Edge-coloring (sub)cubic graphs with 5 colors

Borut Lužar

Faculty of Information Studies, Novo mesto, Slovenia
borut.luzar@gmail.com
http://luzar.fis.unm.si

4th Croatian Combinatorial Days, Zagreb, Croatia

September 23, 2022

Proper edge-coloring

■ Adjacent edges receive distinct colors;

- Edges of every color form a matching;

■ The smallest k for which a graph G admits an edge-coloring with k colors is the chromatic index of $G, \chi^{\prime}(G)$;

- By Vizing's theorem [15], for every subcubic graph G it holds

$$
3 \leq \chi^{\prime}(G) \leq 4
$$

(subcubic graphs being the graphs with max. degree 3)

Proper edge-coloring

■ Adjacent edges receive distinct colors;

- Edges of every color form a matching;

■ The smallest k for which a graph G admits an edge-coloring with k colors is the chromatic index of $G, \chi^{\prime}(G)$;

■ By Vizing's theorem [15], for every subcubic graph G it holds

$$
3 \leq \chi^{\prime}(G) \leq 4
$$

(subcubic graphs being the graphs with max. degree 3)

Suppose that we have 5 colors.

Suppose that we have 5 colors.

What can we do with an extra color?

Acyclic edge-coloring

- Proper edge-coloring with no bichromatic cycle;

Acyclic edge-coloring

- Proper edge-coloring with no bichromatic cycle;

Acyclic edge-coloring

- Proper edge-coloring with no bichromatic cycle;

Acyclic edge-coloring

- Proper edge-coloring with no bichromatic cycle;

Acyclic edge-coloring

- Proper edge-coloring with no bichromatic cycle;

Acyclic edge-coloring

- Proper edge-coloring with no bichromatic cycle;

Acyclic edge-coloring

- Proper edge-coloring with no bichromatic cycle;

Acyclic edge-coloring

- Proper edge-coloring with no bichromatic cycle;

- The smallest k for which G admits an acyclic k-edge coloring is denoted $\chi_{a}^{\prime}(G)$.

Acyclic edge-coloring

- Proper edge-coloring with no bichromatic cycle;

- The smallest k for which G admits an acyclic k-edge coloring is denoted $\chi_{a}^{\prime}(G)$.
- Due to Burnstein (1979) [6]:

For every subcubic graph G we have $\chi_{a}^{\prime}(G) \leq 5$.

Acyclic edge-coloring

- Proper edge-coloring with no bichromatic cycle;

- The smallest k for which G admits an acyclic k-edge coloring is denoted $\chi_{a}^{\prime}(G)$.
- Due to Burnstein (1979) [6]:

For every subcubic graph G we have $\chi_{a}^{\prime}(G) \leq 5$.

- In fact, by Andersen, Máčajová \& Mazák (2012) [2]:

If G is not K_{4} or $K_{3,3}$, then we have $\chi_{a}^{\prime}(G) \leq 4$.

Strong edge-coloring

- Edges at distance at most 2 receive distinct colors;
(We take distance between the corresponding vertices in the line graph)

Strong edge-coloring

- Edges at distance at most 2 receive distinct colors; (We take distance between the corresponding vertices in the line graph)
- Edges of every color form an induced matching, i.e., the graph induced on their endvertices is a matching;

Strong edge-coloring

■ Edges at distance at most 2 receive distinct colors; (We take distance between the corresponding vertices in the line graph)

- Edges of every color form an induced matching, i.e., the graph induced on their endvertices is a matching;
- The smallest k for which G admits a strong k-edge-coloring is denoted $\chi_{s}^{\prime}(G)$;

Strong edge-coloring

- Edges at distance at most 2 receive distinct colors; (We take distance between the corresponding vertices in the line graph)
■ Edges of every color form an induced matching, i.e., the graph induced on their endvertices is a matching;
- The smallest k for which G admits a strong k-edge-coloring is denoted $\chi_{s}^{\prime}(G)$;
- Andersen (1992) [1], and Horák, Qing, and Trotter (1993) [9]: For every subcubic graph G, we have

$$
\chi_{s}^{\prime}(G) \leq 10 .
$$

5 colors for strong edge-coloring?

