On the Maximum Value of $\mathrm{W}(\mathrm{L}(\mathrm{G})) / \mathrm{W}(\mathrm{G})$

Jelena Sedlar
University of Split, Croatia
4th Croatian Combinatorial Days,
Zagreb, Croatia

September 22-23, 2022

Introduction

The Wiener index of the graph G is defined by

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v)
$$

Introduction

The line graph $L(G)$ of a graph G is a graph in which:

- vertices of $L(G)$ correspond to edges of G;
- a pair of vertices in $L(G)$ is adjacent if and only if the corresponding pair of edges in G is adjacent.

Introduction

The line graph $L(G)$ of a graph G is a graph in which:

- vertices of $L(G)$ correspond to edges of G;
- a pair of vertices in $L(G)$ is adjacent if and only if the corresponding pair of edges in G is adjacent.

Introduction

The line graph $L(G)$ of a graph G is a graph in which:

- vertices of $L(G)$ correspond to edges of G;
- a pair of vertices in $L(G)$ is adjacent if and only if the corresponding pair of edges in G is adjacent.

Introduction

The line graph $L(G)$ of a graph G is a graph in which:

- vertices of $L(G)$ correspond to edges of G;
- a pair of vertices in $L(G)$ is adjacent if and only if the corresponding pair of edges in G is adjacent.

Introduction

The line graph $L(G)$ of a graph G is a graph in which:

- vertices of $L(G)$ correspond to edges of G;
- a pair of vertices in $L(G)$ is adjacent if and only if the corresponding pair of edges in G is adjacent.

Introduction

The line graph $L(G)$ of a graph G is a graph in which:

- vertices of $L(G)$ correspond to edges of G;
- a pair of vertices in $L(G)$ is adjacent if and only if the corresponding pair of edges in G is adjacent.

Introduction

The line graph $L(G)$ of a graph G is a graph in which:

- vertices of $L(G)$ correspond to edges of G;
- a pair of vertices in $L(G)$ is adjacent if and only if the corresponding pair of edges in G is adjacent.

Introduction

Higher iterations of the line graph are defined by

$$
L^{i}(G)= \begin{cases}G & \text { for } i=0, \\ L\left(L^{i-1}(G)\right) & \text { for } i>0 .\end{cases}
$$

Introduction

Higher iterations of the line graph are defined by

$$
L^{i}(G)= \begin{cases}G & \text { for } i=0, \\ L\left(L^{i-1}(G)\right) & \text { for } i>0 .\end{cases}
$$

Introduction

Higher iterations of the line graph are defined by

$$
L^{i}(G)= \begin{cases}G & \text { for } i=0, \\ L\left(L^{i-1}(G)\right) & \text { for } i>0 .\end{cases}
$$

Introduction

Higher iterations of the line graph are defined by

$$
L^{i}(G)= \begin{cases}G & \text { for } i=0, \\ L\left(L^{i-1}(G)\right) & \text { for } i>0 .\end{cases}
$$

Introduction

Higher iterations of the line graph are defined by

$$
L^{i}(G)= \begin{cases}G & \text { for } i=0, \\ L\left(L^{i-1}(G)\right) & \text { for } i>0 .\end{cases}
$$

Introduction

Problem [1]. Establish the extremal values and graphs for the ratio $W\left(L^{i}(G)\right) / W(G)$ for $i \geq 1$.

[1] A. A. Dobrynin. L. S. Melnikov, Wiener index of line graphs, in: I. Gutman, B. Furtula (Eds.), Distance in Molecular Graphs - Theory, Univ. Kragujevac, Kragujevac, 2012, pp. 85-121.

Introduction

Problem [1]. Establish the extremal values and graphs for the ratio $W\left(L^{i}(G)\right) / W(G)$ for $i \geq 1$.

[1] A. A. Dobrynin. L. S. Melnikov, Wiener index of line graphs, in: I. Gutman, B. Furtula (Eds.), Distance in Molecular Graphs - Theory, Univ. Kragujevac, Kragujevac, 2012, pp. 85-121.

