Visibility in restricted involutions

Matteo Silimbani

Scuola Secondaria di Primo Grado "M. Marinelli" Forlimpopoli - Italy

4th Croatian Combinatorial Days
Zagreb, September 22-23 2022
joint work with M. Barnabei, F. Bonetti, and N. Castronuovo (Bologna)

Visibile pairs in words

Let $w=x_{1} x_{2} \ldots x_{n}$ be a word whose letters are pairwise distinct integers. A visible pair in w is a pair $\left(x_{i}, x_{i+r}\right), r \geq 2$, such that $x_{j}<\min \left\{x_{i}, x_{i+r}\right\}$, for all $i<j<i+r$.

Visibile pairs in words

Let $w=x_{1} x_{2} \ldots x_{n}$ be a word whose letters are pairwise distinct integers. A visible pair in w is a pair $\left(x_{i}, x_{i+r}\right), r \geq 2$, such that $x_{j}<\min \left\{x_{i}, x_{i+r}\right\}$, for all $i<j<i+r$. For example, the visible pairs of the word

$$
w=3416257
$$

Visibile pairs in words

Let $w=x_{1} x_{2} \ldots x_{n}$ be a word whose letters are pairwise distinct integers. A visible pair in w is a pair $\left(x_{i}, x_{i+r}\right), r \geq 2$, such that $x_{j}<\min \left\{x_{i}, x_{i+r}\right\}$, for all $i<j<i+r$. For example, the visible pairs of the word

$$
w=3416257
$$

```
are (4, 6),
```


Visibile pairs in words

Let $w=x_{1} x_{2} \ldots x_{n}$ be a word whose letters are pairwise distinct integers. A visible pair in w is a pair $\left(x_{i}, x_{i+r}\right), r \geq 2$, such that $x_{j}<\min \left\{x_{i}, x_{i+r}\right\}$, for all $i<j<i+r$. For example, the visible pairs of the word

$$
w=3416257
$$

are $(4,6),(6,5)$,

Visibile pairs in words

Let $w=x_{1} x_{2} \ldots x_{n}$ be a word whose letters are pairwise distinct integers. A visible pair in w is a pair $\left(x_{i}, x_{i+r}\right), r \geq 2$, such that $x_{j}<\min \left\{x_{i}, x_{i+r}\right\}$, for all $i<j<i+r$. For example, the visible pairs of the word

$$
w=3416257
$$

are $(4,6),(6,5)$, and $(6,7)$

Visibile pairs on the bar-diagram of a permutation

Visible pairs of $\sigma \Longleftrightarrow$ columns that can "see" each other

Visibile pairs on the bar-diagram of a permutation

Visible pairs of $\sigma \Longleftrightarrow$ columns that can "see" each other

The statistic "number of visible pairs"

Why do we care?
Applications to:

- computational geometry
- discrete dynamical systems
- microelectronics

The statistic "number of visible pairs"

Why do we care?

Applications to:

- computational geometry
- discrete dynamical systems
- microelectronics

For more details

T. Mansour and M. Shattuck, Visibility in pattern-restricted permutations, J. Differ. Equ. Appl. 26 (2020), pp 657-675

This paper contains a list of references concerning the cited applications.

Pattern avoiding permutations

A permutation π is said to contain a pattern τ if π contains a subsequence that is order-isomorphic to τ. Otherwise, we say that π avoids τ. For example, the permutation

Pattern avoiding permutations

A permutation π is said to contain a pattern τ if π contains a subsequence that is order-isomorphic to τ. Otherwise, we say that π avoids τ. For example, the permutation

$$
\pi=3512674
$$

contains the pattern 231,

Pattern avoiding permutations

A permutation π is said to contain a pattern τ if π contains a subsequence that is order-isomorphic to τ. Otherwise, we say that π avoids τ. For example, the permutation

$$
\pi=3512674
$$

contains the pattern 231, while it avoids the pattern 321.

Pattern avoiding permutations

A permutation π is said to contain a pattern τ if π contains a subsequence that is order-isomorphic to τ. Otherwise, we say that π avoids τ. For example, the permutation

$$
\pi=3512674
$$

contains the pattern 231, while it avoids the pattern 321.
$S_{n}(\tau)$ is the subset of τ-avoiding permutations in S_{n}

Pattern avoiding permutations

A permutation π is said to contain a pattern τ if π contains a subsequence that is order-isomorphic to τ. Otherwise, we say that π avoids τ. For example, the permutation

$$
\pi=3512674
$$

contains the pattern 231, while it avoids the pattern 321.
$S_{n}(\tau)$ is the subset of τ-avoiding permutations in S_{n}
$I_{n}(\tau)$ is the subset of τ-avoiding involutions (namely, self-inverse permutations
$\sigma^{2}=\mathrm{id}$) in S_{n}

