Some Identities Involving Fibonacci Numbers and Sequences with Similar Recursions

Luka Podrug

(joint work with Tomislav Došlić)
$4^{\text {th }}$ Croatian Combinatorial Days
22-23.9.2022.

Fibonacci, tribonacci and tetranacci numbers

$$
\begin{aligned}
& F_{0}=0 \text { and } F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2}
\end{aligned}
$$

Fibonacci, tribonacci and tetranacci numbers

$F_{0}=0$ and $F_{1}=1$
$F_{n}=F_{n-1}+F_{n-2}$
$T_{0}=0, T_{1}=1$ and $T_{2}=1$
$T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$
$Q_{0}=0, Q_{1}=0, Q_{2}=0$ and $Q_{3}=1$
$Q_{n}=Q_{n-1}+Q_{n-2}+Q_{n-3}+Q_{n-4}$

Honeycomb strip

Figure: Honeycomb strip.

Honeycomb strip

Figure: Honeycomb strip.

Honeycomb strip

Figure: Honeycomb strip.

Figure: Monomer and three possible positions of a dimer tile.

$$
h_{0}=1, h_{1}=1, h_{2}=2 \text { and } h_{3}=4 .
$$

$$
h_{n}=h_{n-1}+h_{n-2}+h_{n-3}+h_{n-4}^{1}
$$

${ }^{1}$ G. Dresden, Z. Jin, Tetranacci Identities via Hexagonal Tilings,Fibonacci=Quart. (2022)

$$
h_{0}=1, h_{1}=1, h_{2}=2 \text { and } h_{3}=4
$$

$$
h_{n}=h_{n-1}+h_{n-2}+h_{n-3}+h_{n-4}^{1}
$$

Figure: All possible endings of a tiled honeycomb strip.
${ }^{1}$ G. Dresden, Z. Jin, Tetranacci Identities via Hexagonal Tilings,Fibonacci=Quart. (2022)

$$
h_{0}=1, h_{1}=1, h_{2}=2 \text { and } h_{3}=4
$$

$$
h_{n}=h_{n-1}+h_{n-2}+h_{n-3}+h_{n-4}^{1}
$$

Figure: All possible endings of a tiled honeycomb strip.

$$
h_{0}=1, h_{1}=1, h_{2}=2 \text { and } h_{3}=4
$$

$$
h_{n}=h_{n-1}+h_{n-2}+h_{n-3}+h_{n-4}^{1}
$$

Figure: All possible endings of a tiled honeycomb strip.

$$
h_{0}=1, h_{1}=1, h_{2}=2 \text { and } h_{3}=4
$$

$$
h_{n}=h_{n-1}+h_{n-2}+h_{n-3}+h_{n-4}{ }^{1}
$$

Figure: All possible endings of a tiled honeycomb strip.

[^0]$$
h_{0}=1, h_{1}=1, h_{2}=2 \text { and } h_{3}=4
$$
$$
h_{n}=h_{n-1}+h_{n-2}+h_{n-3}+h_{n-4}^{1}
$$

Figure: All possible endings of a tiled honeycomb strip.

$$
h_{n}=Q_{n+3}
$$

[^1]- What is the number $c_{n, k}$ of tilings when number of dimers is fixed?
- What is the number $h_{n}^{a, b}$ of tilings when we allow colored tiles?

Tiling a honeycomb strip with exactly k dimers

Figure: All possible endings of a tiled honeycomb strip.

$$
c_{n, k}=c_{n-1, k}+c_{n-2, k-1}+c_{n-3, k-1}+c_{n-4, k-2}
$$

Theorem

The number of ways to tile a honeycomb strip of length n using k dimers and $n-2 k$ monomers is equal to

$$
c_{n, k}=\sum_{m=0}^{k}\binom{n-k-m}{m}\binom{n-k-m}{k-m}
$$

Theorem

The number of ways to tile a honeycomb strip of length n using k dimers and $n-2 k$ monomers is equal to

$$
c_{n, k}=\sum_{m=0}^{k}\binom{n-k-m}{m}\binom{n-k-m}{k-m} .
$$

Figure: Breakability of a tiling

Theorem

The number of ways to tile a honeycomb strip of length n using k dimers and $n-2 k$ monomers is equal to

$$
c_{n, k}=\sum_{m=0}^{k}\binom{n-k-m}{m}\binom{n-k-m}{k-m}
$$

Figure: Breakability of a tiling

Theorem

The number of ways to tile a honeycomb strip of length n using k dimers and $n-2 k$ monomers is equal to

$$
c_{n, k}=\sum_{m=0}^{k}\binom{n-k-m}{m}\binom{n-k-m}{k-m}
$$

Figure: Breakability of a tiling

Theorem

The number of ways to tile a honeycomb strip of length n using k dimers and $n-2 k$ monomers is equal to

$$
c_{n, k}=\sum_{m=0}^{k}\binom{n-k-m}{m}\binom{n-k-m}{k-m}
$$

Figure: Breakability of a tiling

Theorem

The number of ways to tile a honeycomb strip of length n using k dimers and $n-2 k$ monomers is equal to

$$
c_{n, k}=\sum_{m=0}^{k}\binom{n-k-m}{m}\binom{n-k-m}{k-m} .
$$

Theorem

The number of ways to tile a honeycomb strip of length n using k dimers and $n-2 k$ monomers is equal to

$$
c_{n, k}=\sum_{m=0}^{k}\binom{n-k-m}{m}\binom{n-k-m}{k-m}
$$

$$
Q_{n+3}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \sum_{m=0}^{k}\binom{n-k-m}{m}\binom{n-k-m}{k-m}
$$

Tilings of honeycomb strip with colored dimers and monomers

Theorem

The number $h_{n}^{a, b}$ of all possible tilings of the honeycomb strip of length n with monomers of a different colors and dimers of b different colors is given by

$$
h_{n}^{a, b}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} c_{n, k} a^{n-2 k} b^{k}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \sum_{m=0}^{k}\binom{n-k-m}{m}\binom{n-k-m}{k-m} a^{k-m} b^{k} .
$$

Tiling of a honeycomb strip and tribonacci numbers

Figure: The allowed types of tiles.