Remark. Recall that

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v) .
$$

and notice that from G to $L(G)$:

Introduction

Problem [1]. Establish the extremal values and graphs for the ratio $W\left(L^{i}(G)\right) / W(G)$ for $i \geq 1$.
[1] A. A. Dobrynin. L. S. Melnikov, Wiener index of line graphs, in: I. Gutman, B. Furtula (Eds.), Distance in Molecular Graphs - Theory, Univ. Kragujevac, Kragujevac, 2012, pp. 85-121.

Remark. Recall that

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v) .
$$

and notice that from G to $L(G)$:

- distances change;

Introduction

Problem [1]. Establish the extremal values and graphs for the ratio $W\left(L^{i}(G)\right) / W(G)$ for $i \geq 1$.
[1] A. A. Dobrynin. L. S. Melnikov, Wiener index of line graphs, in: I. Gutman, B. Furtula (Eds.), Distance in Molecular Graphs - Theory, Univ. Kragujevac, Kragujevac, 2012, pp. 85-121.

Remark. Recall that

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v) .
$$

and notice that from G to $L(G)$:

- distances change;
- number of pairs of vertices also changes!

Introduction

[^0]
Introduction

Partial solution [2]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is minimum for the star S_{n}.
 [2] M. Knor, R. Skrekovski, A. Tepeh, An inequality between the edge-Wiener index and the Wiener index of a graph, Appl. Math. Comput. 269 (2015) 714-721.

The intuition. We have:

Introduction

Partial solution [2]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is minimum for the star S_{n}.
[2] M. Knor, R. Skrekovski, A. Tepeh, An inequality between the edge-Wiener index and the Wiener index of a graph, Appl. Math. Comput. 269 (2015) 714-721.

The intuition. We have:

- for $G=P_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=
$$

Introduction

Partial solution [2]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is minimum for the star S_{n}.
[2] M. Knor, R. Skrekovski, A. Tepeh, An inequality between the edge-Wiener index and the Wiener index of a graph, Appl. Math. Comput. 269 (2015) 714-721.

The intuition. We have:

- for $G=P_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(P_{n-1}\right)}{W\left(P_{n}\right)}=
$$

Introduction

Partial solution [2]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is minimum for the star S_{n}.
[2] M. Knor, R. Skrekovski, A. Tepeh, An inequality between the edge-Wiener index and the Wiener index of a graph, Appl. Math. Comput. 269 (2015) 714-721.

The intuition. We have:

- for $G=P_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(P_{n-1}\right)}{W\left(P_{n}\right)}=\frac{}{\text { largest possible }}
$$

Introduction

Partial solution [2]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is minimum for the star S_{n}.
[2] M. Knor, R. Skrekovski, A. Tepeh, An inequality between the edge-Wiener index and the Wiener index of a graph, Appl. Math. Comput. 269 (2015) 714-721.

The intuition. We have:

- for $G=P_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(P_{n-1}\right)}{W\left(P_{n}\right)}=\frac{\text { very large :-(}}{\text { largest possible }}
$$

Introduction

Partial solution [2]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is minimum for the star S_{n}.
[2] M. Knor, R. Skrekovski, A. Tepeh, An inequality between the edge-Wiener index and the Wiener index of a graph, Appl. Math. Comput. 269 (2015) 714-721.

The intuition. We have:

- for $G=P_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(P_{n-1}\right)}{W\left(P_{n}\right)}=\frac{\text { very large :-(}}{\text { largest possible }}
$$

- for $G=S_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=
$$

Introduction

Partial solution [2]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is minimum for the star S_{n}.
[2] M. Knor, R. Škrekovski, A. Tepeh, An inequality between the edge-Wiener index and the Wiener index of a graph, Appl. Math. Comput. 269 (2015) 714-721.

The intuition. We have:

- for $G=P_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(P_{n-1}\right)}{W\left(P_{n}\right)}=\frac{\text { very large :-(}}{\text { largest possible }}
$$

- for $G=S_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(K_{n-1}\right)}{W\left(S_{n}\right)}=
$$

Introduction

Partial solution [2]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is minimum for the star S_{n}.
[2] M. Knor, R. Škrekovski, A. Tepeh, An inequality between the edge-Wiener index and the Wiener index of a graph, Appl. Math. Comput. 269 (2015) 714-721.