Pattern avoiding permutations

A permutation π is said to contain a pattern τ if π contains a subsequence that is order-isomorphic to τ. Otherwise, we say that π avoids τ. For example, the permutation

$$
\pi=3512674
$$

contains the pattern 231, while it avoids the pattern 321.
$S_{n}(\tau)$ is the subset of τ-avoiding permutations in S_{n}
$I_{n}(\tau)$ is the subset of τ-avoiding involutions (namely, self-inverse permutations
$\sigma^{2}=\mathrm{id}$) in S_{n}

$$
S(\tau)=\bigcup_{n \geq 0} S_{n}(\tau) \text { and } I(\tau)=\bigcup_{n \geq 0} I_{n}(\tau)
$$

The statistic "number of visible pairs"

$$
\operatorname{vis}(\sigma)=\text { number of visible pairs in } \sigma
$$

Distribution of vis over $I(\tau) \rightarrow$ find an expression for $\sum_{\sigma \in I(\tau)} x^{|\sigma|} y^{\operatorname{vis}(\sigma)}$

The statistic "number of visible pairs"

$$
\operatorname{vis}(\sigma)=\text { number of visible pairs in } \sigma
$$

Distribution of vis over $I(\tau) \rightarrow$ find an expression for $\sum_{\sigma \in I(\tau)} x^{|\sigma|} y^{\operatorname{vis}(\sigma)}$
T. Mansour and M. Shattuck (2020)

Distribution of vis on $S_{n}(\tau)$, for any $\tau \in S_{3}$

The statistic "number of visible pairs"

$$
\operatorname{vis}(\sigma)=\text { number of visible pairs in } \sigma
$$

Distribution of vis over $I(\tau) \rightarrow$ find an expression for $\sum_{\sigma \in I(\tau)} x^{|\sigma|} y^{\operatorname{vis}(\sigma)}$
T. Mansour and M. Shattuck (2020)

Distribution of vis on $S_{n}(\tau)$, for any $\tau \in S_{3}$

Our contribution (2021)

Distribution of vis on $I_{n}(\tau)$, for any $\tau \in S_{3}$

Useful definitions

Definition of left-to-right maximum

Given a permutation

$$
\pi=\pi_{1} \pi_{2} \ldots \pi_{n}
$$

we say that π_{i} is a left-to-right maximum of π if and only if

$$
\pi_{j}<\pi_{i} \quad \forall j<i
$$

We denote by $\operatorname{ltrmax}(\pi)$ the number of left-to-right maxima of π.

Useful definitions

Definition of left-to-right maximum

Given a permutation

$$
\pi=\pi_{1} \pi_{2} \ldots \pi_{n}
$$

we say that π_{i} is a left-to-right maximum of π if and only if

$$
\pi_{j}<\pi_{i} \quad \forall j<i
$$

We denote by $\operatorname{ltrmax}(\pi)$ the number of left-to-right maxima of π.
For example, the permutation

$$
\pi=315826497
$$

has 4 left-to-right maxima.

Useful definitions

Definition of left-to-right maximum

Given a permutation

$$
\pi=\pi_{1} \pi_{2} \ldots \pi_{n}
$$

we say that π_{i} is a left-to-right maximum of π if and only if

$$
\pi_{j}<\pi_{i} \quad \forall j<i
$$

We denote by $\operatorname{ltrmax}(\pi)$ the number of left-to-right maxima of π.
For example, the permutation

$$
\pi=315826497
$$

has 4 left-to-right maxima.
The notions of left-to-right minimum, right-to-left maximum, and right-to-left minimum can be defined analogously.

Useful results

Useful Lemma

Let $w=x_{1} x_{2} \ldots x_{n}$ be a sequence of pairwise distinct positive integers such that $\left(x_{1}, x_{n}\right)$ is a visible pair. Then:

$$
\operatorname{vis}(w)=n-2
$$

Useful Corollary

Let $\pi \in S_{n}$ be a permutation such that $\pi(n)=n$. Then:

$$
\operatorname{vis}(\pi)=n-\operatorname{ltrmax}(\pi)
$$

Involutions avoiding 231 and 312

$$
\sigma \in I_{n}(231) \Longleftrightarrow \sigma \in I_{n}(312)
$$

Involutions avoiding 231 and 312

$\sigma \in I_{n}(231) \Longleftrightarrow \sigma \in I_{n}(312)$
Hence, $I_{n}(231)=I_{n}(312)=I_{n}(231,312)$

Involutions avoiding 231 and 312

$\sigma \in I_{n}(231) \Longleftrightarrow \sigma \in I_{n}(312)$
Hence, $I_{n}(231)=I_{n}(312)=I_{n}(231,312)$
$d_{n, k}=$ number of involutions in $I_{n}(231,312)$ with k visible pairs

