On Divisibility Properties of Some Binomial Sums Connected with the Catalan and Fibonacci Numbers

Mr Jovan Mikić, Faculty of Technology,
University of Banja Luka,
Email address: jovan.mikic@tf.unibl.org

Introduction

- Let us consider the following sum:

$$
S(n, m)=\sum_{k=0}^{n}\binom{n}{k}^{m} F(n, k), \quad(E q: 1)
$$

- The function $\mathrm{F}(\mathrm{n}, \mathrm{k})$ is an integer-valued function.
- The number n is a non-negative number and m is a natural number.

New Class of Binomial Sums: the definition

- Our goal is to investigate some divisibility properties of the sum $S(n, m)$.
- In order to do so, we introduce a new class of binomial sums which we call " M-sums".
- Let $\boldsymbol{M}_{\boldsymbol{S}}(\boldsymbol{n}, \boldsymbol{j}, \boldsymbol{t})$ denote the following sum:

$$
\begin{equation*}
\binom{n-j}{j} \sum_{k=0}^{n-2 j}\binom{n-2 j}{k}\binom{n}{j+k}^{t} F(n, j+k) \tag{Eq:2}
\end{equation*}
$$

- Numbers n, j, t are non-negative integers such that $\mathrm{j} \leq\left\lfloor\frac{n}{2}\right\rfloor$.

The connection between sums

- Obviously, by setting $j:=0$ in the (Eq:2), it follows that

$$
\boldsymbol{S}(\boldsymbol{n}, \boldsymbol{t}+\mathbf{1})=\boldsymbol{M}_{\boldsymbol{S}}(\mathbf{n}, \mathbf{0}, \mathbf{t}), \quad(E q: 3)
$$

- Due to (Eq: 3), we can see $M_{S}(n, j, t)$ sum as a generalization of $S(n, m)$.

Main recurrence for new sums

- The following recurrence holds:

$$
\boldsymbol{M}_{\boldsymbol{S}}(\mathbf{n}, \mathbf{j}, \mathbf{t}+\mathbf{1})=\binom{\mathbf{n}}{\boldsymbol{j}} \sum_{\boldsymbol{u}=\mathbf{0}}^{\left[\frac{n-2 \boldsymbol{j}}{2}\right]}\binom{\boldsymbol{n}-\boldsymbol{j}}{\boldsymbol{u}} \boldsymbol{M}_{\boldsymbol{S}}(\boldsymbol{n}, \boldsymbol{j}+\mathbf{u}, \boldsymbol{t}),(E q: 4)
$$

A simple consequence of (Eq:3) and (Eq:4)

- Let us suppose that an integer $q(n)$ divides $M_{S}\left(n, j, t_{0}\right)$ for all $0 \leq$ $\mathrm{j} \leq\left\lfloor\frac{n}{2}\right\rfloor$; where t_{0} is a fixed non-negative number.
- By using the ($E q: 4$), and the induction principle, it can be shown that $q(n)$ must divide $M_{S}(n, j, t)$, for all $t \geq t_{0}$.
- By (Eq:3), it follows that $q(n)$ divides $S(n, t)$, for all $t \geq t_{0}+1$.

A curious formula

- It is well-known that:

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{x+k}{y}=(-1)^{n}\binom{x}{y-n} \tag{Eq:5}
\end{equation*}
$$

- The (Eq:5) can be proved by using Chu-Vandermonde formula. There is also a nice combinatorial proof of the ($\mathrm{Eq}: 5$).

The first sum

- Let $S_{1}(n, m)$ denote the following sum:

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{m}\binom{2 n+k}{2 n+1} \tag{Eq:6}
\end{equation*}
$$

- By the (Eq:5), it follows that:

$$
S_{1}(\mathrm{n}, 1)=(-1)^{n} n C_{n}, \quad \text { (Eq: 7) }
$$

where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ denote the $n-t h$ Catalan number.

The first application of new sums

- Theorem 1.