Theorem 1 (BL, Máčajová, Škoviera \& Soták [11)
A cubic graph G is a cover of the Petersen graph if and only if

$$
\chi_{s}^{\prime}(G)=5 .
$$

A graph G covers a graph H if there is a graph homomorphism from G to H that is locally bijective.

5 colors for strong edge-coloring?

Theorem 1 (BL, Máčajová, Škoviera \& Soták [11)

A cubic graph G is a cover of the Petersen graph if and only if

$$
\chi_{s}^{\prime}(G)=5 .
$$

A graph G covers a graph H if there is a graph homomorphism from G to H that is locally bijective.

5 colors for strong edge-coloring?

Theorem 1 (BL, Máčajová, Škoviera \& Soták [11)

A cubic graph G is a cover of the Petersen graph if and only if

$$
\chi_{s}^{\prime}(G)=5 .
$$

A graph G covers a graph H if there is a graph homomorphism from G to H that is locally bijective.

5 colors for strong edge-coloring?

Theorem 1 (BL, Máčajová, Škoviera \& Soták [11)

A cubic graph G is a cover of the Petersen graph if and only if

$$
\chi_{s}^{\prime}(G)=5 .
$$

A graph G covers a graph H if there is a graph homomorphism from G to H that is locally bijective.

5 colors for strong edge-coloring?

Theorem 1 (BL, Máčajová, Škoviera \& Soták [11)

A cubic graph G is a cover of the Petersen graph if and only if

$$
\chi_{s}^{\prime}(G)=5 .
$$

A graph G covers a graph H if there is a graph homomorphism from G to H that is locally bijective.

5 colors for strong edge-coloring?

Theorem 1 (BL, Máčajová, Škoviera \& Soták [11)

A cubic graph G is a cover of the Petersen graph if and only if

$$
\chi_{s}^{\prime}(G)=5 .
$$

A graph G covers a graph H if there is a graph homomorphism from G to H that is locally bijective.

5 colors for strong edge-coloring?

Theorem 1 (BL, Máčajová, Škoviera \& Soták [11)

A cubic graph G is a cover of the Petersen graph if and only if

$$
\chi_{s}^{\prime}(G)=5 .
$$

A graph G covers a graph H if there is a graph homomorphism from G to H that is locally bijective.

5 colors for strong edge-coloring?

Theorem 1 (BL, Máčajová, Škoviera \& Soták [11)

A cubic graph G is a cover of the Petersen graph if and only if

$$
\chi_{s}^{\prime}(G)=5 .
$$

A graph G covers a graph H if there is a graph homomorphism from G to H that is locally bijective.

Normal edge-coloring

- Proper edge-coloring in which for every edge $u v$ the number of distinct colors on the edges adjacent to uv together with the color of $u v$ is either 3 (poor edge) or 5 (rich edge);
■ Poor edge:

- Rich edge:

Normal edge-coloring

- Proper edge-coloring in which for every edge $u v$ the number of distinct colors on the edges adjacent to uv together with the color of $u v$ is either 3 (poor edge) or 5 (rich edge);
■ Poor edge:

- Rich edge:

Normal edge-coloring

- Proper edge-coloring in which for every edge $u v$ the number of distinct colors on the edges adjacent to $u v$ together with the color of $u v$ is either 3 (poor edge) or 5 (rich edge);
■ Poor edge:

■ Rich edge:

Normal edge-coloring

- Proper edge-coloring in which for every edge $u v$ the number of distinct colors on the edges adjacent to $u v$ together with the color of $u v$ is either 3 (poor edge) or 5 (rich edge);
■ Poor edge:

■ Rich edge:

Normal edge-coloring

- Proper edge-coloring in which for every edge $u v$ the number of distinct colors on the edges adjacent to uv together with the color of $u v$ is either 3 (poor edge) or 5 (rich edge);
■ Poor edge:

- Rich edge:

Normal edge-coloring

- Proper edge-coloring in which for every edge $u v$ the number of distinct colors on the edges adjacent to uv together with the color of $u v$ is either 3 (poor edge) or 5 (rich edge);
■ Poor edge:

- Rich edge:

Normal edge-coloring

- Proper edge-coloring in which for every edge $u v$ the number of distinct colors on the edges adjacent to uv together with the color of $u v$ is either 3 (poor edge) or 5 (rich edge);
■ Poor edge:

- Rich edge:

Normal edge-coloring

- Proper edge-coloring in which for every edge $u v$ the number of distinct colors on the edges adjacent to uv together with the color of $u v$ is either 3 (poor edge) or 5 (rich edge);
■ Poor edge:

- Rich edge:

Normal edge-coloring

- Proper edge-coloring in which for every edge $u v$ the number of distinct colors on the edges adjacent to uv together with the color of $u v$ is either 3 (poor edge) or 5 (rich edge);
■ Poor edge:

- Rich edge:

Normal edge-coloring

- Proper edge-coloring in which for every edge $u v$ the number of distinct colors on the edges adjacent to uv together with the color of $u v$ is either 3 (poor edge) or 5 (rich edge);
■ Poor edge:

- Rich edge:

Normal edge-coloring

- Proper edge-coloring in which for every edge $u v$ the number of distinct colors on the edges adjacent to uv together with the color of $u v$ is either 3 (poor edge) or 5 (rich edge);
■ Poor edge:

- Rich edge:

Normal edge-coloring

■ Every class I cubic graph admits a normal 3-edge-coloring \rightarrow Every edge is poor;

Normal edge-coloring

■ Every class I cubic graph admits a normal 3-edge-coloring \rightarrow Every edge is poor;

- There are cubic graphs which admit a normal 5-edge-coloring with only rich edges. Which are they?

Normal edge-coloring

■ Every class I cubic graph admits a normal 3-edge-coloring \rightarrow Every edge is poor;

- There are cubic graphs which admit a normal 5-edge-coloring with only rich edges. Which are they?

Conjecture 2 (Jaeger [1])

Every bridgeless cubic graph admits a normal edge-coloring with at most 5 colors.

Normal edge-coloring

■ Every class I cubic graph admits a normal 3-edge-coloring \rightarrow Every edge is poor;

- There are cubic graphs which admit a normal 5-edge-coloring with only rich edges. Which are they?

Conjecture 2 (Jaeger [1])

Every bridgeless cubic graph admits a normal edge-coloring with at most 5 colors.

■ Equivalent to the Petersen Coloring Conjecture;

- Mazzuoccolo \& Mkrtchyan (2018) [12]: Every subcubic graph admits a normal 7-edge-coloring.

Adjacent vertex-distinguishing edge-coloring

■ Proper edge-coloring where adjacent vertices meet different sets of colors;
\rightarrow Each edge sees 4 or 5 colors;

- The smallest k for which G admits such an edge-coloring with k colors is denoted $\chi_{\text {avd }}^{\prime}(G)$;

Adjacent vertex-distinguishing edge-coloring

■ Proper edge-coloring where adjacent vertices meet different sets of colors;
\rightarrow Each edge sees 4 or 5 colors;

- The smallest k for which G admits such an edge-coloring with k colors is denoted $\chi_{\text {avd }}^{\prime}(G)$;

Adjacent vertex-distinguishing edge-coloring

■ Proper edge-coloring where adjacent vertices meet different sets of colors;
\rightarrow Each edge sees 4 or 5 colors;

- The smallest k for which G admits such an edge-coloring with k colors is denoted $\chi_{\text {avd }}^{\prime}(G)$;

Adjacent vertex-distinguishing edge-coloring

■ Proper edge-coloring where adjacent vertices meet different sets of colors;
\rightarrow Each edge sees 4 or 5 colors;