Involutions avoiding 231 and 312

Simion and Schmidt 1985

$\sigma \in I_{n}(231,312) \Longleftrightarrow \sigma=\tau n n-1 \ldots h$ where $\tau \in I_{h-1}(231,312)$

Involutions avoiding 231 and 312

Simion and Schmidt 1985

$\sigma \in I_{n}(231,312) \Longleftrightarrow \sigma=\tau n n-1 \ldots h$ where $\tau \in I_{h-1}(231,312)$
\Rightarrow The visibile pairs of σ appear in the subword τn

Involutions avoiding 231 and 312

Simion and Schmidt 1985

$\sigma \in I_{n}(231,312) \Longleftrightarrow \sigma=\tau n n-1 \ldots h$ where $\tau \in I_{h-1}(231,312)$
\Rightarrow The visibile pairs of σ appear in the subword τn

Distribution of vis over $I_{n}(231,312)$

- if $k>0$, then $d_{n, k}=\binom{n-1}{k+1}$ (by Useful Corollary)
- $d_{n, 0}=n$

Involutions avoiding 321

$$
\mathcal{M}_{n}=\text { set of Motzkin paths of length } n
$$

$$
\beta: I_{n}(4321) \rightarrow \mathcal{M}_{n}
$$

Involutions avoiding 321

$$
\begin{aligned}
& \mathcal{M}_{n}=\text { set of Motzkin paths of length } n \\
& \qquad \beta: I_{n}(4321) \rightarrow \mathcal{M}_{n} \\
& \pi=(15)(23)(4)(6)
\end{aligned}
$$

Involutions avoiding 321

$$
\begin{aligned}
& \mathcal{M}_{n}=\text { set of Motzkin paths of length } n \\
& \qquad \beta: I_{n}(4321) \rightarrow \mathcal{M}_{n} \\
& \pi=(15)(23)(4)(6)
\end{aligned}
$$

Involutions avoiding 321

$\mathcal{M}_{n}=$ set of Motzkin paths of length n

$$
\beta: I_{n}(4321) \rightarrow \mathcal{M}_{n}
$$

$\pi=(15)(23)(4)(6)$

Involutions avoiding 321

$\mathcal{M}_{n}=$ set of Motzkin paths of length n

$$
\beta: I_{n}(4321) \rightarrow \mathcal{M}_{n}
$$

$$
\pi=(15)(23)(4)(6)
$$

Involutions avoiding 321

$\mathcal{M}_{n}=$ set of Motzkin paths of length n

$$
\beta: I_{n}(4321) \rightarrow \mathcal{M}_{n}
$$

$$
\pi=(15)(23)(4)(6)
$$

Involutions avoiding 321

$\mathcal{M}_{n}=$ set of Motzkin paths of length n

$$
\beta: I_{n}(4321) \rightarrow \mathcal{M}_{n}
$$

$$
\pi=(15)(23)(4)(6)
$$

Involutions avoiding 321

$\mathcal{M}_{n}=$ set of Motzkin paths of length n

$$
\beta: I_{n}(4321) \rightarrow \mathcal{M}_{n}
$$

$$
\pi=(15)(23)(4)(6)
$$

Involutions avoiding 321

$\mathcal{M}_{n}=$ set of Motzkin paths of length n

$$
\beta: I_{n}(4321) \rightarrow \mathcal{M}_{n}
$$

$$
\pi=(15)(23)(4)(6)
$$

Involutions avoiding 321

$D i s_{n}=$ set of Motzkin paths of length n with no horizontal steps at positive height

Involutions avoiding 321

$D_{i s}=$ set of Motzkin paths of length n with no horizontal steps at positive height

Image of $I_{n}(321)$ under β
$\beta\left(I_{n}(321)\right)=$ Dis $_{n}$.

Involutions avoiding 321

We can deduce the value of $\operatorname{vis}(\pi)$ from the associated Motzkin path:

Visible pairs read on the corresponding path

Let $\pi \in I_{n}(321)$. Denote by s the number of D steps of the Motzkin path $\beta(\pi)$. Then

$$
\operatorname{vis}(\pi)= \begin{cases}s & \text { if } \pi(n)=n \\ s-1 & \text { otherwise }\end{cases}
$$

Involutions avoiding 321

Distribution of vis over $I_{n}(321)$

Let

$$
F(x, y)=\sum_{\pi \in I(321)} x^{|\pi|} y^{\operatorname{vis}(\pi)}
$$

Then

$$
F(x, y)=\frac{1+x^{2}(1-y) C\left(x^{2} y\right)}{1-x^{2} y C\left(x^{2} y\right)-x}
$$

where

$$
C(t)=\frac{1-\sqrt{1-4 t}}{2 t}
$$

is the generating function of the sequence of Catalan numbers.