For all natural numbers n and m, the following congruence is true:

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{m}\binom{2 n+k}{2 n+1} \equiv 0(\bmod n)
$$

- In other words, $\boldsymbol{S}_{\mathbf{1}}(\mathbf{n}, \mathbf{m}) \equiv \mathbf{0}(\bmod \mathbf{n})$.

A Proof of Theorem 1

- The sum $S_{1}(\mathrm{n}, \mathrm{m})$ is an instance of the ($E q: 1$), where

$$
F_{1}(\mathrm{n}, \mathrm{k})=(-1)^{k}\binom{2 n+k}{2 n+1} .
$$

- Let us calculate $\mathrm{M}_{S_{1}}(\mathrm{n}, \mathrm{j}, 0)$ sum.
- By the (Eq:2), it follows that

$$
M_{S_{1}}(n, j, 0)=\binom{n-j}{j} \sum_{k=0}^{n-2 j}\binom{n-2 j}{k} F_{1}(n, j+k) .
$$

A Proof of Theorem 1

- By the (Eq:5), it can be shown that

$$
M_{S_{1}}(n, j, 0)=(-1)^{n-j}\binom{2 n+j}{j}\binom{2 n+1}{n-2 j} \frac{n-j}{2 n+1}, \quad(E q: 8)
$$

A Proof of Theorem 1

- By using main recurrence (Eq: 4) and (Eq: 8), it can be shown that

$$
\begin{aligned}
& M_{S_{1}}(n, j, 1) \\
& =n(-1)^{n-j} \sum_{u=0}^{\left[\frac{n-2 j}{2}\right]} \frac{(-1)^{u}}{2 n+1}\binom{n-1}{j+u}\binom{j+u}{u}\binom{2 n+j+u}{j+u}\binom{2 n+1}{n-2 j-2 u}
\end{aligned}
$$

A Proof of Theorem 1

- We assert that an integer

$$
\binom{n-1}{j+u}\binom{j+u}{u}\binom{2 n+j+u}{j+u}\binom{2 n+1}{n-2 j-2 u}
$$

is divisible by $2 n+1$. Note that $\operatorname{gcd}(n, 2 n+1)=1$.

- By the ($E q: 9$), it follows that $M_{S_{1}}(n, j, 1)$ is divisible by n for all $0 \leq \mathrm{j} \leq\left\lfloor\frac{n}{2}\right\rfloor$ and for all natural numbers n.
- Therefore, we can take $q_{1}(n)=n$.

A Proof of Theorem 1

- By using the main recurrence ($E q: 4$) and the induction principle, it can be shown that $M_{S_{1}}(n, j, t)$ is divisible by n, for all $t \geq 1$.
- By (Eq:3), it follows that $S_{1}(n, t)$ is divisible by n , for all $t \geq 2$.
- By (Eq: 6), we know that $S_{1}(n, 1)$ is divisible by n . This completes the proof of Theorem 1.

A generalization of the first sum

- Let $S_{1}(\mathrm{n}, \mathrm{m} ; \mathrm{a})$ denote the following sum:

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{m}\binom{a n+k}{a n+1} \tag{Eq:10}
\end{equation*}
$$

where a is a natural number and n, m are non-negative integer.

A generalization of the first sum

- By the (Eq: 5), we obtain an interesting formula:

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{a n+k}{a n+1}=(-1)^{n} \frac{n}{(a-1) n+1}\binom{a n}{n},(E q: 11)
$$

- Note that $\operatorname{gcd}(n,(a-1) n+1)=1$.
- Therefore, by the (Eq:11), it follows that the number $\frac{1}{(a-1) n+1}\binom{a n}{n}$ is always an integer

A generalized Catalan number

- The number $\frac{\mathbf{1}}{(\boldsymbol{a}-\mathbf{1}) \boldsymbol{n}+\mathbf{1}}\binom{\boldsymbol{a n}}{\boldsymbol{n}}$ is called a generalized Catalan number.
- For $a=2$, generalized Catalan number reduces to Catalan number.
- The number $\frac{1}{(a-1) n+1}\binom{a n}{n}$ is also known as Fuss-Catalan number.

