On some constructions of strongly regular graphs

Marija Maksimović

Faculty of Mathematics University of Rijeka, Croatia

joint work with Dean Crnković

4th Croatian Combinatorial Days Zagreb, September 22-23, 2022

*this work has been fully supported by Croatian Science Foundation under the project 6732

-

< 17 × <

-

Construction of SRG with prime order automorphism group

Construction of SRG with prime order automorphism group

Construction of SRG with prime order automorphism group

Construction of SRG with composite order automorphism group

- M. Behbahani, C. Lam, Strongly regular graphs with non-trivial automorphisms, Discrete Math. 311 (2011), 132-144.
- D. Crnković, M. Maksimović, Construction of strongly regular graphs having an automorphism group of composite order, Contributions to Discrete Mathematics(1715-0868) 15 (2020), 1; 22-41

◆ロト ◆聞ト ◆ヨト ◆ヨト

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

3

< □ > < □ > < □

∃ ⊳

・ロト ・回ト ・ヨト

 $\exists \rightarrow$

590

・ロト ・回ト ・ヨト

M. Maksimović (Faculty of Mathematics)

On some constructions of SRGs

4th CroCoDays 5 / 22

Adjacency matrix

3

P.

-

Adjacency matrix

SRG(10,3,0,1) 10 5 A =6 9 2 3 8 7

3

Automorphism group

An automorphism ρ of strongly regular graph Γ is a permutation on the vertices of a graph Γ such that for any two vertices of Γ u and v follows that: u and v are adjacent in Γ if and only if ρu and ρv are adjacent in Γ . Set of all automorphisms of strongly regular graph under the composition of functions forms a group that we call full automorphism group and denote Aut(Γ).

Orbit matrix

Example

Let an automorphism group G generated with element $\rho=(1)(3,4,6)(2,7,8,9,10,5)$ partitions the set of vertices of Petersen graph into orbits $O_1=\{1\}, O_2=\{3,4,6\}, O_3=\{2,5,7,8,9,10\}.$

Orbit matrix $O_1 = \{1\}, O_2 = \{3, 4, 6\}, O_3 = \{2, 5, 7, 8, 9, 10\}, n_1 = 1, n_2 = 3, n_3 = 6$

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	1	0	1	0	0	0	0
2	0	0	0	1	1	0	1	0	0	0
3	1	0	0	0	1	0	0	1	0	0
4	1	1	0	0	0	0	0	0	1	0
5	0	1	1	0	0	0	0	0	0	1
6	1	0	0	0	0	0	1	0	0	1
3 4 5 6 7 8 9	0	1	0	0	0	1	0	1	0	0
8	0	0	1	0	0	0	1	0	1	0
	0	0	0	1	0	0	0	1	0	1
	0	0	0	0	1	1	0	0	1	0
10	1 -									
10	1									
1	1									
1 3	1 0 1									
1 3 4	1 0 1 1									
1 3 4 6	1 0 1 1 1									
1 3 4 6 2	1 0 1 1 1 0									
	1 0 1 1 1 1 0 0									
1 3 4 6 2 5 7	1 1 1 1 1 0 0 0 0									
1 3 4 6 2 5 7 8	1 1 1 1 0 0 0 0 0									
	1 1 1 1 1 0 0 0 0									

M. Maksimović (Faculty of Mathematics)

3

Orbit matrix $O_1 = \{1\}, O_2 = \{3, 4, 6\}, O_3 = \{2, 5, 7, 8, 9, 10\}, n_1 = 1, n_2 = 3, n_3 = 6$

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	1	0	1	0	0	0	0
2	0	0	0	1	1	0	1	0	0	0
2 3 4 5 6 7	1	0	0	0	1	0	0	1	0	0
4	1	1	0	0	0	0	0	0	1	0
5	0	1	1	0	0	0	0	0	0	1
6	1	0	0	0	0	0	1	0	0	1
7	0	1	0	0	0	1	0	1	0	0
8 9	0	0	1	0	0	0	1	0	1	0
9	0	0	0	1	0	0	0	1	0	1
10	0	0	0	0	1	1	0	0	1	0
	1	3	4	6	2	5	7	8	9	10
1	1	3	4	6	2	5	7	8	9	10
3	0		1	1 0	0	0	0	0	0	0
$\frac{3}{4}$	0 1 1	1 0 0	1 0 0	1 0 0	0 0 1	0 1 0	0 0 0	0 1 0	0 0 1	0 0 0
$\begin{array}{c} 3\\ 4\\ 6\end{array}$	0 1 1 1	1 0	1 0 0 0	1 0 0 0	0 0 1 0	0 1 0 0	0 0 0 1	0 1 0 0	0 0 1 0	0 0 0 1
$\begin{array}{c} 3\\ 4\\ 6\end{array}$	0 1 1	1 0 0	1 0 0 0	1 0 0 0	0 0 1 0	0 1 0 0	0 0 1 1	0 1 0 0	0 0 1 0	0 0 0 1 0
	0 1 1 1	1 0 0	1 0 0 0	1 0 0 0	0 0 1 0 0 1	0 1 0 0	0 0 0 1	0 1 0 0 0 0	0 0 1 0	0 0 1 0 1
	0 1 1 1 1 0	1 0 0 0	1 0 0 0	1 0 0 0	0 0 1 0	0 1 0 0	0 0 1 1	0 1 0 0	0 0 1 0	0 0 0 1 0
$ \begin{array}{r} 3 \\ 4 \\ 6 \\ 2 \\ 5 \\ 7 \\ 8 \end{array} $	0 1 1 1 0 0 0 0 0	1 0 0 0 1 0 1	1 0 0 1 0 0 0	1 0 0 0 0 1 0	0 0 1 0 0 1 1 0	0 1 0 0 1 0 0 0	0 0 1 1 0 0 1	0 1 0 0 0 1 0	0 0 1 0 0 0 0 1	0 0 1 0 1 0 0 0
	0 1 1 1 0 0 0 0	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array} $	1 0 0 1 0 0	1 0 0 0 0 1	0 0 1 0 0 1 1 1	0 1 0 0 1 0 0	0 0 1 1 0 0	0 1 0 0 0 0 1	0 0 1 0 0 0 0	0 0 1 0 1 0

