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Introduction

* Let us consider the foIIowi7{1g sum:

S(n,m) = Z () Fouk),  (Eq:D)

k=0

* The function F(n,k) is an integer-valued function.

* The number n is a non-negative number and m is a natural number.



New Class of Binomial Sums: the definition

Our goal is to investigate some divisibility properties of the sum S(n, m).
In order to do so, we introduce a new class of binomial sums which we call “M-sums”.

Let Mg(n, j, t) denote the following sum:

-2j

("5 )Z(n (1) Fmitl,  E2)

Numbers n, j, t are non-negative integers such thatj < E‘



The connection between sums

* Obviously, by setting j := 0 in the (Eq:2), it follows that

S(n,t+1) = Mg(n,0,t), (Eq:3)

* Due to (Eq: 3), we can see M¢(n, j,t) sum as a generalization of
S(n, m).



Main recurrence for new sums

* The following recurrence holds:

ln 2j

Mg(n,j,t+ 1)—(]) ( uj)MS(n,j+u,t), (Eq:4)



A simple consequence of (Eqg:3) and (Eq: 4)

* Let us suppose that an integer g(n) divides M¢(n, j, ty) forall 0 <
] < E‘ ; where t; is a fixed non-negative number.

* By using the (Eq: 4), and the induction principle, it can be shown that
g(n) must divide Mq¢(n,j,t), forallt > t,.

* By (Eq: 3), it follows that g(n) divides S(n, t), for all t > ty+1.



A curious formula

e It is well-known that:

n

Y (3 ) = L), @S

k=0

* The (Eq:5) can be proved by using Chu-Vandermonde formula. There
is also a nice combinatorial proof of the (Eq:5).



The first sum

* Let §;(n, m) denote the followmg sum:

Z( D) GErY) Eae)

* By the (Eq:5), it follows that:
S51(n, 1) = (=1)"nC,, (Eq:7)

1
where C,,= — (Znn) denote the n — th Catalan number.



The first application of new sums

e Theorem 1.

For all natural numbers n and m, the following congruence is true:

Z( 1)" %Z i l;) 0(mod n)

* In other words, $1(n,m) = 0(mod n).



A Proof of Theorem 1

* The sum S;(n, m) is an instance of the (Eq: 1), where

Fink=(-Dk (2 T1).

* Let us calculate Mg, (n,j,0) sum.

* By the (Eq: 2), it follows that
| — 2] |
Ms, (n,j, 0) _( )z“ 2’( ) ])Fl(n,]+k).



A Proof of Theorem 1

* By the (Eq:5), it can be shown that

: _if2n+J\ (2n + 1\ n-j
My, (0,3, 00=-0mI (T ) (1 ) 2 (Eqs8)



A Proof of Theorem 1

. Bﬁl using main recurrence (Eq: 4) and (Eq: 8), it can be shown
that

SR (e [ [ AR TR



A Proof of Theorem 1

* We assert that an integer

(n—l)(j+u)<2n+j+u>( 2n+1 )
jtu u jtu n—2j—2u
is divisible by 2n + 1. Note that gcd (n, 2 n +1)=1.

* By the (Eq:9), it follows that Mg (n, j, 1) is divisible by n for all

0<j< EJ and for all natural numbers n.

» Therefore, we can take g;(n) = n.



A Proof of Theorem 1

* By using the main recurrence (Eq: 4) and the induction principle, it
can be shown that Mg (n,j,t) is divisible by n, forall t > 1.

* By (Eq: 3), it follows that S; (n, t) is divisible by n, for all t > 2.

* By (Eq: 6), we know that S;(n, 1) is divisible by n . This completes
the proof of Theorem 1.



A generalization of the first sum

* Let 5;(n, m; a) denote the following sum:

Z< D¥() (R TY), Eai10)

where a is a natural number and n, m are non-negative integer.



A generalization of the first sum

* By the (Eq: 5), we obtain an interesting formula:

n

;(—1)" (Z) (Zz ::_' ’1() =1 (a — 11;11 +1 (?)’(Eq: 11)

* Note that gcd(n,(a-1)n+1)=1.

. 1 an .
. Therefore,. by the (Eq:11), it follows that the number (@a—Dni1 ( n ) is
always an integer



A generalized Catalan number

1

an . :
* The number ( ) is called a generalized Catalan number.
(a—1)n+1\ n

* For a = 2, generalized Catalan number reduces to Catalan number.