The intuition. We have:

- for $G=P_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(P_{n-1}\right)}{W\left(P_{n}\right)}=\frac{\text { very large :-(}}{\text { largest possible }}
$$

- for $G=S_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(K_{n-1}\right)}{W\left(S_{n}\right)}=\frac{}{\text { rather small... }}
$$

Introduction

Partial solution [2]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is minimum for the star S_{n}.
[2] M. Knor, R. Škrekovski, A. Tepeh, An inequality between the edge-Wiener index and the Wiener index of a graph, Appl. Math. Comput. 269 (2015) 714-721.

The intuition. We have:

- for $G=P_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(P_{n-1}\right)}{W\left(P_{n}\right)}=\frac{\text { very large :-(}}{\text { largest possible }}
$$

- for $G=S_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(K_{n-1}\right)}{W\left(S_{n}\right)}=\frac{\text { smallest possible }}{\text { rather small... }}
$$

Introduction

Partial solution [JS\&RŠ]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is maximum for the complete graph K_{n}.
[JS\&RŠ] J. Sedlar, R Škrekovski, A Note on the Maximum Value of W(L(G))/W(G), MATCH 88(1) (2022) 171-178.

Introduction

Partial solution [JS\&RŠ]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is maximum for the complete graph K_{n}.
[JS\&RŠ] J. Sedlar, R Škrekovski, A Note on the Maximum Value of $W(L(G)) / W(G)$, MATCH 88(1) (2022) 171-178.
The intuition. We have:

Introduction

Partial solution [JS\&RŠ]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is maximum for the complete graph K_{n}.
[JS\&RŠ] J. Sedlar, R Škrekovski, A Note on the Maximum Value of $W(L(G)) / W(G)$, MATCH 88(1) (2022) 171-178.
The intuition. We have:

- for $G=K_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=
$$

Introduction

Partial solution [JS\&RŠ]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is maximum for the complete graph K_{n}.
[JS\&RŠ] J. Sedlar, R Škrekovski, A Note on the Maximum Value of $W(L(G)) / W(G)$, MATCH 88(1) (2022) 171-178.
The intuition. We have:

- for $G=K_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(G_{\binom{n}{2}}\right)}{W\left(K_{n}\right)}=
$$

Introduction

Partial solution [JS\&RŠ]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is maximum for the complete graph K_{n}.
[JS\&RŠ] J. Sedlar, R Škrekovski, A Note on the Maximum Value of $W(L(G)) / W(G)$, MATCH 88(1) (2022) 171-178.
The intuition. We have:

- for $G=K_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(G_{\binom{n}{2}}\right)}{W\left(K_{n}\right)}=\frac{}{\text { smallest possible }}
$$

Introduction

Partial solution [JS\&RŠ]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is maximum for the complete graph K_{n}.
[JS\&RŠ] J. Sedlar, R Škrekovski, A Note on the Maximum Value of $W(L(G)) / W(G)$, MATCH 88(1) (2022) 171-178.
The intuition. We have:

- for $G=K_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(G_{\binom{n}{2}}\right)}{W\left(K_{n}\right)}=\frac{\text { large increase in pairs of vertices }}{\text { smallest possible }}
$$

Introduction

Partial solution [JS\&RŠ]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is maximum for the complete graph K_{n}.
[JS\&RŠ] J. Sedlar, R Škrekovski, A Note on the Maximum Value of $W(L(G)) / W(G)$, MATCH 88(1) (2022) 171-178.
The intuition. We have:

- for $G=K_{n}$ the ratio is

$$
\frac{W(L(G))}{W(G)}=\frac{W\left(G_{\binom{n}{2}}\right)}{W\left(K_{n}\right)}=\frac{\text { large increase in pairs of vertices }}{\text { smallest possible }}
$$

Open problem. Solve the initial problem for $i>1$.

Main results

The bound on $W(L(G))$.

