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Continued fractions of real numbers

For (regular) continued fraction expansion of ξ ∈ R we have
uniqueness and

1 ξ ∈ Q ⇔ continued fraction of ξ is finite

2 ξ quadratic irrationality ⇔ continued fraction of ξ is periodic

3 Best rational approximations to ξ are convergents.

ξ = b0 +
1

b1 +
1

b2 +
1

. . .

= [b0, b1, b2, . . .]

Pn/Qn := [b0, b1, . . . , bn] ∈ Q

|Q0ξ − P0| > |Q1ξ − P1| > |Q2ξ − P2| > · · ·

If 1 6 Q 6 Qn and (P,Q) 6= (Pn−1, Qn−1), (Pn, Qn), then
|Qξ − P | > |Qn−1ξ − Pn−1|.
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Continued fractions of p-adic numbers

No continued fraction algorithm with all properties 1− 3.

Two main types of continued fractions in Qp:

Schneider (1968) and

Ruban (1970) modified by Browkin (1978).
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Schneider’s continued fraction

ξ ∈ Qp, |ξ|p = 1

ξ = b0 +
pa1

b1 +
pa2

b2 +
pa3

. . .

= [b0, p
a1 : b1, p

a2 : b2, p
a3 . . .]

aj positive integers

bj ∈ {1, 2, . . . , p− 1}

Algorithm:
b0 such that |ξ − b0|p < 1
if b0 = ξ, stop,
pa1 = |ξ − b0|−1p
ξ1 = pa1/(ξ − b0), . . .
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Mahler’s and Koksma’s classification in Qp

For a p-adic number ξ, the value of Mahler’s function w2 (resp., of
Koksma’s function w∗2) at ξ is the supremum of the real numbers
w for which

0 < |P (ξ)|p 6 H(P )−w−1 (resp., 0 < |ξ − α|p 6 H(α)−w−1)

is satisfied for infinitely many integer polynomials P (X) (resp.,
algebraic numbers α ∈ Qp) of degree at most two.
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Mahler’s and Koksma’s classification in Qp

For every p-adic number ξ, we have

w∗2(ξ) 6 w2(ξ) 6 w∗2(ξ) + 1

and every p-adic number ξ which is not rational or quadratic
satisfies w∗2(ξ) > 2.
The equality w2(ξ) = w∗2(ξ) holds for almost all (with respect to
the Haar measure) p-adic numbers ξ (including algebraic
numbers).

Explicit examples of p-adic numbers for which the values of
Mahler’s and Koksma’s functions differ by any prescribed value
from the interval [0, 1] can be constructed using Schneider’s
continued fractions.
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Bugeaud and P. (2015)

Let w > (5 +
√
17)/2 be a real number, a a positive integer and

(εj)j>0 a sequence taking its values in the set {0, 1}. Define the
sequence (an,w)n>1 by

an,w =

{
a+ 3j + 2, if n = bwjc for some j ∈ Z>0,

a+ 3j + εj , if bwjc < n < bwj+1c for some j ∈ Z>0.

Set
ξw = [1, pa1,w : 1, pa2,w : 1, . . .] ∈ Qp.

Then
w∗2(ξw) = w − 1 and w2(ξw) = w. (1)

We introduce the sequence (εj)j>0 to show that our construction
provides us with uncountably many explicitly given p-adic numbers
ξw for which (1) is satisfied.

T. Pejković Schneider’s p-adic continued fractions 8 / 29



Bugeaud and P. (2015)

Let w > 16 be a real number, a a positive integer and (εj)j>0 a
sequence taking its values in the set {0, 1}. Let η be a positive real
number with η <

√
w/4. Define the sequence (an,w,η)n>1 by

an,w,η =



a+ 4j + 3, if n = bwjc for some j ∈ Z>0,

a+ 4j + 2, if bwjc < n < bwj+1c for j ∈ Z>0

and (n− bwjc)/bηwjc ∈ Z,
a+ 4j + εj , if bwjc < n < bwj+1c for j ∈ Z>0

and (n− bwjc)/bηwjc 6∈ Z.