The first application of new sums: a generalization

- Theorem 1'.

For all natural numbers n, m, and a the following congruence is true:

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{m}\binom{a n+k}{a n+1} \equiv 0(\bmod n)
$$

- In other words, $\boldsymbol{S}_{\mathbf{1}}(\mathbf{n}, \mathbf{m} ; \boldsymbol{a}) \equiv \mathbf{0}(\boldsymbol{\operatorname { m o d }} \mathbf{n})$.

A generalization of new sums

- Let us consider the following sum:

$$
S(n, m ; a)=\sum_{k=0}^{n}\binom{n}{k}^{m} F(n, k, a), \quad\left(E q: 1^{\prime}\right)
$$

- The function $\mathrm{F}(\mathrm{n}, \mathrm{k}, \mathrm{a})$ is an integer-valued function.

A generalization of new sums

- We give a slight generalization of M_{S} sums.
- $M_{S}(n, j, t ; a)=\binom{n-\boldsymbol{j}}{\boldsymbol{j}} \sum_{k=0}^{n-2 j}\binom{n-2 \boldsymbol{j}}{k}\binom{n}{\boldsymbol{j}+\boldsymbol{k}}^{\boldsymbol{t}} \boldsymbol{F}(\boldsymbol{n}, \boldsymbol{j}+\boldsymbol{k}, a),\left(E q: 2^{\prime}\right)$
- Numbers n, j, t are non-negative integers such that $\mathrm{j} \leq\left\lfloor\frac{n}{2}\right\rfloor$; and a is a natural number.

A generalization of new sums

- Obviously, by setting $j:=0$ in the (Eq:2'), it follows that

$$
\boldsymbol{S}(\boldsymbol{n}, \boldsymbol{t}+\mathbf{1} ; \boldsymbol{a})=\boldsymbol{M}_{\boldsymbol{S}}(\mathbf{n}, \mathbf{0}, \mathbf{t} ; \boldsymbol{a}), \quad\left(E q: 3^{\prime}\right)
$$

- The $\left(E q: 3^{\prime}\right)$ is similar with the ($\left.E q: 3\right)$.
- The recurrence ($E q: 4$) also holds:
$\cdot \boldsymbol{M}_{\boldsymbol{S}}(\mathbf{n}, \mathbf{j}, \mathbf{t}+\mathbf{1} ; \mathbf{a})=\binom{\boldsymbol{n}}{\boldsymbol{j}} \sum_{\boldsymbol{u}=\mathbf{0}}^{\left[\frac{n-2 \boldsymbol{j}}{2}\right\rfloor}\binom{\boldsymbol{n}-\boldsymbol{j}}{\boldsymbol{u}} \boldsymbol{M}_{\boldsymbol{S}}(\boldsymbol{n}, \boldsymbol{j}+\mathbf{u}, \boldsymbol{t} ; \boldsymbol{a}),\left(E q: 4^{\prime}\right)$

A Proof of Theorem 1'

- The sum $S_{1}(\mathrm{n}, \mathrm{m} ; \mathrm{a})$ is an instance of the $\left(E q: 1^{\prime}\right)$, where

$$
F_{1}(\mathrm{n}, \mathrm{k}, \mathrm{a})=(-1)^{k}\binom{a n+k}{a n+1} .
$$

- Let us calculate $\mathrm{M}_{S_{1}}(\mathrm{n}, \mathrm{j}, 0 ; a)$ sum.
- By the ($E q: 2^{\prime}$), it follows that

$$
\mathrm{M}_{S_{1}}(\mathrm{n}, \mathrm{j}, 0 ; a)=\binom{\mathrm{n}-\mathrm{j}}{\mathrm{j}} \sum_{\mathrm{k}=0}^{\mathrm{n}-2 \mathrm{j}}\binom{\mathrm{n}-2 \mathrm{j}}{\mathrm{k}} F_{1}(\mathrm{n}, \mathrm{j}+\mathrm{k}, a) .
$$