- The smallest k for which G admits such an edge-coloring with k colors is denoted $\chi_{\text {avd }}^{\prime}(G)$;

Adjacent vertex-distinguishing edge-coloring

■ Proper edge-coloring where adjacent vertices meet different sets of colors;
\rightarrow Each edge sees 4 or 5 colors;

- The smallest k for which G admits such an edge-coloring with k colors is denoted $\chi_{\text {avd }}^{\prime}(G)$;

Adjacent vertex-distinguishing edge-coloring

■ Proper edge-coloring where adjacent vertices meet different sets of colors;
\rightarrow Each edge sees 4 or 5 colors;

- The smallest k for which G admits such an edge-coloring with k colors is denoted $\chi_{\text {avd }}^{\prime}(G)$;

Adjacent vertex-distinguishing edge-coloring

■ Proper edge-coloring where adjacent vertices meet different sets of colors;
\rightarrow Each edge sees 4 or 5 colors;

- The smallest k for which G admits such an edge-coloring with k colors is denoted $\chi_{\text {avd }}^{\prime}(G)$;

Adjacent vertex-distinguishing edge-coloring

Theorem 3 (Balister, Györi, Lehel \& Schelp [1)
For every subcubic graph G without isolated edges we have

$$
\chi_{\mathrm{avd}}^{\prime}(G) \leq 5
$$

- Also known as neighbor-distinguishing edge-coloring;
- Equivalent to 2-intersection edge-coloring for cubic graphs [5];
- Two natural generalizations...

k-distance vertex-distinguishing edge-coloring

- Proper edge-coloring where vertices at distance exactly k meet different sets of colors;

k-distance vertex-distinguishing edge-coloring

- Proper edge-coloring where vertices at distance exactly k meet different sets of colors;
- We are interested in 2-distance vertex-distinguishing edge-coloring \rightarrow and the corresponding invariant $\chi_{2 d d}^{\prime}(G)$;
- It means, it is possible to have poor edges:

k-distance vertex-distinguishing edge-coloring

■ Proper edge-coloring where vertices at distance exactly k meet different sets of colors;

- We are interested in 2-distance vertex-distinguishing edge-coloring \rightarrow and the corresponding invariant $\chi_{2 \mathrm{dd}}^{\prime}(G)$;
- It means, it is possible to have poor edges:

But it is forbidden to have:

k-distance vertex-distinguishing edge-coloring

■ Proper edge-coloring where vertices at distance exactly k meet different sets of colors;

- We are interested in 2-distance vertex-distinguishing edge-coloring \rightarrow and the corresponding invariant $\chi_{2 d d}^{\prime}(G)$;
- It means, it is possible to have poor edges:

But it is forbidden to have:

k-distance vertex-distinguishing edge-coloring

■ Proper edge-coloring where vertices at distance exactly k meet different sets of colors;

- We are interested in 2-distance vertex-distinguishing edge-coloring \rightarrow and the corresponding invariant $\chi_{2 \mathrm{dd}}^{\prime}(G)$;
- It means, it is possible to have poor edges:

But it is forbidden to have:

2-distance vertex-distinguishing edge-coloring

- Victor et al. [14]:

For every subcubic graph G, it holds $\chi_{2 d d}^{\prime}(G) \leq 6$;

2-distance vertex-distinguishing edge-coloring

- Victor et al. [14]:

For every subcubic graph G, it holds $\chi_{2 d d}^{\prime}(G) \leq 6$;
Conjecture 4 (Victor, Wang, Wang \& Chen
For every subcubic graph G, it holds that
$\chi_{2 \mathrm{dd}}^{\prime}(G) \leq 5$.