Set ξw,η = [1, pa1,w,η : 1, pa2,w,η : 1, . . .] ∈ Qp.

Then w∗2(ξw,η) =
2w − 2− η

2 + η
and w2(ξw,η) =

2w − η
2 + η

, hence

w2(ξw,η)− w∗2(ξw,η) =
2

2 + η
.
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ξ = b0 +
pa1

b1 +
pa2

b2 +
pa3

. . .

,
Pn

Qn
= b0 +

pa1

b1 +
pa2

b2 +
pa3

. . . +
pan

bn(
P0 P−1

Q0 Q−1

)
=

(
b0 1

1 0

)
Pn = bnPn−1 + panPn−2

Qn = bnQn−1 + panQn−2
, for n > 1

(
Pn Pn−1

Qn Qn−1

)
=

(
Pn−1 Pn−2

Qn−1 Qn−2

)(
bn 1

pan 0

)
=

n∏
i=0

(
bi 1

pai 0

)
Taking determinant

PnQn−1−Pn−1Qn = (−1)n+1
n∏
i=1

pai ⇒
∣∣∣∣PnQn−Pn−1Qn−1

∣∣∣∣
p

= p−
∑n
i=1 ai .

Thus (Pn/Qn) is Cauchy, ξ = lim
n→∞

Pn/Qn and

|Qnξ − Pn|p = |ξ − Pn/Qn|p = p−
∑n+1
i=1 ai .
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ξ ∈ Q ⇔ continued fraction of ξ is finite?

If the continued fraction is finite, then ξ ∈ Q.

ξ ∈ Q has a finite or ultimately periodic continued fraction
expansion (Bundschuh, 1977) ending in

p− 1 +
p

p− 1 +
p

p− 1 +
p

. . .

= −1

e.g. 1 + p

1+ p2

−1

= p2−p−1
p2−1 > 0

No complete characterization of rational numbers with infinite
Schneider’s p-adic continued fraction expansion.
Hirsh and Washington (2011) handle some special cases.

We modify Bundschuh’s result to obtain an upper bound on the
required number of steps in the expansion before it terminates or
reaches −1 as a complete quotient.
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Expansion of rational numbers

Theorem 1

The expansion of a rational number ξ into a p-adic continued
fraction either terminates or the complete quotient −1 is reached.
The number of steps required, i.e. the number of complete
quotients that need to be computed before either of the cases
occur is O

(
(logH(ξ))2

)
.

From Bundschuh’s proof we had O(H(ξ)).
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Expansion of rational numbers

Theorem 2

Let λ = (1 +
√
1 + 4p)/2. If the p-adic continued fraction

expansion of a rational number ξ is infinite, then within the first⌊
log H(ξ)

log λ

⌋
+ 3

complete quotients, at least one has to be negative. This bound is
in general asymptotically best possible.
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Set
νn = [1, (p : 1)n−1, p

2 : −1].

The complete quotients of νn, starting from the last one and
moving backwards, are

−1 < 0, [1, p2 : −1] = 1−p2 < 0, [1, p : 1, p2 : −1] = 1 + p− p2

1− p2
> 0.

This implies that in the continued fraction expansion of νn, the
first negative complete quotient is obtained in the (n− 1)-th step.

We also get ⌊
log H(νn)

log λ

⌋
+ 3 ∼ n ∼ n− 1.
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Approximation by rational numbers

For rational approximation in R it is enough to bound the
denominator of the rational number.

For approximation of ξ ∈ Qp, we have to bound both the
numerator and the denominator of the rational approximation A/B
since |Bξ −A|p can be as small as we like if we only bound the
size of B (e.g. set B = 1 and A ≡ ξ (mod pk) for k as large as
wanted).

Even with this restriction, the convergents in Schneider’s continued
fraction expansion of ξ ∈ Qp are not necessarily the best rational
approximations (e.g. for ξ = [1, (pa : 1)∞]).
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Quality of approximation and finiteness of expansion

Let ξ ∈ Z×p be a p-adic unit and A/B a rational number written as
a reduced fraction. Slightly changing the terminology, we say that
the rational number with the reduced fraction u/v is a better
rational approximation of ξ than A/B if

|vξ − u|p 6 |Bξ −A|p while |u| 6 |A|, |v| 6 |B|,

with at least one of the bounds on |u|, |v| being strict.