A Proof of Theorem 1'

- By the (Eq:5), it can be shown that

$$
M_{S_{1}}(n, j, 0 ; a)=(-1)^{n-j}\binom{a n+j}{j}\binom{a n+1}{n-2 j} \frac{n-j}{a n+1}
$$

(Eq: 5')

A Proof of Theorem 1'

- By using recurrence ($E q: 4^{\prime}$) and (Eq: 5^{\prime}), it can be shown that

$$
\begin{aligned}
& M_{S_{1}}(n, j, 1 ; a) \\
& =n(-1)^{n-j} \sum_{u=0}^{\left[\frac{n-2 j}{2}\right]} \frac{(-1)^{u}}{a n+1}\binom{n-1}{j+u}\binom{j+u}{u}\binom{a n+j+u}{j+u}\binom{a n+1}{n-2 j-2 u},
\end{aligned}
$$

(Eq: 6')

A Proof of Theorem 1'

- We assert that an integer

$$
\binom{n-1}{j+u}\binom{j+u}{u}\binom{a n+j+u}{j+u}\binom{a n+1}{n-2 j-2 u}
$$

is divisible by $a n+1$. Note that $\operatorname{gcd}(n, a n+1)=1$.

- By the $\left(E q: 6^{\prime}\right)$, it follows that $M_{S_{1}}(n, j, 1 ; a)$ is divisible by n for all $0 \leq \mathrm{j} \leq\left\lfloor\frac{n}{2}\right\rfloor$ and for all natural numbers n and a.
- Therefore, we can take $q_{1}(n, a)=n$.

A Proof of Theorem 1'

- By using the recurrence ($E q: 4^{\prime}$) and the induction principle, it can be shown that $M_{S_{1}}(n, j, t ; a)$ is divisible by n, for all $t \geq 1$.
- By the (Eq:3'), it follows that $S_{1}(n, t ; a)$ is divisible by n, for all $t \geq$ 2.
- By the (Eq:11), we know that $S_{1}(n, 1 ; a)$ is divisible by n. This completes the proof of Theorem 1^{\prime}.

The second sum

- Let $S_{2}(n, m)$ denote the following sum:

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{m}\left(\binom{2 n+k}{2 n}+2\binom{2 n+k}{2 n+1}\right),(E q: 12)
$$

- By the (Eq:5), it can be shown that:

$$
S_{2}(n, 1)=(-1)^{n}(3 n+1) C_{n} \cdot(E q: 13)
$$

The second application of new sums

- Theorem 2.

For all natural numbers n and m, the following congruence is true:

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{m}\left(\binom{2 n+k}{2 n}+2\binom{2 n+k}{2 n+1}\right) \equiv 0(\bmod 3 n+1)
$$

- In other words, $\boldsymbol{S}_{\mathbf{2}}(\mathbf{n}, \mathbf{m}) \equiv \mathbf{0}(\bmod 3 \boldsymbol{n}+\mathbf{1})$.

A Proof of Theorem 2

- The sum $S_{2}(\mathrm{n}, \mathrm{m})$ is an instance of the (Eq: 1), where

$$
F_{2}(\mathrm{n}, \mathrm{k})=(-1)^{k}\left(\binom{2 n+k}{2 n}+2\binom{2 n+k}{2 n+1}\right)
$$

- Let us calculate $\mathrm{M}_{S_{2}}(\mathrm{n}, \mathrm{j}, 0)$ sum.
- By the (Eq:2), it follows that

$$
\mathrm{M}_{S_{1}}(\mathrm{n}, \mathrm{j}, 0)=\binom{\mathrm{n}-\mathrm{j}}{\mathrm{j}} \sum_{\mathrm{k}=0}^{\mathrm{n}-2 \mathrm{j}}\binom{\mathrm{n}-2 \mathrm{j}}{\mathrm{k}} F_{2}(\mathrm{n}, \mathrm{j}+\mathrm{k}) .
$$

A Proof of Theorem 2

- By the (Eq:5), it can be shown that

$$
M_{S_{2}}(n, j, 0)=(-1)^{n-j}\binom{2 n+j}{j}\binom{2 n+1}{n-2 j} \frac{3 n+1}{2 n+1}
$$

(Eq: 14)

A Proof of Theorem 2

- Clearly, an integer

$$
\binom{2 n+j}{j}\binom{2 n+1}{n-2 j}
$$

is divisible by $2 n+1$. Note that $\operatorname{gcd}(3 n+1,2 n+1)=1$.

