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Introduction

• Let us consider the following sum:

• The function F(n,k) is an integer-valued function.

• The number n is a non-negative number and m is a natural number.



New Class of Binomial Sums: the definition

• Our goal is to investigate some divisibility properties of the sum .

• In order to do so, we introduce a new class of binomial sums which   we call  “ -sums”.

• Let 𝑺

𝒏ି𝟐𝒋

𝒌ୀ𝟎

𝒕

• Numbers , , are non-negative integers such that 

ଶ



The connection between sums

• Obviously, by setting in the (Eq:2), it follows that

• Due to , we can see sum as a generalization of 
.



Main recurrence for new sums

• The following recurrence holds:

𝒏ష𝟐𝒋

𝟐 , 



A simple consequence of  

• Let us suppose that an integer divides  for all 

• By using the , and the induction principle, it can be shown that
must divide  , for all .

• By , it follows that divides , for all +1.



A curious formula

• It is well-known that:

• The (Eq:5) can be proved by using Chu-Vandermonde formula. There 
is also a nice combinatorial proof of the (Eq:5).



The first sum

• Let denote the following sum:

• By the (Eq:5), it follows that:

where = denote the Catalan number.



The first application of new sums

• Theorem 1.

For all natural numbers and , the following congruence is true:

• In other words, .



A Proof of Theorem 1

• The sum is an instance of the , where

(n,k)= .

• Let us calculate 
భ

sum.

• By the 

భ



A Proof of Theorem 1

• By the (Eq:5), it can be shown that

𝟏
=



A Proof of Theorem 1

• By using main recurrence 

𝑺𝟏

𝒏ି𝒋
𝒖

𝒏ି𝟐𝒋
𝟐

𝒖ୀ𝟎



A Proof of Theorem 1

•

• By the ௌభ


ଶ

• ଵ



A Proof of Theorem 1

• By using the main recurrence and the induction principle, it 
can be shown that  

భ
is divisible by , for all .

• By , it follows that is divisible by , for all .

• By , we know that is divisible by . This completes 
the proof of Theorem 1.



A generalization of the first sum

• Let denote the following sum:

where is a natural number and are non-negative integer.



A generalization of the first sum

• By the , we obtain an interesting formula:

𝒌

𝒏

𝒌ୀ𝟎

𝒏

• Note that ( ,( −1)n+1)=1.

• Therefore, by the , it follows that the number ଵ

ିଵ ାଵ
is 

always an integer



A generalized Catalan number

• The number is called a generalized Catalan number.

• For generalized Catalan number reduces to Catalan number.

• The number is also known as Fuss-Catalan number.



The first application of new sums: a 
generalization

• Theorem 1’.

For all natural numbers , and the following congruence is true:

• In other words, .



A generalization of new sums

• Let us consider the following sum:

• The function F(n,k,a) is an integer-valued function.



A generalization of new sums

• We give a slight generalization of ୗ sums.

• 𝑺
𝒏ି𝟐𝒋
𝒌ୀ𝟎

𝒕

• Numbers , , are non-negative integers such that 

ଶ



A generalization of new sums

• Obviously, by setting in the (Eq:2’), it follows that

𝑺

• The is similar with the .

• The recurrence 

• 𝑺

𝒏ష𝟐𝒋

𝟐

𝒖ୀ𝟎 𝑺 , 



A Proof of Theorem 1’

• The sum is an instance of the , where

(n,k,a)= .

• Let us calculate 
భ

sum.

• By the 

భ



A Proof of Theorem 1’

• By the (Eq:5), it can be shown that

𝟏
=



A Proof of Theorem 1’

•By using recurrence 

𝑺𝟏

𝒏ି𝒋
𝒖

𝒏ି𝟐𝒋
𝟐

𝒖ୀ𝟎



A Proof of Theorem 1’

•

• By the ௌభ


ଶ

• ଵ



A Proof of Theorem 1’

• By using the recurrence and the induction principle, it can be 
shown that  

భ
is divisible by , for all .

• By , it follows that is divisible by , for all 
.

• By the , we know that is divisible by . This 
completes the proof of Theorem 1’.



The second sum

• Let denote the following sum:

• By the (Eq:5), it can be shown that:



The second application of new sums

• Theorem 2.

For all natural numbers and , the following congruence is true:

• In other words, .



A Proof of Theorem 2

• The sum is an instance of the , where

(n,k)= .

• Let us calculate 
మ

sum.

• By the 

భ



A Proof of Theorem 2

• By the (Eq:5), it can be shown that

𝟐
=



A Proof of Theorem 2

•

• By the ௌమ


ଶ

• ଶ



A Proof of Theorem 2

• By using the recurrence and the induction principle, it can be 
shown that  

మ
is divisible by , for all .

• By , it follows that is divisible by , for all .

• This completes the proof of Theorem 2.



A generalization of the second sum

• Let denote the following sum:

where is a natural number and are non-negative integer.



The second application of new sums: a 
generalization

• Theorem 2’.

For all natural numbers , and the following congruence is true:

• In other words, .



A Proof of Theorem 2’

• The sum is an instance of the , where

(n,k,a)= .

• Let us calculate 
మ

sum.

• By the 

మ



A Proof of Theorem 2’

• By the (Eq:5), it can be shown that

𝟐
=



A Proof of Theorem 2’

•

• By the ௌమ


ଶ

• ଶ



A Proof of Theorem 2’

• By using the recurrence and the induction principle, it can be 
shown that  

మ
is divisible by , for all .

• By , it follows that is divisible by , for all 
.

• This completes the proof of Theorem 2’.



The Fibonacci numbers

• Let  denote the n-th Fibonacci number.

• The first two terms are  and ଵ .

• The other terms are defined by the recurrence relation: = ିଵ+ ିଶ (for 
n .

• It is well-known that (the Binet formula) that:



 





The Lucas numbers

• Let  denote the n-th Lucas number.

• The first two terms are  and ଵ .

• The other terms are defined by the recurrence relation: = ିଵ+ ିଶ
(for n .

• It is known that:


ଵା ହ


ା ଵି ହ



ଶ



Two binomial formulas with Fibonacci and 
Lucas numbers

• The Binet formula is equivalent with the following identity:


ୀ

 ିଵ
,  

• The is equivalent with the following identity:


ୀ

 ିଵ
,  



An interesting formula with Fibonacci numbers

By using and , it can be shown that:



The third application: The sum connected with 
the Fibonacci numbers

• Let the sum ଷ denote the following sum:




ୀ


ଶ

• By the ( ), it follows that:
𝟑

𝐧
𝒏ା𝟏.

• The sum ଷ is an instance of the , where

ଷ(n,k)=
ೖ

మ .



The third application: The sum connected with 
the Fibonacci numbers

• Let us calculate 
య

sum.

• By the 

య



The third application: The sum connected with 
the Fibonacci numbers

•

then it can be shown that:

• 𝑺𝟑

𝒋

𝟐 𝒏ି𝟐𝒋
𝒏ି𝟐𝒋ା𝟏.  (Eq:21)

then it can be shown that:

• 𝑺𝟑

𝒋ష𝟏

𝟐 𝒏ି𝟐𝒋
𝒏ି𝟐𝒋ା𝟏. (Eq:22)



The End

• Thanks for your attention.