Theorem 3

A rational number with the reduced fraction u/v ∈ Zp has an
infinite p-adic Schneider’s continued fraction expansion if and only
if it is a better rational approximation of some ξ ∈ Zp than some
convergent of ξ.
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We proved that a better rational approximation (in our
terminology) than Pk−1/Qk−1 does not exist if

p
∑k
i=1 ai > 2Pk−1Qk−1. (2)

Thus the sequence (an)n>1 has to grow quite rapidly.

One sufficient condition for the existence of such an approximation
is

p
∑k
i=1 ai 6 Pk−1Qk−1 and pakPk−2/Pk−1 ∈ (1, p− 1). (3)

This shows that it is of interest to find good estimates of size for
numerators and denominators of convergents given sequences
(an)n with different rates of growth.
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Bounds on height of convergents for some examples

We are interested in the lower and upper bounds of the sequence

X0 = X1 = 1, Xn = cXn−1 + panXn−2 for n > 2, (4)

where c ∈ {1, . . . , p− 1} is fixed.

Comparing the initial values, we get Pn � Xn and Qn � Xn if
c = 1 is chosen, while Pn � pa1Xn, Qn � Xn if c = p− 1 is
taken. In these bounds, the implied constants depend only on p.
For all our examples the choice of sequence (bn)n>0 in
{1, . . . , p− 1} will be irrelevant in the estimates of size and we can
disregard the value of c.
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Define

Tn =

n∏
k=1

pak = p
∑n
k=1 ak and Yn =

Xn√
Tn+1

(n > 0), (5)

so that (4) becomes

Yn = cp−an+1/2Yn−1 + p(an−an+1)/2Yn−2. (6)

Let g(n) = p(an−an+1)/2 + cp−an+1/2 for n > 1. Then

Yn > min{Y0, Y1, Y2}
∏

36k6n
2|(n−k)

min{g(k), g(k − 1), g(k)g(k − 1)}.

Yn 6 max{Y0, Y1, Y2}
∏

36k6n
2|(n−k)

max{g(k), g(k − 1), g(k)g(k − 1)}.
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an = bα logp nc

Then pan � nα and we want to bound Tn and Yn in this case. We
obtain

Tn = eα(n logn+O(n)).

Yn �α e
1

2(2−α)n
1−α

2 − 1
2
α logn

,

Yn �α e
p
3
2 2

2−αn
1−α

2
.

(7)

It follows that

lim
n→∞

Yn = +∞ for α < 2,

Yn = Oα(1) for α > 2.
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an = bα logp nc

Unfortunately, for α > 2 we cannot in general conclude that
limn→∞ Yn = 0. The difference between the upper and lower
bound in (7) comes from the fact that the decrease in the
sequence (Yn)n happens at n = dpk/αe − 1 for positive integers k.
Let D be the infinite set of all these indices n where the descent
occurs. The sequence of Yn with odd (even) indices will tend to 0
if and only if there are infinitely many odd (even) numbers in D.

The claim in one direction is obvious. If, for example, there are
only finitely many odd numbers in D, then (6) shows that for odd
n which are large enough, we have Yn > Yn−2 so that Yn � 1 for
odd n.
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an = bα logp nc

Note that by choosing p1/α to be an even (odd) integer, we get
that dpk/αe − 1 is odd (even) for every positive integer k, so that
D contains only odd (even) numbers.

On the other hand, since dpk/αe is odd if and only if the fractional
part {12p

k/α} is in (0, 12 ], we see that this question is closely related
to the problem of distribution modulo 1 of powers of a real
number. From a result by Koksma, we know that for almost all
real numbers r > 1 (in the sense of Lebesgue measure), the
sequence ({12r

k})k>0 is uniformly distributed in the interval [0, 1).