- By the (Eq: 14), it follows that $M_{S_{2}}(n, j, 0)$ is divisible by $3 n+1$ for all $0 \leq \mathrm{j} \leq\left\lfloor\frac{n}{2}\right\rfloor$ and for all natural numbers n.
- Therefore, we can take $q_{2}(n)=3 n+1$.

A Proof of Theorem 2

- By using the recurrence ($E q: 4$) and the induction principle, it can be shown that $M_{S_{2}}(n, j, t)$ is divisible by $3 n+1$, for all $t \geq 0$.
- By (Eq:3), it follows that $S_{2}(n, t)$ is divisible by $3 n+1$, for all $t \geq 1$.
- This completes the proof of Theorem 2.

A generalization of the second sum

- Let $S_{2}(\mathrm{n}, \mathrm{m} ; \mathrm{a})$ denote the following sum:

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{m}\left(\binom{a n+k}{a n}+2\binom{a n+k}{a n+1}\right)
$$

(Eq: 15)
where a is a natural number and n, m are non-negative integer.

The second application of new sums: a generalization

- Theorem 2'.

For all natural numbers n, m, and a the following congruence is true:

$$
\begin{gathered}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{m}\left(\binom{a n+k}{a n}+2\binom{a n+k}{a n+1}\right) \\
\equiv 0(\bmod (a+1) n+1)
\end{gathered}
$$

- In other words, $\boldsymbol{S}_{\mathbf{2}}(\mathbf{n}, \mathbf{m} ; \boldsymbol{a}) \equiv \mathbf{0}(\boldsymbol{\operatorname { m o d }}(\boldsymbol{a}+\mathbf{1}) \boldsymbol{n}+\mathbf{1})$.

A Proof of Theorem 2'

- The sum $S_{2}(\mathrm{n}, \mathrm{m} ; \mathrm{a})$ is an instance of the ($\left.E q: 1^{\prime}\right)$, where

$$
F_{2}(\mathrm{n}, \mathrm{k}, \mathrm{a})=(-1)^{k}\left(\binom{a n+k}{a n}+2\binom{a n+k}{a n+1}\right) .
$$

- Let us calculate $\mathrm{M}_{S_{2}}(\mathrm{n}, \mathrm{j}, 0 ; a)$ sum.
- By the (Eq: 2^{\prime}), it follows that

$$
\mathrm{M}_{S_{2}}(\mathrm{n}, \mathrm{j}, 0 ; a)=\binom{\mathrm{n}-\mathrm{j}}{\mathrm{j}} \sum_{\mathrm{k}=0}^{\mathrm{n}-2 \mathrm{j}}\binom{\mathrm{n}-2 \mathrm{j}}{\mathrm{k}} F_{2}(\mathrm{n}, \mathrm{j}+\mathrm{k}, a) .
$$

A Proof of Theorem 2'

- By the (Eq:5), it can be shown that

$$
M_{S_{2}}(n, j, 0 ; a)=(-1)^{n-j}\binom{a n+j}{j}\binom{a n+1}{n-2 j} \frac{(a+1) n+1}{a n+1}
$$

(Eq: 16)

A Proof of Theorem 2'

- Clearly, an integer

$$
\binom{a n+j}{j}\binom{a n+1}{n-2 j}
$$

is divisible by $a n+1$. Note that $\operatorname{gcd}((a+1) n+1$, $a n+1)=1$.