Main results

The bound on $W(L(G))$. For $e=u v$ and $f=x y$ from $E(G)$, we have

Main results

The bound on $W(L(G))$. For $e=u v$ and $f=x y$ from $E(G)$, we have

Main results

The bound on $W(L(G))$. For $e=u v$ and $f=x y$ from $E(G)$, we have

$$
d_{L(G)}(e, f)=\min \{d(u, x), d(u, y), d(v, x), d(v, y)\}+1
$$

Main results

The bound on $W(L(G))$. For $e=u v$ and $f=x y$ from $E(G)$, we have

$$
\begin{aligned}
d_{L(G)}(e, f) & =\min \{d(u, x), d(u, y), d(v, x), d(v, y)\}+1 \\
& \leq \frac{1}{4}(d(u, x)+d(u, y)+d(v, x)+d(v, y))+1
\end{aligned}
$$

Main results

The bound on $W(L(G))$. For $e=u v$ and $f=x y$ from $E(G)$, we have

$$
\begin{aligned}
d_{L(G)}(e, f) & =\min \{d(u, x), d(u, y), d(v, x), d(v, y)\}+1 \\
& \leq \frac{1}{4}(d(u, x)+d(u, y)+d(v, x)+d(v, y))+1 \\
& =D(e, f)+1
\end{aligned}
$$

Main results

The bound on $W(L(G))$. For $e=u v$ and $f=x y$ from $E(G)$, we have

$$
\begin{aligned}
d_{L(G)}(e, f) & =\min \{d(u, x), d(u, y), d(v, x), d(v, y)\}+1 \\
& \leq \frac{1}{4}(d(u, x)+d(u, y)+d(v, x)+d(v, y))+1 \\
& =D(e, f)+1
\end{aligned}
$$

thus

$$
W(L(G)) \leq \sum_{\{e, f\} \subseteq E(G)}(D(e, f)+1)=
$$

Main results

The bound on $W(L(G))$. For $e=u v$ and $f=x y$ from $E(G)$, we have

$$
\begin{aligned}
d_{L(G)}(e, f) & =\min \{d(u, x), d(u, y), d(v, x), d(v, y)\}+1 \\
& \leq \frac{1}{4}(d(u, x)+d(u, y)+d(v, x)+d(v, y))+1 \\
& =D(e, f)+1
\end{aligned}
$$

thus

$$
W(L(G)) \leq \sum_{\{e, f\} \subseteq E(G)}(D(e, f)+1)=\sum_{\{e, f\} \subseteq E(G)} D(e, f)+\binom{m}{2}
$$

Main results

The bound on $W(L(G))$. For $e=u v$ and $f=x y$ from $E(G)$, we have

$$
\begin{aligned}
d_{L(G)}(e, f) & =\min \{d(u, x), d(u, y), d(v, x), d(v, y)\}+1 \\
& \leq \frac{1}{4}(d(u, x)+d(u, y)+d(v, x)+d(v, y))+1 \\
& =D(e, f)+1
\end{aligned}
$$

thus

$$
\begin{aligned}
W(L(G)) & \leq \sum_{\{e, f\} \subseteq E(G)}(D(e, f)+1)=\sum_{\{e, f\} \subseteq E(G)} D(e, f)+\binom{m}{2} \\
& =\ldots=\frac{1}{4}(\operatorname{Gut}(G)-1)+\binom{m}{2}
\end{aligned}
$$

Main results

The bound on $W(L(G))$. For $e=u v$ and $f=x y$ from $E(G)$, we have

$$
\begin{aligned}
d_{L(G)}(e, f) & =\min \{d(u, x), d(u, y), d(v, x), d(v, y)\}+1 \\
& \leq \frac{1}{4}(d(u, x)+d(u, y)+d(v, x)+d(v, y))+1 \\
& =D(e, f)+1
\end{aligned}
$$

thus

$$
\begin{aligned}
W(L(G)) & \leq \sum_{\{e, f\} \subseteq E(G)}(D(e, f)+1)=\sum_{\{e, f\} \subseteq E(G)} D(e, f)+\binom{m}{2} \\
& =\ldots=\frac{1}{4}(\operatorname{Gut}(G)-1)+\binom{m}{2}
\end{aligned}
$$

[3] B. Wu, Wiener index of line graphs, MATCH Commun. Math. Comput. Chem. 64 (2010) 699-706.

Main results

The tightening of the bound on $W(L(G))$.