Involutions avoiding 321

Sketch of the proof

- The statistics vis is equidistributed with the following statistic on Motzkin paths:

$$
s(d)=\left\{\begin{array}{cl}
\text { number of } D \text { steps of } d & \text { if } d \text { ends by } H \\
\text { number of } D \text { steps of } d-1 & \text { if } d \text { ends by } D
\end{array}\right.
$$

Involutions avoiding 321

Sketch of the proof

- The statistics vis is equidistributed with the following statistic on Motzkin paths:

$$
s(d)=\left\{\begin{array}{cl}
\text { number of } D \text { steps of } d & \text { if } d \text { ends by } H \\
\text { number of } D \text { steps of } d-1 & \text { if } d \text { ends by } D
\end{array}\right.
$$

- We can decompose $\beta(\pi)=a U b D$

Involutions avoiding 321

Sketch of the proof

- The statistics vis is equidistributed with the following statistic on Motzkin paths:

$$
s(d)=\left\{\begin{array}{cl}
\text { number of } D \text { steps of } d & \text { if } d \text { ends by } H \\
\text { number of } D \text { steps of } d-1 & \text { if } d \text { ends by } D
\end{array}\right.
$$

- We can decompose $\beta(\pi)=a U b D$

■ $s(\beta(\pi))= \begin{cases}s(a)+s(U b D) & \text { if } a \text { ends by } H \\ s(a)+1+s(U b D) & \text { if } a \text { ends by } D .\end{cases}$

Involutions avoiding 123

$D_{n}=$ set of Dyck paths of semilength n

Krattenthaler's bijection $\Psi: S_{n}(123) \rightarrow D_{n}$

Involutions avoiding 123

$D_{n}=$ set of Dyck paths of semilength n

Krattenthaler's bijection $\Psi: S_{n}(123) \rightarrow D_{n}$

$$
\pi=w_{s} M_{s} \ldots w_{2} M_{2} w_{1} M_{1}
$$

where the M_{i} 's are the right-to-left maxima in π and the w_{i} 's are possibly empty words.

Involutions avoiding 123

$D_{n}=$ set of Dyck paths of semilength n

Krattenthaler's bijection $\Psi: S_{n}(123) \rightarrow D_{n}$

$$
\pi=w_{s} M_{s} \ldots w_{2} M_{2} w_{1} M_{1}
$$

where the M_{i} 's are the right-to-left maxima in π and the w_{i} 's are possibly empty words. Reading π from right to left:

Involutions avoiding 123

$D_{n}=$ set of Dyck paths of semilength n

Krattenthaler's bijection $\Psi: S_{n}(123) \rightarrow D_{n}$

$$
\pi=w_{s} M_{s} \ldots w_{2} M_{2} w_{1} M_{1}
$$

where the M_{i} 's are the right-to-left maxima in π and the w_{i} 's are possibly empty words. Reading π from right to left:

- $M_{i} \rightarrow M_{i}-M_{i-1}$ up steps (with $M_{0}=0$)

Involutions avoiding 123

$D_{n}=$ set of Dyck paths of semilength n

Krattenthaler's bijection $\Psi: S_{n}(123) \rightarrow D_{n}$

$$
\pi=w_{s} M_{s} \ldots w_{2} M_{2} w_{1} M_{1}
$$

where the M_{i} 's are the right-to-left maxima in π and the w_{i} 's are possibly empty words. Reading π from right to left:

- $M_{i} \rightarrow M_{i}-M_{i-1}$ up steps (with $M_{0}=0$)
- $w_{i} \rightarrow\left|w_{i}\right|+1$ down steps

Involutions avoiding 123

$$
\pi=\underline{7} 4 \underline{6} 21 \underline{5} \underline{3}
$$

Involutions avoiding 123

$$
\pi=\underline{7} 4 \underline{6} 21 \underline{5} \underline{3}
$$

Involutions avoiding 123

$$
\pi=\underline{7} 4 \underline{6} 21 \underline{5} \underline{3}
$$

Involutions avoiding 123

$$
\pi=\underline{7} 4 \underline{6} 21 \underline{5} \underline{3}
$$

Involutions avoiding 123

$$
\pi=\underline{7} 4 \underline{6} 21 \underline{5} \underline{3}
$$

Involutions avoiding 123

$$
\pi=\underline{7} 4 \underline{6} 21 \underline{5} \underline{3}
$$

Involutions avoiding 123

$$
\pi=\underline{7} 4 \underline{6} 21 \underline{5} \underline{3}
$$

Involutions avoiding 123

$$
\pi=\underline{7} 4 \underline{6} 21 \underline{5} \underline{3}
$$

Involutions avoiding 123

$$
\pi=\underline{7} 4 \underline{6} 21 \underline{5} \underline{3}
$$

Involutions avoiding 123

$$
\pi=\underline{7} 4 \underline{6} 21 \underline{5} \underline{3}
$$

Involutions avoiding 123

Visible pairs read on the corresponding path

Let $\pi \in S_{n}(123)$ and let

$$
\Psi(\pi)=U^{h_{1}} D^{k_{1}} \ldots U^{h_{s}} D^{k_{s}}
$$

Then

$$
\operatorname{vis}(\pi)=\sum_{i=1}^{s-1}\left(k_{i}-1\right)+\max \left\{0, k_{s}-2\right\}
$$