2-distance vertex-distinguishing edge-coloring

- Victor et al. [14]:

For every subcubic graph G, it holds $\chi_{2 d d}^{\prime}(G) \leq 6$;
Conjecture 4 (Victor, Wang, Wang \& Chen
For every subcubic graph G, it holds that

$$
\chi_{2 \mathrm{dd}}^{\prime}(G) \leq 5 .
$$

- If true, also tight;

2-distance vertex-distinguishing edge-coloring

- Victor et al. [14]:

For every subcubic graph G, it holds $\chi_{2 d d}^{\prime}(G) \leq 6$;

Conjecture 4 (Victor, Wang, Wang \& Chen

For every subcubic graph G, it holds that

$$
\chi_{2 \mathrm{dd}}^{\prime}(G) \leq 5 .
$$

- If true, also tight;
- Confirmed by Victor et al. [13]: for every subcubic graph G with $\operatorname{mad}(G)<\frac{8}{3}$;

2-distance vertex-distinguishing edge-coloring

- Victor et al. [14]:

For every subcubic graph G, it holds $\chi_{2 d d}^{\prime}(G) \leq 6$;

Conjecture 4 (Victor, Wang, Wang \& Chen

For every subcubic graph G, it holds that

$$
\chi_{2 \mathrm{dd}}^{\prime}(G) \leq 5 .
$$

- If true, also tight;
- Confirmed by Victor et al. [13]: for every subcubic graph G with $\operatorname{mad}(G)<\frac{8}{3}$;
- Not much is known for cubic graphs in general;

$$
k \text {-strong edge-coloring }
$$

- Proper edge-coloring where vertices at distance at most k meet different sets of colors;

k-strong edge-coloring

- Proper edge-coloring where vertices at distance at most k meet different sets of colors;
- We are interested in 2-strong edge-coloring \rightarrow and the corresponding invariant $\chi_{2 \mathrm{~s}}^{\prime}(G)$;

k-strong edge-coloring

- Proper edge-coloring where vertices at distance at most k meet different sets of colors;
- We are interested in 2-strong edge-coloring \rightarrow and the corresponding invariant $\chi_{2 \mathrm{~s}}^{\prime}(G)$;
■ We are not aware of any results for (sub)cubic graphs \rightarrow Just $\chi_{2 \mathrm{~s}}^{\prime}(G) \leq \chi_{s}^{\prime}(G)$;

k-strong edge-coloring

- Proper edge-coloring where vertices at distance at most k meet different sets of colors;
- We are interested in 2-strong edge-coloring \rightarrow and the corresponding invariant $\chi_{2 \mathrm{~s}}^{\prime}(G)$;
- We are not aware of any results for (sub)cubic graphs \rightarrow Just $\chi_{2 \mathrm{~s}}^{\prime}(G) \leq \chi_{s}^{\prime}(G)$;

Conjecture 5 (Holub, BL, Mihaliková, Mockovčiaková \& Soták)

For every subcubic graph G on at least 9 vertices, it holds.

$$
\chi_{2 \mathrm{~s}}^{\prime}(G) \leq 5
$$

2-strong edge-coloring

- Why at least 9 vertices?

2-strong edge-coloring

- Why at least 9 vertices?
- There are two cubic graphs on 8 vertices of diameter 2 :

- There are $\binom{5}{3}=10$ possible triples of colors; every color appears in 6 of them; every edge contributes its color twice; we need every color to appear on three edges; we need 8 distinct triples; but at least 4 distinct colors are missing; four colors appear only on two edges (and one on three); we need to color 12 edges; a contradiction.

2-strong edge-coloring

- Verified by computer that the conjecture holds for small instances;
■ For the Petersen graph there is only one coloring:

■ Open even for bipartite cubic graphs with large girth;

Star edge-coloring

- Proper edge-coloring in which there are no bichromatic 4-cycles nor 4-paths;

Conjecture 6 (Dvořák, Mohar \& Šámal [])

Every subcubic graph admits a star edge-coloring with at most 6 colors.

■ Only known to be tight for three simple bridgeless graphs \rightarrow two cubic;

Star edge-coloring

■ Dvořák, Mohar \& Šámal (2013) [7] proved 7 colors suffice;

Question 7

Does every bridgeless cubic graph, distinct from $K_{3,3}$ and $\overline{C_{6}}$, admit a star 5-edge-coloring?