- By the (Eq: 16), it follows that $M_{S_{2}}(n, j, 0 ; a)$ is divisible by $(a+1) n+1$ for all $0 \leq \mathrm{j} \leq\left\lfloor\frac{n}{2}\right\rfloor$ and for all natural numbers n and a.
- Therefore, we can take $q_{2}(n, a)=(a+1) n+1$.

A Proof of Theorem 2'

- By using the recurrence ($E q: 4^{\prime}$) and the induction principle, it can be shown that $M_{S_{2}}(n, j, t ; a)$ is divisible by $(a+1) n+1$, for all $t \geq 0$.
- By $\left(E q: 3^{\prime}\right)$, it follows that $S_{2}(n, t)$ is divisible by $(a+1) n+1$, for all $t \geq 1$.
- This completes the proof of Theorem 2'.

The Fibonacci numbers

- Let F_{n} denote the n-th Fibonacci number.
- The first two terms are $F_{0}=0$ and $F_{1}=1$.
- The other terms are defined by the recurrence relation: $F_{n}=F_{n-1}+F_{n-2}$ (for $\mathrm{n} \geq 2$).
- It is well-known that (the Binet formula) that:

$$
F_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

The Lucas numbers

- Let L_{n} denote the n-th Lucas number.
- The first two terms are $L_{0}=1$ and $L_{1}=3$.
- The other terms are defined by the recurrence relation: $L_{n}=L_{n-1}+L_{n-2}$ (for $n \geq 2$).
- It is known that:

$$
L_{n}=\frac{(1+\sqrt{5})^{n}+(1-\sqrt{5})^{n}}{2^{n}}, \quad(E q: 17)
$$

Two binomial formulas with Fibonacci and Lucas numbers

- The Binet formula is equivalent with the following identity:

$$
\sum_{k=0}^{n}\binom{n}{2 k+1} 5^{k}=2^{n-1} F_{n,} \quad(E q: 18)
$$

- The ($E q: 17$) is equivalent with the following identity:

$$
\sum_{k=0}^{n}\binom{n}{2 k} 5^{k}=2^{n-1} L_{n}, \quad(E q: 19)
$$

An interesting formula with Fibonacci numbers

By using (Eq: 18) and (Eq: 19), it can be shown that:

$$
\sum_{k=0}^{n}\binom{n}{k} 5^{\left.\left\lvert\, \frac{k}{2}\right.\right]}=2^{n} F_{n+1}, \quad(E q: 20)
$$

The third application: The sum connected with the Fibonacci numbers

- Let the sum $S_{3}(n, m)$ denote the following sum:

$$
\sum_{k=0}^{n}\binom{n}{k}^{m} 5^{\left\lfloor\frac{k}{2}\right\rfloor}
$$

- By the (Eq: 20), it follows that:

$$
S_{3}(n, 1)=2^{n} F_{n+1}
$$

- The sum $S_{3}(\mathrm{n}, \mathrm{m})$ is an instance of the ($E q: 1$), where

$$
F_{3}(\mathrm{n}, \mathrm{k})=5^{\left\lfloor\frac{k}{2}\right\rfloor}
$$

The third application: The sum connected with the Fibonacci numbers

- Let us calculate $\mathrm{M}_{S_{3}}(\mathrm{n}, \mathrm{j}, 0)$ sum.
- By the (Eq:2), it follows that

$$
M_{S_{3}}(n, j, 0)=\binom{n-j}{j} \sum_{k=0}^{n-2 j}\binom{n-2 j}{k} F_{3}(n, j+k)
$$

The third application: The sum connected with the Fibonacci numbers

- We have the two cases:

If j is even, then it can be shown that:

- $M_{S_{3}}(n, j, 0)=\binom{n-j}{j} 5^{\frac{j}{2}} 2^{n-2 j} F_{n-2 j+1}$. $(E q: 21)$

If j is odd, then it can be shown that:

- $M_{S_{3}}(n, j, 0)=\binom{n-j}{j} 5^{\frac{j-1}{2}} 2^{n-2 j} L_{n-2 j+1 .}(E q: 22)$

The End

- Thanks for your attention.
©