M. Maksimović (Faculty of Mathematics)

4th CroCoDays 9 / 22

イロト イポト イヨト イヨト 二日

Column orbit matrix

3

< □ > <

Column orbit matrices

Definition

A $(b \times b)$ -matrix $C = [c_{ij}]$ with entries satisfying conditions:

$$\sum_{i=1}^{b} c_{ij} = \sum_{j=1}^{b} \frac{n_j}{n_i} c_{ij} = k$$
(1)

$$\sum_{s=1}^{n} \frac{n_s}{n_j} c_{is} c_{js} = \delta_{ij} (k - \mu) + \mu n_i + (\lambda - \mu) c_{ij}$$
(2)

where $0 \le c_{ij} \le n_i$, $0 \le c_{ii} \le n_i - 1$ and $\sum_{i=1}^{b} n_i = v$, is called a **column** orbit matrix for a strongly regular graph with parameters (v, k, λ, μ) and the orbit lengths distribution (n_1, \ldots, n_b) .

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ○ ○ ○

 $\exists \rightarrow$

 E

590

E

590

ヘロン 人間と 人間と 人間と

Check parameters

3

< □ > <

-

Check parameters Assume aut. group Ghaving a composition series $\{1\} = H_0 \trianglelefteq H_1 \trianglelefteq \cdots \trianglelefteq H_n = G$

Check parameters Assume aut. group Ghaving a composition series $\{1\} = H_0 \trianglelefteq H_1 \trianglelefteq \cdots \trianglelefteq H_n = G$ \downarrow

Find orbit length distribution and prototypes

Check parameters \downarrow Assume aut. group Ghaving a composition series $\{1\} = H_0 \trianglelefteq H_1 \trianglelefteq \cdots \trianglelefteq H_n = G$ \downarrow

Find orbit length distribution and prototypes

Construct OM for the group ${\cal G}$

M. Maksimović (Faculty of Mathematics)

4th CroCoDays 13 / 22

Construct OM for H_{n-1}

M. Maksimović (Faculty of Mathematics)

4th CroCoDays 13 / 22

Construct OM for H_{n-1}

Construct OM for H_1

M. Maksimović (Faculty of Mathematics)

4th CroCoDays 13 / 22

Construct OM for H_{n-1}

Construction

E

990

◆ロト ◆聞ト ◆ヨト ◆ヨト

E

990

◆ロト ◆聞ト ◆ヨト ◆ヨト

E

990

1

990

14 / 22

SRG(49, 18, 7, 6)

E

→ Ξ →

< 17 > <

SRG(49, 18, 7, 6)

E

→ Ξ →

< 🗇 🕨 <

 $SRG(49, 18, 7, 6)-Z_6$

distribution	$\# OM-Z_6$	$\#OM ext{-}Z_3$	#SRGs	distribution	$\# OM-Z_6$	$\#OM-Z_3$	#SRGs
(0,2,3,6)	5	6	4	(3, 2, 0, 7)	2	3	0
(0, 2, 5, 5)	2	2	0	(3, 2, 2, 6)	3	5	6
(0,2,7,4)	3	6	0	(3, 2, 4, 5)	3	6	0
(1,0,0,8)	4	10	2	(3, 2, 6, 4)	2	4	0
(1,0,2,7)	23	11	5	(4,0,3,6)	4	9	0
(1,0,4,6)	37	66	16	(4,0,5,5)	9	16	0
(1,0,6,5)	63	128	0	(5, 1, 0, 7)	1	1	0
(1,3,0,7)	3	2	1	(5, 1, 2, 6)	2	2	0
(1, 3, 2, 6)	2	1	0	(5, 1, 4, 5)	2	2	0
(1,3,4,5)	1	1	0	(5, 1, 6, 4)	1	1	0
(1,3,6,4)	1	1	0	(7,0,0,7)	1	1	0
(2, 1, 3, 6)	19	35	0	(7, 0, 2, 6)	1	1	0
(2,1,5,5)	19	31	0	(7,0,4,5)	1	1	0
(2, 1, 7, 4)	7	7	0				