Tiling of a honeycomb strip and tribonacci numbers

Figure: The allowed types of tiles.

Narayana's cows sequence - $N_{0}=N_{1}=N_{2}=1$ defined by

$$
N_{n}=N_{n-1}+N_{n-3} .
$$

Tiling of a honeycomb strip and tribonacci numbers

Figure: The allowed types of tiles.

Narayana's cows sequence - $N_{0}=N_{1}=N_{2}=1$ defined by

$$
N_{n}=N_{n-1}+N_{n-3} .
$$

Padovan sequence - $P_{0}=1, P_{1}=P_{2}=0$ defined by

$$
P_{n}=P_{n-2}+P_{n-3} .
$$

Figure: All possible endings of a tiling of a strip with n hexagons.

Theorem

Let g_{n} denote the number of all ways to tile a honeycomb strip of length by using only the allowed tiles. Then

$$
g_{n}=T_{n+2},
$$

where T_{n} denotes n-th tribonacci number.

Figure: Section of a tiling.

Theorem

For $n \geq 0$, the number of ways to tile a strip with n hexagons using exactly k trimers is

$$
t_{n, k}=\sum_{\substack{i_{0}, \ldots, i_{k} \geq 0 \\ i_{0}+\cdots+i_{k}=n-2 k+1}} F_{i_{0}} \cdots F_{i_{k}} .
$$

Figure: Section of a tiling.

Theorem

For $n \geq 0$, the number of ways to tile a strip with n hexagons using exactly k trimers is

$$
t_{n, k}=\sum_{\substack{i_{0}, \ldots, i_{k} \geq 0 \\ i_{0}+\cdots+i_{k}=n-2 k+1}} F_{i_{0}} \cdots F_{i_{k}} .
$$

Theorem

For $n \geq 0$, the number of ways to tile a strip with n hexagons using exactly k dimers is

$$
\begin{equation*}
u_{n, k}=\sum_{\substack{i_{0}, \ldots, i_{k} \geq 0 \\ i_{0}+\cdots+i_{k}=n-2 k}} N_{i_{0}} \cdots N_{i_{k}} . \tag{0.1}
\end{equation*}
$$

Theorem

For $n \geq 0$, the number of ways to tile a strip with n hexagons using exactly k monomers is

$$
\begin{equation*}
v_{n, k}=\sum_{\substack{i_{0}, \ldots, i_{k}>0 \\ i_{0}+\cdots+i_{k}=n+2 k+3}} P_{i_{0}} \cdots P_{i_{k}} \tag{0.2}
\end{equation*}
$$

Some combinatorial identities involving tribonacci numbers

Theorem

For $n \geq 4, T_{n}+T_{n-4}=2 T_{n-1}$.

Figure: 1-1 correspondence between sets $\mathcal{G}_{n-2} \cup \mathcal{G}_{n-6}$ and $\mathcal{G}_{n-3} \times\{0,1\}$.

Theorem
For any integer $n \geq 0$ we have the identity

$$
T_{n+2}=\sum_{k=0}^{n+1} F_{k} T_{n-k}
$$

Figure: The trimer first occurs at position k.

Theorem

For any integer $n \geq 0$ we have the identity

$$
T_{n+2}=\sum_{k=0}^{n} N_{k} T_{n-k}+N_{n}
$$

Theorem

For any integer $n \geq 0$ we have the identity

$$
T_{n+2}=\sum_{k=1}^{n} P_{k+2} T_{n-k+2}+P_{n+3}
$$

Theorem

For any integers $m, n \geq 1$ we have the identity

$$
T_{m+n}=T_{m} T_{n}+T_{m+1} T_{n+1}+T_{m-1} T_{n}+T_{m} T_{n-1}
$$

Theorem

For any integers $m, n \geq 1$ we have the identity

$$
T_{m+n}=T_{m} T_{n}+T_{m+1} T_{n+1}+T_{m-1} T_{n}+T_{m} T_{n-1}
$$

Figure: Layouts that can occur at position m.

Theorem

For any integers $m, n \geq 1$ we have the identity

$$
T_{m+n}=T_{m} T_{n}+T_{m+1} T_{n+1}+T_{m-1} T_{n}+T_{m} T_{n-1}
$$

Figure: Layouts that can occur at position m.

Theorem

For any integers $m, n \geq 1$ we have the identity

$$
T_{m+n}=T_{m} T_{n}+T_{m+1} T_{n+1}+T_{m-1} T_{n}+T_{m} T_{n-1}
$$

Figure: Layouts that can occur at position m.

Theorem

For any integers $m, n \geq 1$ we have the identity

$$
T_{m+n}=T_{m} T_{n}+T_{m+1} T_{n+1}+T_{m-1} T_{n}+T_{m} T_{n-1}
$$

Figure: Layouts that can occur at position m.

[^0]: ${ }^{1}$ G. Dresden, Z. Jin, Tetranacci Identities via Hexagonal Tilings,Fibonacci=Quart. (2022)

[^1]: ${ }^{1}$ G. Dresden, Z. Jin, Tetranacci Identities via Hexagonal Tilings,Fibonacci=Quart. (2022)