This shows that for almost all α > 2 the sequence ({12p
k/α})k>0 is

uniformly distributed in [0, 1) and thus the set D contains infinitely
many odd and infinitely many even numbers, so that
limn→∞ Yn = 0 really holds.
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Quality of approximation by convergents for examples

Theorem 4

For a positive real number α, let an = bα logp nc, n > 1. If α > 2,
better rational approximations do not exist for all convergents with
large enough odd indices or for all convergents with large enough
even indices. For almost all α > 2, better rational approximations
exist for at most finitely many convergents.

If an = bn1/rc (n > 1) or an = nr (n > 1) or an = bβnc (n > 1),
where r is any positive integer and β > 1 any real number, then
for all but finitely many convergents there are no better rational
approximations.
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Sketch of proof

X0 = X1 = 1, Xn = cXn−1 + panXn−2 for n > 2 (4)

Tn =

n∏
k=1

pak = p
∑n
k=1 ak and Yn =

Xn√
Tn+1

(n > 0) (5)

p
∑k
i=1 ai > 2Pk−1Qk−1 (2)

Taking into account (4), (5) we see that

PnQn/p
∑n+1
i=1 ai

satisfies the same lower and upper bounds as those obtained for
Y 2
n . Now the conclusion follows from (2) and the bounds on (Yn)n.
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Irrationality exponent

The irrationality exponent µ(ξ) of an irrational p-adic number ξ is
the supremum of the real numbers µ such that∣∣∣ξ − a

b

∣∣∣
p
< H(a/b)−µ

has infinitely many solutions in rational numbers a/b.

It is easily seen that this inequality can be replaced by

|bξ − a|p < H(a/b)−µ.

The lower bound µ(ξ) > 2 always holds. In order to determine the
irrationality exponent of numbers introduced previously, we use the
following Lemma.
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Lemma 5

For ξ ∈ Qp, let (ϑk)k>0 be a sequence of real numbers such that
lim infk→∞ ϑk > 1 and let (Pk/Qk)k>0 be a sequence of distinct
rational numbers such that∣∣∣ξ − Pk

Qk

∣∣∣
p
= H(Pk/Qk)

−ϑk

holds for k > 0. If

lim sup
k→∞

ϑk > 1 + lim sup
k→∞

log H(Pk+1/Qk+1)

(ϑk − 1) logH(Pk/Qk)
,

then µ(ξ) = lim supk→∞ ϑk.
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Using the convergents of the p-adic continued fraction as a
sequence of rational approximations (Pk/Qk)k>0 from the previous
Lemma, we obtain the following result.

Theorem 6

Let α > 0 and β > 1 be real numbers and r a positive integer.

If an = bα logp nc (n > 1) or an = bn1/rc (n > 1) or an = nr

(n > 1), the irrationality exponent of
ξ = [b0, p

a1 : b1, p
a2 : b2, p

a3 . . .] is 2.

If an = bβnc (n > 1), we have µ(ξ) = β + 1.
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Convergence in the reals

The sequence of convergents (Pn/Qn)n of a p-adic number ξ has
a limit in R if and only if the series

∞∑
k=1

(−1)k+1

Qk−1Qk
p
∑k
i=1 ai (8)

converges in R.

If in an example
∑∞

k=1 Y
2
k converges or diverges regardless of

c ∈ {1, . . . , p− 1}, then (8) converges in the reals if and only if

∞∑
k=1

Y 2
k = +∞. (9)
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Theorem 7

First, let an = bα logp nc for some positive real number α and all
positive integers n. If α < 2, the continued fraction
[b0, p

a1 : b1, p
a2 : b2, p

a3 . . .] converges in the field of real numbers.
For p > 2, there exist α > 2 such that this continued fraction
converges in R. For almost all real numbers α > 4, this continued
fraction does not converge in R.

If an = bn1/rc (n > 1) or an = nr (n > 1) or an = bβnc (n > 1),
where r is any positive integer and β > 1 real number, then
[b0, p

a1 : b1, p
a2 : b2, p

a3 . . .] does not converge in R.
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