Table: Number of orbit matrices and SRGs(49,18,7,6) for the automorphism group \mathbb{Z}_6

3

▲ 同 ▶ → 三 ▶

SRG(49, 18, 7, 6)-S₃

distribution	$\#OM-S_3$	$\#OM-Z_3$	#SRGs	distribution	$\#OM-S_3$	$\#OM-Z_3$	#SRGs
(0,2,3,6)	5	6	0	(3,2,4,5)	3	6	5
(0,2,5,5)	2	2	0	(3,2,6,4)	2	4	0
(0,2,7,4)	3	6	4	(4,0,3,6)	4	9	4
(1,0,0,8)	4	10	1	(4,0,5,5)	9	16	0
(1,0,2,7)	23	11	0	(4,0,7,4)	11	11	0
(1,0,4,6)	37	66	0	(4,0,9,3)	11	7	1
(1,0,6,5)	63	128	20	(4,0,11,2)	22	22	0
(1,0,8,4)	127	117	2	(4,0,13,1)	74	73	0
(1,0,10,3)	133	39	0	(5,1,0,7)	1	1	0
(1,0,12,2)	191	170	0	(5,1,2,6)	2	2	3
(1,3,0,7)	3	2	0	(5,1,4,5)	2	2	0
(1,3,2,6)	2	1	0	(5,1,6,4)	1	1	0
(1,3,4,5)	1	1	0	(7,0,0,7)	1	1	4
(1,3,6,4)	1	1	3	(7,0,2,6)	1	1	0
(2,1,3,6)	19	35	0	(7,0,4,5)	1	1	0
(2,1,5,5)	19	31	11	(7,0,6,4)	2	2	0
(2,1,7,4)	7	7	0	(7,0,8,3)	3	3	0
(3,2,0,7)	2	3	0	(7,0,10,2)	2	2	0
(3,2,2,6)	3	5	0	(7,0,12,1)	3	3	0

Table: Number of orbit matrices and SRGs(49,18,7,6) for the automorphism group S_3

3

▲ 同 ▶ → 三 ▶

Theorem

Up to isomorphism there exists exactly 34 strongly regular graphs with parameters (49, 18, 7, 6) having a cyclic automorphism group of order 6.

Theorem

Up to isomorphism there exists exactly 36 strongly regular graphs with parameters (49, 18, 7, 6) having an automorphism group isomorphic to the symmetric group S_3 .

Theorem

Up to isomorphism there exists exactly 55 strongly regular graphs with parameters (49, 18, 7, 6) having an automorphism group of order six.

イロト イポト イヨト イヨト

Theorem

Up to isomorphism there exists exactly 34 strongly regular graphs with parameters (49, 18, 7, 6) having a cyclic automorphism group of order 6.

Theorem

Up to isomorphism there exists exactly 36 strongly regular graphs with parameters (49, 18, 7, 6) having an automorphism group isomorphic to the symmetric group S_3 .

Theorem

Up to isomorphism there exists exactly 55 strongly regular graphs with parameters (49, 18, 7, 6) having an automorphism group of order six.

3

イロト イポト イヨト イヨト

Theorem

Up to isomorphism there exists exactly 34 strongly regular graphs with parameters (49, 18, 7, 6) having a cyclic automorphism group of order 6.

Theorem

Up to isomorphism there exists exactly 36 strongly regular graphs with parameters (49, 18, 7, 6) having an automorphism group isomorphic to the symmetric group S_3 .

Theorem

Up to isomorphism there exists exactly 55 strongly regular graphs with parameters (49, 18, 7, 6) having an automorphism group of order six.

ヘロン 人間と 人間と 人間と

$ \operatorname{Aut}(\Gamma_i) $	#SRGs	$ \operatorname{Aut}(\Gamma_i) $	#SRGs
6	<mark>8</mark> +26	72	4
12	<mark>2</mark> +2	126	1
18	1+1	144	2
24	4	1008	1
30	1	1764	1
48	1		

Table: SRG(49,18,7,6) having an automorphism group of order 6

SRG(99, 14, 1, 2)

 $\exists \rightarrow$

E

SRG(99, 14, 1, 2)

E

- 4 回 ト - 4 回 ト - 4 回 ト

$\mathsf{SRG}(99, 14, 1, 2)$ -Results

Theorem

If there exists a SRG(99, 14, 1, 2), then the order of its full automorphism group is $2^a 3^b$, and $b \in \{0, 1\}$. If a SRG(99, 14, 1, 2) has an automorphism ϕ of order 3, then ϕ has no fixed points. Further, there is no SRG(99, 14, 1, 2) having an automorphism group of order six.

ヨー つへぐ

・ロト ・四ト ・ヨト ・ヨト