Involutions avoiding 123

$$
P_{n}=\text { set of Dyck prefixes of length } n
$$

Involutions avoiding 123

$P_{n}=$ set of Dyck prefixes of length n
It is well known that $\Psi\left(I_{n}(123)\right)$ is the set of symmetric Dyck paths of semilegth n.

Involutions avoiding 123

$P_{n}=$ set of Dyck prefixes of length n
It is well known that $\Psi\left(I_{n}(123)\right)$ is the set of symmetric Dyck paths of semilegth n.

Hence $I_{n}(123)$ corresponds bijectively to P_{n}. If $\pi \in I_{n}(123)$, set $\hat{\Psi}(\pi)$ to be the Dyck prefix consisting of the first n steps in $\Psi(\pi)$

Involutions avoiding 123

$P_{n}=$ set of Dyck prefixes of length n
It is well known that $\Psi\left(I_{n}(123)\right)$ is the set of symmetric Dyck paths of semilegth n.

Hence $I_{n}(123)$ corresponds bijectively to P_{n}. If $\pi \in I_{n}(123)$, set $\hat{\Psi}(\pi)$ to be the Dyck prefix consisting of the first n steps in $\Psi(\pi)$

Visible pairs read on the corresponding prefix

Let $\pi \in I_{n}(123)$ and let

$$
\hat{\Psi}(\pi)=U^{h_{1}} D^{k_{1}} \ldots U^{h_{t}} D^{k_{t}}
$$

(k_{t} may be 0). Then:

$$
\operatorname{vis}(\pi)=\sum_{i=2}^{t}\left(h_{i}-1\right)+\sum_{i=1}^{t-1}\left(k_{i}-1\right)+\max \left\{h_{1}-2,0\right\}+\max \left\{k_{t}-1,0\right\}
$$

Involutions avoiding 123

Distribution of vis over $I_{n}(123)$

Let

$$
F(x, y)=\sum_{\pi \in I(123)} x^{|\pi|} y^{\operatorname{vis}(\pi)}
$$

Then

$$
F(x, y)=\frac{H(x, y)+\left(x^{2}-x^{2} y-1\right) G(x, y)}{2\left(x^{2} y^{3}+x^{2} y^{2}-x y^{2}\right)}
$$

where

$$
G(x, y)=\sqrt{x^{4} y^{4}-2 x^{4} y^{2}+x^{4}-2 x^{2} y^{2}-2 x^{2}+1}
$$

and

$$
H(x, y)=\left(x^{4}+2 x^{3}+2 x^{2}\right) y^{3}-\left(x^{4}+2 x^{3}+x^{2}+2 x\right) y^{2}-\left(x^{4}-x^{2}\right) y+x^{4}-2 x^{2}+1 .
$$

Involutions avoiding 132

Characterization of elements in $I_{n}(132)$
An involution $\pi \in I_{n}(132)$ is either of the form

Involutions avoiding 132

Characterization of elements in $I_{n}(132)$
An involution $\pi \in I_{n}(132)$ is either of the form

- $\pi=\sigma n$ with $\sigma \in I_{n-1}(132)$, or

Involutions avoiding 132

Characterization of elements in I_{n} (132)
An involution $\pi \in I_{n}(132)$ is either of the form

- $\pi=\sigma n$ with $\sigma \in I_{n-1}$ (132), or
- $\pi=v_{1} n v_{2} v_{3} h$, where:

Involutions avoiding 132

Characterization of elements in I_{n} (132)
An involution $\pi \in I_{n}(132)$ is either of the form

- $\pi=\sigma n$ with $\sigma \in I_{n-1}$ (132), or
- $\pi=v_{1} n v_{2} v_{3} h$, where:
- v_{1} is a permutation of the set $\{n-h+1, \ldots, n-1\}$

Involutions avoiding 132

Characterization of elements in I_{n} (132)

An involution $\pi \in I_{n}(132)$ is either of the form

- $\pi=\sigma n$ with $\sigma \in I_{n-1}(132)$, or
- $\pi=v_{1} n v_{2} v_{3} h$, where:
- v_{1} is a permutation of the set $\{n-h+1, \ldots, n-1\}$
- v_{2} is a permutation of the set $\{h+1, \ldots, n-h\}$ whose normalization is an involution