- True for outerplanar subcubic graphs [4];
- Implies result on 2-distance vertex-distinguishing edge-coloring since $\chi_{2 \mathrm{dd}}^{\prime}(G) \leq \chi_{\mathrm{st}}^{\prime}(G)$;

To conclude...

- A set of edges is a k-packing if every pair of edges is at distance at least $k+1$;
- For a non-decreasing sequence of positive integers, $S=\left(s_{1}, \ldots, s_{\ell}\right)$, Gastineau and Togni (2019) [8], defined an S-packing edge-coloring of G as a partition of the edge set of G into ℓ subsets $\left\{X_{1}, \ldots, X_{\ell}\right\}$ such that each X_{i} is an s_{i}-packing;

Conjecture 8 (Hocquard, Lajou \& BL (2020+))

Every subcubic planar graph is (1, 1, 2, 2, 2)-packing edge-colorable.

Question 9 (Hocquard, Lajou \& BL (2020+))

Is it true that every bipartite subcubic graph of large enough girth admits a (1, 2, 2, 2, 2)-packing edge-coloring?

Thank you!
[1] Andersen, L. D.
The strong chromatic index of a cubic graph is at most 10 .
Discrete Math. 108 (1992), 231-252.
[2] Andersen, L. D., Máčajová, E., and Mazák, J.
Optimal acyclic edge-coloring of cubic graphs.
J. Graph Theory 71, 4 (2012), 353-364.
[3] Balister, P. N., Györi, E., Lehel, J., and Schelp, R. H.
Adjacent vertex distinguishing edge-colorings.
SIAM J. Discrete Math. 21 (2007), 237-250.
[4] Bezegová, L., Lužar, B., Mockovčiaková, M., Soták, R., and Škrekovski, R.
Star edge coloring of some classes of graphs.
J. Graph Theory 81 (2016), 73-82.
[5] Borozan, V., Chang, G. J., Cohen, N., Fujita, S., Narayanan, N., Naserasr, R., and Valicov, P.
From Edge-Coloring to Strong Edge-Coloring.
The Electronic Journal of Combinatorics 22, 2 (2015), 1-17.
[6] Burnstein, M. I.
Every 4-valent graph has an acyclic five-coloring.
Soobsč Akad. Nauk Gruzin. SSR 93 (1979), 21-24.
[7] Dvořák, Z., Mohar, B., and Šámal, R.
Star chromatic index.
J. Graph Theory 72 (2013), 313-326.
[8] Gastineau, N., and Togni, O.
On s-packing edge-colorings of cubic graphs.
Discrete Appl. Math. 259 (2019), 63-75.
[9] Horák, P., Qing, H., and Trotter, W. T. Induced matchings in cubic graphs.
J. Graph Theory 17, 2 (1993), 151-160.
[10] Jaeger, F.
On five-edge-colorings of cubic graphs and nowhere-zero flow problems.
Ars Combin. 20-B (1985), 229-244.
[11] Lužar, B., Mačajová, E., Škoviera, M., and Soták, R.
On the Conjecture about Strong Edge-Coloring of Subcubic Graphs.
Manuscript (2020).
[12] Mazzuoccolo, G., and Mkrtchyan, V.
Strong edge coloring ofsubcubic bipartite graphs.
ArXiv Preprint (2018).
http://arxiv.org/abs/1804.09449.

References

[13] Victor, L. K., Liu, J., and Wang, W.
Two-Distance Vertex-Distinguishing Index of Sparse Subcubic Graphs.
Bull. Malays. Math. Sci. Soc. (2019).
[14] Victor, L. K., Wang, W., Wang, Y., and Chen, M. 2-Distance Vertex-Distinguishing Index of Subcubic Graphs. J. Comb. Optim. 36, 1 (2018), 108-120.
[15] Vizing, V. G.
On an estimate of the chromatic class of a p-graph.
Metody Diskret. Analiz 3 (1964), 25-30.

