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Proper edge-coloring

Adjacent edges receive distinct colors;

Edges of every color form a matching;

The smallest k for which a graph G admits an edge-coloring
with k colors is the chromatic index of G , χ′(G );

By Vizing’s theorem [15], for every subcubic graph G it holds

3 ≤ χ′(G ) ≤ 4

(subcubic graphs being the graphs with max. degree 3)
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Suppose that we have 5 colors.

What can we do with an extra color?
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Acyclic edge-coloring

Proper edge-coloring with no bichromatic cycle;

The smallest k for which G admits an acyclic k-edge coloring
is denoted χ′

a(G ).

Due to Burnstein (1979) [6]:
For every subcubic graph G we have χ′

a(G ) ≤ 5.

In fact, by Andersen, Máčajová & Mazák (2012) [2]:
If G is not K4 or K3,3, then we have χ′

a(G ) ≤ 4.
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Strong edge-coloring

Edges at distance at most 2 receive distinct colors;
(We take distance between the corresponding vertices in the line graph)

Edges of every color form an induced matching,
i.e., the graph induced on their endvertices is a matching;

The smallest k for which G admits a strong k-edge-coloring is
denoted χ′

s(G );

Andersen (1992) [1], and Horák, Qing, and Trotter (1993) [9]:
For every subcubic graph G , we have

χ′
s(G ) ≤ 10 .
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5 colors for strong edge-coloring?

Theorem 1 (BL, Máčajová, Škoviera & Soták [11])

A cubic graph G is a cover of the Petersen graph if and only if

χ′
s(G ) = 5 .

A graph G covers a graph H if there is a graph homomorphism from G to H that is locally bijective.
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Normal edge-coloring

Proper edge-coloring in which for every edge uv the number
of distinct colors on the edges adjacent to uv together with
the color of uv is either 3 (poor edge) or 5 (rich edge);

Poor edge:

Rich edge:
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Normal edge-coloring

Every class I cubic graph admits a normal 3-edge-coloring
→ Every edge is poor;

There are cubic graphs which admit a normal 5-edge-coloring
with only rich edges. Which are they?

Conjecture 2 (Jaeger [10])

Every bridgeless cubic graph admits a normal edge-coloring with at
most 5 colors.

Equivalent to the Petersen Coloring Conjecture;

Mazzuoccolo & Mkrtchyan (2018) [12]:
Every subcubic graph admits a normal 7-edge-coloring.
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Adjacent vertex-distinguishing edge-coloring

Proper edge-coloring where adjacent vertices meet
different sets of colors;
→ Each edge sees 4 or 5 colors;

The smallest k for which G admits such an edge-coloring with
k colors is denoted χ′

avd(G );
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Adjacent vertex-distinguishing edge-coloring

Theorem 3 (Balister, Györi, Lehel & Schelp [3])

For every subcubic graph G without isolated edges we have

χ′
avd(G ) ≤ 5 .

Also known as neighbor-distinguishing edge-coloring;

Equivalent to 2-intersection edge-coloring for cubic graphs [5];

Two natural generalizations...
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k-distance vertex-distinguishing edge-coloring

Proper edge-coloring where vertices at distance exactly k
meet different sets of colors;

We are interested in 2-distance vertex-distinguishing
edge-coloring → and the corresponding invariant χ′

2dd(G );

It means, it is possible to have poor edges:

But it is forbidden to have:
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2-distance vertex-distinguishing edge-coloring

Victor et al. [14]:
For every subcubic graph G , it holds χ′

2dd(G ) ≤ 6;

Conjecture 4 (Victor, Wang, Wang & Chen [14])

For every subcubic graph G , it holds that

χ′
2dd(G ) ≤ 5 .

If true, also tight;

Confirmed by Victor et al. [13]:
for every subcubic graph G with mad(G ) < 8

3 ;

Not much is known for cubic graphs in general;
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k-strong edge-coloring

Proper edge-coloring where vertices at distance at most k
meet different sets of colors;

We are interested in 2-strong edge-coloring
→ and the corresponding invariant χ′

2s(G );

We are not aware of any results for (sub)cubic graphs
→ Just χ′

2s(G ) ≤ χ′
s(G );

Conjecture 5 (Holub, BL, Mihaliková, Mockovčiaková & Soták)

For every subcubic graph G on at least 9 vertices, it holds.

χ′
2s(G ) ≤ 5 .
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2-strong edge-coloring

Why at least 9 vertices?

There are two cubic graphs on 8 vertices of diameter 2:

There are
(
5
3

)
= 10 possible triples of colors; every color appears in 6 of them; every edge contributes its

color twice; we need every color to appear on three edges; we need 8 distinct triples; but at least 4 distinct

colors are missing; four colors appear only on two edges (and one on three); we need to color 12 edges; a

contradiction.
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2-strong edge-coloring

Verified by computer that the conjecture holds for small
instances;

For the Petersen graph there is only one coloring:

Open even for bipartite cubic graphs with large girth;
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Star edge-coloring

Proper edge-coloring in which there are no bichromatic
4-cycles nor 4-paths;

Conjecture 6 (Dvořák, Mohar & Šámal [7])

Every subcubic graph admits a star edge-coloring with at most 6
colors.

Only known to be tight for three simple bridgeless graphs →
two cubic;
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Star edge-coloring

Dvǒrák, Mohar & Šámal (2013) [7] proved 7 colors suffice;

Question 7

Does every bridgeless cubic graph, distinct from K3,3 and C6,
admit a star 5-edge-coloring?

True for outerplanar subcubic graphs [4];

Implies result on 2-distance vertex-distinguishing edge-coloring
since χ′

2dd(G ) ≤ χ′
st(G );

17 / 25



To conclude...

A set of edges is a k-packing if every pair of edges is at
distance at least k + 1;

For a non-decreasing sequence of positive integers,
S = (s1, . . . , s`), Gastineau and Togni (2019) [8], defined an
S-packing edge-coloring of G as a partition of the edge set
of G into ` subsets {X1, . . . ,X`} such that each Xi is an
si -packing;

Conjecture 8 (Hocquard, Lajou & BL (2020+))

Every subcubic planar graph is (1, 1, 2, 2, 2)-packing edge-colorable.

Question 9 (Hocquard, Lajou & BL (2020+))

Is it true that every bipartite subcubic graph of large enough girth
admits a (1, 2, 2, 2, 2)-packing edge-coloring?
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2-Distance V-D

Proper

Strong

Acyclic

Star

Adjacent V-D

2-Strong V-D

Normal



Thank you!
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