Involutions avoiding 132

Characterization of elements in I_{n} (132)

An involution $\pi \in I_{n}(132)$ is either of the form

- $\pi=\sigma n$ with $\sigma \in I_{n-1}(132)$, or
- $\pi=v_{1} n v_{2} v_{3} h$, where:
- v_{1} is a permutation of the set $\{n-h+1, \ldots, n-1\}$
- v_{2} is a permutation of the set $\{h+1, \ldots, n-h\}$ whose normalization is an involution
- v_{3} in uniquely determined by v_{1}

Involutions avoiding 132

Characterization of elements in I_{n} (132)

An involution $\pi \in I_{n}(132)$ is either of the form
■ $\pi=\sigma n$ with $\sigma \in I_{n-1}(132)$, or

- $\pi=v_{1} n v_{2} v_{3} h$, where:
- v_{1} is a permutation of the set $\{n-h+1, \ldots, n-1\}$

■ v_{2} is a permutation of the set $\{h+1, \ldots, n-h\}$ whose normalization is an involution

- v_{3} in uniquely determined by v_{1}
- v_{1}, v_{2}, and v_{3} avoid 132

Involutions avoiding 132

For example, consider the involution

$$
\pi=141211131591086732415
$$

Here:

Involutions avoiding 132

For example, consider the involution

$$
\pi=141211131591086732415
$$

Here:
■ $v_{1}=14121113$

Involutions avoiding 132

For example, consider the involution

$$
\pi=141211131591086732415
$$

Here:

- $v_{1}=14121113$

■ $v_{2}=910867$

Involutions avoiding 132

For example, consider the involution

$$
\pi=141211131591086732415
$$

Here:

- $v_{1}=14121113$
- $v_{2}=910867$

■ $v_{3}=3241$

Involutions avoiding 132

- If $\pi=\sigma n$, then $\operatorname{vis}(\pi)=n-1-\mid \operatorname{trmax}(\sigma)$ (by Useful Corollary)

Involutions avoiding 132

- If $\pi=\sigma n$, then $\operatorname{vis}(\pi)=n-1-\mid t r m a x(\sigma)$ (by Useful Corollary)
- if $\pi=v_{1} n v_{2} v_{3} h$ with v_{2} non empty we have:

Involutions avoiding 132

■ If $\pi=\sigma n$, then $\operatorname{vis}(\pi)=n-1-\operatorname{Itrmax}(\sigma)$ (by Useful Corollary)

- if $\pi=v_{1} n v_{2} v_{3} h$ with v_{2} non empty we have:
$■ \operatorname{vis}\left(v_{1} n\right)=h-1-\operatorname{ltrmax}\left(v_{1}\right)$ (by Useful Corollary)

Involutions avoiding 132

■ If $\pi=\sigma n$, then $\operatorname{vis}(\pi)=n-1-\operatorname{Itrmax}(\sigma)$ (by Useful Corollary)

- if $\pi=v_{1} n v_{2} v_{3} h$ with v_{2} non empty we have:
$■ \operatorname{vis}\left(v_{1} n\right)=h-1$-Itrmax $\left(v_{1}\right)$ (by Useful Corollary)
$\square \operatorname{vis}\left(n v_{2}\right)=n-2 h-r \operatorname{lmax}\left(v_{2}\right)(\operatorname{since} \operatorname{vis}(\alpha)=\operatorname{vis}(\operatorname{rev}(\alpha))+$ Useful Corollary applied to $\left.\operatorname{rev}\left(n v_{2}\right)\right)$

Involutions avoiding 132

- If $\pi=\sigma n$, then $\operatorname{vis}(\pi)=n-1-\mid t r m a x(\sigma)$ (by Useful Corollary)

■ if $\pi=v_{1} n v_{2} v_{3} h$ with v_{2} non empty we have:
$■ \operatorname{vis}\left(v_{1} n\right)=h-1$-Itrmax $\left(v_{1}\right)$ (by Useful Corollary)
$\square \operatorname{vis}\left(n v_{2}\right)=n-2 h-r \operatorname{lmax}\left(v_{2}\right)(\operatorname{since} \operatorname{vis}(\alpha)=\operatorname{vis}(\operatorname{rev}(\alpha))+$ Useful Corollary applied to $\left.\operatorname{rev}\left(n v_{2}\right)\right)$

■ let x be the leftmost element in v_{2}. Then, in the word $x v_{3} h$ the pair (x, h) is a visible pair and we have $\operatorname{vis}\left(x v_{3} h\right)=h-1$ (by Useful Lemma)

Involutions avoiding 132

$d_{n, k}=$ number of involutions in $I_{n}(132)$ with k visible pairs

Involutions avoiding 132

$d_{n, k}=$ number of involutions in $I_{n}(132)$ with k visible pairs
In order to determine $d_{n, k}$ we need to examine the distribution:

Involutions avoiding 132

$d_{n, k}=$ number of involutions in $I_{n}(132)$ with k visible pairs
In order to determine $d_{n, k}$ we need to examine the distribution:

- of Itrmax over $S_{n}(132)$

Involutions avoiding 132

$d_{n, k}=$ number of involutions in $I_{n}(132)$ with k visible pairs
In order to determine $d_{n, k}$ we need to examine the distribution:

- of Itrmax over $S_{n}(132)$
- of Itrmax over $I_{n}(132)$

Involutions avoiding 132

$d_{n, k}=$ number of involutions in $I_{n}(132)$ with k visible pairs
In order to determine $d_{n, k}$ we need to examine the distribution:

- of Itrmax over $S_{n}(132)$
- of Itrmax over $I_{n}(132)$
- of rtlmax over $I_{n}(132)$

Involutions avoiding 132

A further Krattenthaler's bijection $\Phi: S_{n}(132) \rightarrow D_{n}$

Involutions avoiding 132

A further Krattenthaler's bijection $\Phi: S_{n}(132) \rightarrow D_{n}$

$$
\pi=m_{1} w_{1} m_{2} w_{2} \ldots m_{s} w_{s}
$$

where the m_{i} 's are the left-to-right minima in π and the w_{i} 's are possibly empty words.

Involutions avoiding 132

A further Krattenthaler's bijection $\Phi: S_{n}(132) \rightarrow D_{n}$

$$
\pi=m_{1} w_{1} m_{2} w_{2} \ldots m_{s} w_{s}
$$

where the m_{i} 's are the left-to-right minima in π and the w_{i} 's are possibly empty words. Reading π from left to right:

Involutions avoiding 132

A further Krattenthaler's bijection $\Phi: S_{n}(132) \rightarrow D_{n}$

$$
\pi=m_{1} w_{1} m_{2} w_{2} \ldots m_{s} w_{s}
$$

where the m_{i} 's are the left-to-right minima in π and the w_{i} 's are possibly empty words. Reading π from left to right:

■ $m_{i} \rightarrow m_{i-1}-m_{i}$ up steps (with $m_{0}=n+1$)

Involutions avoiding 132

A further Krattenthaler's bijection $\Phi: S_{n}(132) \rightarrow D_{n}$

$$
\pi=m_{1} w_{1} m_{2} w_{2} \ldots m_{s} w_{s}
$$

where the m_{i} 's are the left-to-right minima in π and the w_{i} 's are possibly empty words. Reading π from left to right:

■ $m_{i} \rightarrow m_{i-1}-m_{i}$ up steps (with $m_{0}=n+1$)
■ $w_{i} \rightarrow\left|w_{i}\right|+1$ down steps

Involutions avoiding 132

Also in this case, it is well known that $\Phi\left(I_{n}(132)\right)$ is the set of symmetric Dyck paths of semilegth n.

Involutions avoiding 132

Also in this case, it is well known that $\Phi\left(I_{n}(132)\right)$ is the set of symmetric Dyck paths of semilegth n.

Hence $I_{n}(132)$ corresponds bijectively to P_{n}.

Involutions avoiding 132

Itrmax over $S_{n}(132)$
Let $\pi \in S_{n}(132)$ and set $t=\pi(1)$.

Involutions avoiding 132

Itrmax over $S_{n}(132)$
Let $\pi \in S_{n}(132)$ and set $t=\pi(1)$.

- The integers $t, t+1, \ldots, n$ appear in π in increasing order (since π avoids 132)

Involutions avoiding 132

Itrmax over $S_{n}(132)$
Let $\pi \in S_{n}(132)$ and set $t=\pi(1)$.

- The integers $t, t+1, \ldots, n$ appear in π in increasing order (since π avoids 132)
- The integers $t, t+1, \ldots, n$ are precisely the left-to-right minima of π

Involutions avoiding 132

Itrmax over $S_{n}(132)$

Let $\pi \in S_{n}(132)$ and set $t=\pi(1)$.

- The integers $t, t+1, \ldots, n$ appear in π in increasing order (since π avoids 132)
- The integers $t, t+1, \ldots, n$ are precisely the left-to-right minima of π ।
$\square \operatorname{trmax}(\pi)=n+1-\pi(1)=$ length of the first ascending run of $\Phi(\pi)$

Involutions avoiding 132

Itrmax over $S_{n}(132)$

Let $\pi \in S_{n}(132)$ and set $t=\pi(1)$.

