On some constructions of strongly regular graphs

Marija Maksimović
Faculty of Mathematics
University of Rijeka, Croatia
joint work with Dean Crnković

4th Croatian Combinatorial Days
Zagreb, September 22-23, 2022
*this work has been fully supported by Croatian Science Foundation under the project 6732

Introduction

Behbahani, Lam

Introduction

Behbahani, Lam

Construction of SRG with prime order automorphism group

Introduction

Behbahani, Lam

Construction of SRG with prime order automorphism group

Crnković, MM

Introduction

Behbahani, Lam

Construction of SRG with prime order automorphism group

Crnković, MM

Construction of SRG with composite order automorphism group

Introduction

- M. Behbahani, C. Lam, Strongly regular graphs with non-trivial automorphisms, Discrete Math. 311 (2011), 132-144.
- D. Crnković, M. Maksimović, Construction of strongly regular graphs having an automorphism group of composite order, Contributions to Discrete Mathematics(1715-0868) 15 (2020), 1; 22-41

Definitions

Definitions

Definitions

Definitions

Strongly regular graphs

Adjacency matrix

SRG(10,3,0,1)

Adjacency matrix

SRG(10,3,0,1)

Automorphism group

An automorphism ρ of strongly regular graph Γ is a permutation on the vertices of a graph Γ such that for any two vertices of Γu and v follows that: u and v are adjacent in Γ if and only if ρu and ρv are adjacent in Γ. Set of all automorphisms of strongly regular graph under the composition of functions forms a group that we call full automorphism group and denote $\operatorname{Aut}(\Gamma)$.

Orbit matrix

Example

Let an automorphism group G generated with element $\rho=(1)(3,4,6)(2,7,8,9,10,5)$ partitions the set of vertices of Petersen graph into orbits $O_{1}=\{1\}, O_{2}=\{3,4,6\}, O_{3}=\{2,5,7,8,9,10\}$.

Orbit matrix

$$
O_{1}=\{1\}, O_{2}=\{3,4,6\}, O_{3}=\{2,5,7,8,9,10\}, n_{1}=1, n_{2}=3, n_{3}=6
$$

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	1	0	1	0	0	0	0
2	0	0	0	1	1	0	1	0	0	0
3	1	0	0	0	1	0	0	1	0	0
4	1	1	0	0	0	0	0	0	1	0
5	0	1	1	0	0	0	0	0	0	1
6	1	0	0	0	0	0	1	0	0	1
7	0	1	0	0	0	1	0	1	0	0
8	0	0	1	0	0	0	1	0	1	0
9	0	0	0	1	0	0	0	1	0	1
10	0	0	0	0	1	1	0	0	1	0

Orbit matrix

$$
O_{1}=\{1\}, O_{2}=\{3,4,6\}, O_{3}=\{2,5,7,8,9,10\}, n_{1}=1, n_{2}=3, n_{3}=6
$$

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	1	0	1	0	0	0	0
2	0	0	0	1	1	0	1	0	0	0
3	1	0	0	0	1	0	0	1	0	0
4	1	1	0	0	0	0	0	0	1	0
5	0	1	1	0	0	0	0	0	0	1
6	1	0	0	0	0	0	1	0	0	1
7	0	1	0	0	0	1	0	1	0	0
8	0	0	1	0	0	0	1	0	1	0
9	0	0	0	1	0	0	0	1	0	1
10	0	0	0	0	1	1	0	0	1	0

	1	3	4	6	2	5	7	8	9	10
1	0	1	1	1	0	0	0	0	0	0
3	1	0	0	0	0	1	0	1	0	0
4	1	0	0	0	1	0	0	0	1	0
6	1	0	0	0	0	0	1	0	0	1
2	0	0	1	0	0	1	1	0	0	0
5	0	1	0	0	1	0	0	0	0	1
7	0	0	0	1	1	0	0	1	0	0
8	0	1	0	0	0	0	1	0	1	0
9	0	0	1	0	0	0	0	1	0	1
10	0	0	0	1	0	1	0	0	1	0

Column orbit matrix

$\left.\begin{array}{l||l|lll|llllll} & 1 & 3 & 4 & 6 & 2 & 5 & 7 & 8 & 9 & 10 \\ \hline \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 3 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 4 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 6 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ \hline 2 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 5 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 7 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 8 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 9 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 10 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{lll|l}0 & 1 & 0 \\ \hline 3 & 0 & 1 \\ \hline 0 & 2 & 2 \\ & & & \\ \hline\end{array}\right.$