Main results

The tightening of the bound on $W(L(G))$. For $e=u v$ and $f=x y$ from $E(G)$, the bound

$$
d_{L(G)}(e, f) \leq D(e, f)+1
$$

Main results

The tightening of the bound on $W(L(G))$. For $e=u v$ and $f=x y$ from $E(G)$, the bound

$$
d_{L(G)}(e, f) \leq D(e, f)+1
$$

is not tight for $v=x$

Main results

The tightening of the bound on $W(L(G))$. For $e=u v$ and $f=x y$ from $E(G)$, the bound

$$
d_{L(G)}(e, f) \leq D(e, f)+1
$$

is not tight for $v=x$ where

$$
D(e, f)= \begin{cases}1 & \text { if } u y \notin E(G), \\ \frac{3}{4} & \text { if } u y \in E(G) .\end{cases}
$$

thus

$$
d_{L(G)}(e, f)=1 \leq D(e, f)+1-\frac{3}{4}
$$

Main results

Without tightening: we had

$$
\begin{aligned}
W(L(G)) & \leq \sum_{\{e, f\} \subseteq E(G)}(D(e, f)+1)=\sum_{\{e, f\} \subseteq E(G)} D(e, f)+\binom{m}{2} \\
& =\ldots=\frac{1}{4}(\operatorname{Gut}(G)-1)+\binom{m}{2}
\end{aligned}
$$

Main results

Without tightening: we had

$$
\begin{aligned}
W(L(G)) & \leq \sum_{\{e, f\} \subseteq E(G)}(D(e, f)+1)=\sum_{\{e, f\} \subseteq E(G)} D(e, f)+\binom{m}{2} \\
& =\ldots=\frac{1}{4}(\operatorname{Gut}(G)-1)+\binom{m}{2}
\end{aligned}
$$

With tightening: we have

$$
W(L(G)) \leq \sum_{\{e, f\} \subseteq E(G)}(D(e, f)+1)
$$

Main results

Without tightening: we had

$$
\begin{aligned}
W(L(G)) & \leq \sum_{\{e, f\} \subseteq E(G)}(D(e, f)+1)=\sum_{\{e, f\} \subseteq E(G)} D(e, f)+\binom{m}{2} \\
& =\ldots=\frac{1}{4}(\operatorname{Gut}(G)-1)+\binom{m}{2}
\end{aligned}
$$

With tightening: we have

$$
W(L(G)) \leq \sum_{\{e, f\} \subseteq E(G)}(D(e, f)+1)-\frac{3}{4} \sum_{u \in V(G)}\binom{d(u)}{2}
$$

Main results

Without tightening: we had

$$
\begin{aligned}
W(L(G)) & \leq \sum_{\{e, f\} \subseteq E(G)}(D(e, f)+1)=\sum_{\{e, f\} \subseteq E(G)} D(e, f)+\binom{m}{2} \\
& =\ldots=\frac{1}{4}(\operatorname{Gut}(G)-1)+\binom{m}{2}
\end{aligned}
$$

With tightening: we have

$$
\begin{aligned}
W(L(G)) & \leq \sum_{\{e, f\} \subseteq E(G)}(D(e, f)+1)-\frac{3}{4} \sum_{u \in V(G)}\binom{d(u)}{2} \\
& =\ldots=\frac{1}{4} \operatorname{Gut}(G)-\frac{3}{8} M_{1}(G)+\frac{1}{2} m^{2}
\end{aligned}
$$

Main results

Lemma. For a graph G on n vertices with maximum degree Δ and minimum degree δ it holds that

$$
\frac{W(L(G))}{W(G)} \leq \frac{1}{2 n(n-1)}\left((n-1)^{2} \Delta^{2}-\delta^{2}\right)
$$

with equality if and only if $G=K_{n}$.

Main results

Lemma. For a graph G on n vertices with maximum degree Δ and minimum degree δ it holds that

$$
\frac{W(L(G))}{W(G)} \leq \frac{1}{2 n(n-1)}\left((n-1)^{2} \Delta^{2}-\delta^{2}\right)
$$

with equality if and only if $G=K_{n}$.
Theorem. For a graph G on n vertices it holds that

$$
\frac{W(L(G))}{W(G)} \leq\binom{ n-1}{2}
$$

with equality if and only if $G=K_{n}$.

Thank you...

...for the attention!

[^0]: Partial solution [2]. Among all connected graphs on n vertices, the fraction $W(L(G)) / W(G)$ is minimum for the star S_{n}.
 [2] M. Knor, R. Skrekovski, A. Tepeh, An inequality between the edge-Wiener index and the Wiener index of a graph, Appl. Math. Comput. 269 (2015) 714-721.