1

any .
* The number ( ) is also known as Fuss-Catalan number.
(a—1)n+1\ n




The first application of new sums: a
generalization

e Theorem 1’.

For all natural numbers n, m, and a the following congruence is true:

+ k
Z( 1)" ZZ+ 1) 0(mod n)

* In other words, $1(n,m; a) = 0(mod n).



A generalization of new sums

* Let us consider the foIIow1i1ng sum:

S(n,m;a) = z (Z)mF(n, k,a), (Eq:1")

k=0

* The function F(n,k,a) is an integer-valued function.



A generalization of new sums

* We give a slight generalization of Mg sums.

. n—j\en-2j(n—2j\ M \ : :
'Ms(n,J,t;a)=( ]-]) ',L(z,’(" " ])(]-+k) F(n,j+k,a), (Eq:2)

* Numbers n, j, t are non-negative integers such thatj < E‘, and

a is a natural number.



A generalization of new sums

* Obviously, by setting j := 0 in the (Eq:2’), it follows that

Sm,t+1;a) =Mg(n,0,t;a), (Eq:3")
* The (Eq: 3") is similar with the (Eq: 3).

* The recurrence (Eq: 4) also holds:

ln 2j

« Mg(n,j,t+ 1; a)—(]) ( uj)MS(n,j+u,t;a),(Eq:4')



A Proof of Theorem 1’

* The sum S;(n, m; a) is an instance of the (Eq: 1"), where

F,(n,k,a)=(—1)k (ZZ i II) .

* Let us calculate Mg (n,j, 0; a) sum.

* By the (Eq: 2"), it follows that
Mg, (n,),0;a) = ( )Zn 2]( kzl) Fi(n,j+Kk a).



A Proof of Theorem 1’

* By the (Eq:5), it can be shown that

_ _ifan+j\ (an + 1\ n-j
. —(_1\N—J
M.S'l(n)])o) a)_( 1) ( j )(n_Zj)an+1’

(Eq:5)



A Proof of Theorem 1’

* By using recurrence (Eq:4') and (Eq:5"), it can be
shown that




A Proof of Theorem 1’

* We assert that an integer
(n—1>(j+u)(an+j+u>( an + 1 )
jtu u jtu n—2j—2u
is divisible by an + 1. Note that gcd (n, an +1)=1.

By the (Eq: 6"), it follows that Ms, (n,j,1; a) is divisible by n for all

0<j< EJ and for all natural numbersn and a .

» Therefore, we can take g;(n,a) = n.



A Proof of Theorem 1’

* By using the recurrence (Eq:4") and the induction principle, it can be
shown that Mg (n,j,t; a) is divisible by n, forall t > 1.

By the (Eq: 3"), it follows that S; (n, t; a) is divisible by n, for all t >
2.

* By the (Eq: 11), we know that S;(n, 1; a) is divisible by n. This
completes the proof of Theorem 1.



The second sum

* Let S, (n, m) denote the following sum:

> o (e +2 (Gt ) e

* By the (Eq:5), it can be shown that:
S,(n,1) = (—1)"(3n+ 1)C,,.(Eq:13)



The second application of new sums

e Theorem 2.

For all natural numbers n and m, the following congruence is true:

Z( 1)" < an;l; k) + 2 (g;: ::__ l;)) = 0(mod 3n + 1)

* In other words, $5(n,m) = 0(mod 3n + 1).



A Proof of Theorem 2

* The sum S,(n, m) is an instance of the (Eq: 1), where

ik ()2 G

* Let us calculate Mg, (n,j, 0) sum.

* By the (Eq: 2), it follows that
. — 2j .
MSl(n,],O)—( )z“ 2’( ) ])Fz(n,]+k).



A Proof of Theorem 2

* By the (Eq:5), it can be shown that

.(Zn.+ j) (Zn + 1) 3n+1 (Eq: 14)

. (1 \N—j
MSz(n)]) O)_( 1) ] n — 2]' 2n+1’



A Proof of Theorem 2

* Clearly, an integer

<2n +j> (Zn + 1)
J n—2j
is divisible by 2n + 1. Note that gcd (3n + 1, 2n +1)=1.

* By the (Eq: 14), it follows that M, (n, j, 0) is divisible by 3n + 1 for all

0<j< EJ and for all natural numbers n.

» Therefore, we can take g,(n) = 3n + 1.