Column orbit matrices

Definition

A $(b \times b)$-matrix $C=\left[c_{i j}\right]$ with entries satisfying conditions:

$$
\begin{align*}
\sum_{i=1}^{b} c_{i j} & =\sum_{j=1}^{b} \frac{n_{j}}{n_{i}} c_{i j}=k \tag{1}\\
\sum_{s=1}^{b} \frac{n_{s}}{n_{j}} c_{i s} c_{j s} & =\delta_{i j}(k-\mu)+\mu n_{i}+(\lambda-\mu) c_{i j} \tag{2}
\end{align*}
$$

where $0 \leq c_{i j} \leq n_{i}, 0 \leq c_{i i} \leq n_{i}-1$ and $\sum_{i=1}^{b} n_{i}=v$, is called a column orbit matrix for a strongly regular graph with parameters (v, k, λ, μ) and the orbit lengths distribution $\left(n_{1}, \ldots, n_{b}\right)$.

Construction

Construction

Construction

Construction

Check parameters

Construction

Check parameters
\downarrow
Assume aut. group G
having a composition series
$\{1\}=H_{0} \unlhd H_{1} \unlhd \cdots \unlhd H_{n}=G$

Construction

Check parameters

Find orbit length distribution and prototypes

Construction

Check parameters

having a composition series
$\{1\}=H_{0} \unlhd H_{1} \unlhd \cdots \unlhd H_{n}=G$

Find orbit length distribution and prototypes

$$
\downarrow
$$

Construct OM
for the group G

Construction

Check parameters

Assume aut. group G
having a composition series $\{1\}=H_{0} \unlhd H_{1} \unlhd \cdots \unlhd H_{n}=G$

Find orbit length distribution and prototypes

 Construct OM
 for the group G

Construction

Check parameters

Construct OM for H_{n-1}

Find orbit length distribution and prototypes

Construct OM
 for the group G

Construction

Check parameters
Construct OM for H_{n-1}

Assume aut. group G
having a composition series $\{1\}=H_{0} \unlhd H_{1} \unlhd \cdots \unlhd H_{n}=G$

Find orbit length distribution and prototypes

Construct OM
for the group G

Construction

Check parameters

Assume aut. group G

having a composition series $\{1\}=H_{0} \unlhd H_{1} \unlhd \cdots \unlhd H_{n}=G$

Find orbit length distribution and prototypes

Construct OM
for the group G

> Construct OM for H_{n-1}

Construct OM for H_{1}

Construct OM for $H_{0}=\{1\}$,
i.e. AM of SRG

Construction

Check parameters
Construct OM for H_{n-1}

Assume aut. group G

 having a composition series $\{1\}=H_{0} \unlhd H_{1} \unlhd \cdots \unlhd H_{n}=G$

Find orbit length distribution and prototypes \downarrow Construct OM for the group G

Construct OM for H_{1} \downarrow
Construct OM for $H_{0}=\{1\}$, i.e. AM of SRG

Orbit matrices

Orbit matrices

Orbit matrices

Orbit matrices

$\operatorname{SRG}(49,18,7,6)$

$\operatorname{SRG}(49,18,7,6)$

$\operatorname{SRG}(49,18,7,6)-Z_{6}$

distribution	\#OM- Z_{6}	\#OM- Z_{3}	\#SRGs	distribution	\#OM- Z_{6}	\#OM- Z_{3}	\#SRGs
$(0,2,3,6)$	5	6	4	$(3,2,0,7)$	2	3	0
$(0,2,5,5)$	2	2	0	$(3,2,2,6)$	3	5	6
$(0,2,7,4)$	3	6	0	$(3,2,4,5)$	3	6	0
$(1,0,0,8)$	4	10	2	$(3,2,6,4)$	2	4	0
$(1,0,2,7)$	23	11	5	$(4,0,3,6)$	4	9	0
$(1,0,4,6)$	37	66	16	$(4,0,5,5)$	9	16	0
$(1,0,6,5)$	63	128	0	$(5,1,0,7)$	1	1	0
$(1,3,0,7)$	3	2	1	$(5,1,2,6)$	2	2	0
$(1,3,2,6)$	2	1	0	$(5,1,4,5)$	2	2	0
$(1,3,4,5)$	1	1	1	0	$(5,1,6,4)$	1	1
$(1,3,6,4)$	1	35	0	$(7,0,0,7)$	1	0	
$(2,1,3,6)$	19	31	0	$(7,0,4,5)$	1	1	0
$(2,1,5,5)$	19	7	0			1	0
$(2,1,7,4)$	7	7	0				0

Table: Number of orbit matrices and $\operatorname{SRGs}(49,18,7,6)$ for the automorphism group Z_{6}

