K3 3 and G,
admit a star b-edge-coloring?

m True for outerplanar subcubic graphs [4];

m Implies result on 2-distance vertex-distinguishing edge-coloring
since x5qq(G) < X&(G):
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To conclude...

m A set of edges is a k-packing if every pair of edges is at
distance at least k + 1;

m For a non-decreasing sequence of positive integers,
S =(s1,...,5¢), Gastineau and Togni (2019) [8], defined an
S-packing edge-coloring of G as a partition of the edge set
of G into ¢ subsets { X1, ..., Xy} such that each X is an
si-packing;

Conjecture 8 (Hocquard, Lajou & BL (20207"))

Every subcubic planar graph is (1,1, 2,2, 2)-packing edge-colorable.

Question 9 (Hocquard, Lajou & BL (20207))

Is it true that every bipartite subcubic graph of large enough girth
admits a (1, 2,2,2,2)-packing edge-coloring?
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