A Proof of Theorem 2

* By using the recurrence (Eq: 4) and the induction principle, it can be
shown that Mg (n,j,t ) is divisible by 3n + 1, forall t = 0.

* By (Eq: 3), it follows that S, (n, t) is divisible by 3n + 1, forall t > 1.

* This completes the proof of Theorem 2.



A generalization of the second sum

* Let S, (n, m; a) denote the following sum:

> o) (et h)
(Eq: 15)

where a is a natural number and n, m are non-negative integer.



The second application of new sums: a
generalization

* Theorem 2’.
For all natural numbers n, m, and a the following congruence is true:
k an + k an + k
z( 1) < an )+2(an+1)>
= O(mod (a+1)n+1)

* In other words, S,(n,m;a) = 0(mod (a+ 1)n + 1).



A Proof of Theorem 2’

* The sum S,(n, m; a) is an instance of the (Eq: 1), where

F,(n,k,a)=(—1) <(an + k) 42 (an + k)>

an an + 1
* Let us calculate Mg, (n,j, 0; a) sum.

* By the (Eq: 2"), it follows that

. n—j —2j (N — 2j .
MSZ(n,],O;a):( ] ])ZE=31( k ])Fz(n,]‘l'k,a).



A Proof of Theorem 2’

* By the (Eq:5), it can be shown that

, _fan+j\ [an + 1\ (a+1Dn+1
. —(_1\N—J
MSZ (n) ]) O) a)_( 1) ( ]' ) (n — 2]') an+1 '’

(Eq:16)



A Proof of Theorem 2’

* Clearly, an integer
(an +j> (an + 1)
J n—2j
is divisible by an + 1. Note that gcd ((a + 1)n+ 1, an +1)=1.

* By the (Eq: 16), it follows that Mg (n, j, 0; a) is divisible by (a + 1)n + 1 for all

0<j< EJ and for all natural numbers n and a.

* Therefore, we can take q,(n,a) = (a + 1)n + 1.



A Proof of Theorem 2’

* By using the recurrence (Eq:4") and the induction principle, it can be
shown that Mg, (n,j,t;a ) isdivisible by (a + 1)n+ 1, forall t = 0.

* By (Eq: 3"), it follows that S, (n, t) is divisible by (a + 1)n + 1, for all
t = 1.

* This completes the proof of Theorem 2.



The Fibonacci numbers

* Let F, denote the n-th Fibonacci number.
* Thefirsttwo termsare F; = 0and F; = 1.

. Theé))ther terms are defined by the recurrence relation: F,,= F,,_{+F,,_, (for
n= 2).

* |t is well-known that (the Binet formula) that:

. _(1+x/§)n—(1—\/§)n
n — Zn\/'g




The Lucas numbers

* Let L,, denote the n-th Lucas number.
* Thefirsttwo termsare Lo = 1and L; = 3.

* The other terms are defined by the recurrence relation: L,,=L,,_1+L,,_>
(forn= 2).

e |t is known that:

. (1+\/§)n+(1—\/§)n
ZTl

L, , (Eq:17)



Two binomial formulas with Fibonacci and
Lucas numbers

* The Binet formula |7§ equivalent with the following identity:

n —
Z (s \ )5 =2""F, (Eq:18)
k=0

* The (Eq:17) is equivglent with the following identity:
n _
Z (5, )55 =2""1Ly  (Eq:19)

k=0



An interesting formula with Fibonacci numbers

By using (Eq:18) and (Eq: 19), it can be shown that:

zn: (Z) 5l2] = 2"F,.1 (Eq:20)
k=0



The third application: The sum connected with
the Fibonacci numbers

* Let the sum S3(n, m) denote thne following sum:

z (5)" 361

k=0

* By the (Eqg: 20), it follows that:
S3(n,1) = 2"F

* The sum S3(n, m) is an instance of the (Eq: 1), where

F3(n,k)=5[§J .



The third application: The sum connected with
the Fibonacci numbers

* Let us calculate Mg, (n,j, 0) sum.

* By the (Eq: 2), it follows that
. — 2j .
MSS(n,],O)—( )z“ 2’( ) ])F3(n,]+k).



The third application: The sum connected with
the Fibonacci numbers

 We have the two cases:

If jis even, then it can be shown that:

. n—j n-2j
Mg (,3,0) = (" )55 2" YF, yyus. (Eg:21)
If jis odd, then it can be shown that:

. n—
M5, 0,0) = (" 77)ST 208 4y (€922



The End

* Thanks for your attention.
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