$\operatorname{SRG}(49,18,7,6)-S_{3}$

distribution	$\# \mathrm{OM}-S_{3}$	$\# \mathrm{OM}-Z_{3}$	\#SRGs	distribution	\#OM- S_{3}	$\# \mathrm{OM}-Z_{3}$	\#SRGs
(0,2,3,6)	5	6	0	(3,2,4,5)	3	6	5
$(0,2,5,5)$	2	2	0	$(3,2,6,4)$	2	4	0
$(0,2,7,4)$	3	6	4	(4,0,3,6)	4	9	4
$(1,0,0,8)$	4	10	1	(4,0,5,5)	9	16	0
$(1,0,2,7)$	23	11	0	(4,0,7,4)	11	11	0
$(1,0,4,6)$	37	66	0	(4,0,9,3)	11	7	1
$(1,0,6,5)$	63	128	20	$(4,0,11,2)$	22	22	0
$(1,0,8,4)$	127	117	2	$(4,0,13,1)$	74	73	0
$(1,0,10,3)$	133	39	0	$(5,1,0,7)$	1	1	0
$(1,0,12,2)$	191	170	0	$(5,1,2,6)$	2	2	3
(1,3,0,7)	3	2	0	$(5,1,4,5)$	2	2	0
(1,3,2,6)	2	1	0	$(5,1,6,4)$	1	1	0
$(1,3,4,5)$	1	1	0	(7,0,0,7)	1	1	4
$(1,3,6,4)$	1	1	3	(7,0,2,6)	1	1	0
$(2,1,3,6)$	19	35	0	(7,0,4,5)	1	1	0
$(2,1,5,5)$	19	31	11	(7,0,6,4)	2	2	0
$(2,1,7,4)$	7	7	0	(7,0,8,3)	3	3	0
$(3,2,0,7)$	2	3	0	$(7,0,10,2)$	2	2	0
$(3,2,2,6)$	3	5	0	$(7,0,12,1)$	3	3	0

Table: Number of orbit matrices and $\operatorname{SRGs}(49,18,7,6)$ for the automorphism group S_{3}

SRG(49, 18, 7, 6)-Results

Theorem
Up to isomorphism there exists exactly 34 strongly regular graphs with parameters $(49,18,7,6)$ having a cyclic automorphism group of order 6.

Theorem
Up to isomorphism there exists exactly 36 strongly regular graphs with parameters (49, 18, 7, 6) having an automorphism group isomorphic to the symmetric group S_{3}

Theorem
Up to isomorphism there exists exactly 55 strongly regular graphs with parameters (49, 18, 7, 6) having an automorphism group of order six.

SRG(49, 18, 7, 6)-Results

Theorem

Up to isomorphism there exists exactly 34 strongly regular graphs with parameters $(49,18,7,6)$ having a cyclic automorphism group of order 6.

Theorem

Up to isomorphism there exists exactly 36 strongly regular graphs with parameters ($49,18,7,6$) having an automorphism group isomorphic to the symmetric group S_{3}.

Up to isomorphism there exists exactly 55 strongly regular graphs with parameters (49, 18, 7, 6) having an automorphism group of order six.

SRG(49, 18, 7, 6)-Results

Theorem

Up to isomorphism there exists exactly 34 strongly regular graphs with parameters $(49,18,7,6)$ having a cyclic automorphism group of order 6.

Theorem

Up to isomorphism there exists exactly 36 strongly regular graphs with parameters $(49,18,7,6)$ having an automorphism group isomorphic to the symmetric group S_{3}.

Theorem

Up to isomorphism there exists exactly 55 strongly regular graphs with parameters (49, 18, 7, 6) having an automorphism group of order six.

SRG(49, 18, 7, 6)-Results

$\left\|\operatorname{Aut}\left(\Gamma_{i}\right)\right\|$	\#SRGs	\mid Aut $\left(\Gamma_{i}\right) \mid$	\#SRGs
6	$8+26$	72	4
12	$2+2$	126	1
18	$1+1$	144	2
24	4	1008	1
30	1	1764	1
48	1		

Table: $\operatorname{SRG}(49,18,7,6)$ having an automorphism group of order 6

$\operatorname{SRG}(99,14,1,2)$

$\operatorname{SRG}(99,14,1,2)$

SRG(99, 14, 1, 2)-Results

Theorem

If there exists a $\operatorname{SRG}(99,14,1,2)$, then the order of its full automorphism group is $2^{a} 3^{b}$, and $b \in\{0,1\}$. If a $\operatorname{SRG}(99,14,1,2)$ has an automorphism ϕ of order 3, then ϕ has no fixed points. Further, there is no $\operatorname{SRG}(99,14,1,2)$ having an automorphism group of order six.