- The integers $t, t+1, \ldots, n$ appear in π in increasing order (since π avoids 132)
- The integers $t, t+1, \ldots, n$ are precisely the left-to-right minima of π I
- $\operatorname{trmax}(\pi)=n+1-\pi(1)=$ length of the first ascending run of $\Phi(\pi)$

The number of Dyck paths of semilength n whose first ascending run has length s is

$$
b_{n, s}=\frac{s}{n}\binom{2 n-s-1}{n-s}
$$

Involutions avoiding 132

Itrmax over $I_{n}(132)$
As before, we study the distribution of the length of the first ascending run over Dyck prefixes.

Involutions avoiding 132

Itrmax over $I_{n}(132)$
As before, we study the distribution of the length of the first ascending run over Dyck prefixes.

The number of Dyck prefixes of length n whose first ascending run has length s is

$$
c_{n, s}=\sum_{i=1}^{\left\lceil\frac{s}{2}\right\rceil}(-1)^{i-1}\binom{n-2 i}{\left\lfloor\frac{n-2 i}{2}\right\rfloor}\binom{ s-i}{i-1} \text { if } s<n
$$

and $c_{n, n}=1$.

Involutions avoiding 132

rtimax over $I_{n}(132)$

$$
\pi=u_{s} M_{s} \ldots u_{2} M_{2} u_{1} M_{1}
$$

where the M_{i} 's are the right-to-left maxima of π and u_{1}, \ldots, u_{s} are possibly empty words. We can show that:

Involutions avoiding 132

rtImax over $I_{n}(132)$

$$
\pi=u_{s} M_{s} \ldots u_{2} M_{2} u_{1} M_{1}
$$

where the M_{i} 's are the right-to-left maxima of π and u_{1}, \ldots, u_{s} are possibly empty words. We can show that:

- for every i, the portion of $\Phi(\pi)$ corresponding to $u_{s} M_{s} \ldots u_{i} M_{i}$ ends on the x-axis;

Involutions avoiding 132

rtimax over $I_{n}(132)$

$$
\pi=u_{s} M_{s} \ldots u_{2} M_{2} u_{1} M_{1}
$$

where the M_{i} 's are the right-to-left maxima of π and u_{1}, \ldots, u_{s} are possibly empty words. We can show that:

- for every i, the portion of $\Phi(\pi)$ corresponding to $u_{s} M_{s} \ldots u_{i} M_{i}$ ends on the x-axis;
- we can study the distribution of the number of returns on symmetric Dyck paths.

Involutions avoiding 132

rtimax over $I_{n}(132)$

$$
\pi=u_{s} M_{s} \ldots u_{2} M_{2} u_{1} M_{1}
$$

where the M_{i} 's are the right-to-left maxima of π and u_{1}, \ldots, u_{s} are possibly empty words. We can show that:

- for every i, the portion of $\Phi(\pi)$ corresponding to $u_{s} M_{s} \ldots u_{i} M_{i}$ ends on the x-axis;
- we can study the distribution of the number of returns on symmetric Dyck paths.
$f_{n, s}=$ number of Dyck path of length n with s returns:

Involutions avoiding 132

rtImax over $I_{n}(132)$

$$
\pi=u_{s} M_{s} \ldots u_{2} M_{2} u_{1} M_{1}
$$

where the M_{i} 's are the right-to-left maxima of π and u_{1}, \ldots, u_{s} are possibly empty words. We can show that:

- for every i, the portion of $\Phi(\pi)$ corresponding to $u_{s} M_{s} \ldots u_{i} M_{i}$ ends on the x-axis;
- we can study the distribution of the number of returns on symmetric Dyck paths.
$f_{n, s}=$ number of Dyck path of length n with s returns:

$$
\begin{gathered}
f_{2 m, 2 t}=b_{m, t} \quad \text { and } \quad f_{2 m+1,2 t}=0 \\
f_{n, 2 t+1}=\sum_{i \geq t}^{\left\lfloor\frac{n-1}{2}\right\rfloor} b_{i, t}\binom{n-2 i-1}{\left\lfloor\frac{n-2 i-1}{2}\right\rfloor}
\end{gathered}
$$

Involutions avoiding 132

Distribution of vis over $I_{n}(132)$

The number of involutions in $I_{n}(132)$ with k visible pair is:

$$
d_{n, k}=c_{n-1, n-1-k}+f_{n-2, n-2-k}+\sum_{j=2}^{\left\lfloor\frac{n}{2}\right\rfloor} \sum_{i=1}^{j-1} b_{j-1, i} f_{n-2 j, n-2-i-k}
$$

Involutions avoiding 213

Definition of co-visible pair

Let $w=x_{1} x_{2} \ldots x_{n}$ be a word whose letters are pairwise distinct integers. A co-visible pair in w is a pair $\left(x_{i}, x_{i+r}\right), r \geq 2$, such that $x_{j}>\max \left\{x_{i}, x_{i+r}\right\}$, for all $i<j<i+r$.

Involutions avoiding 213

Definition of co-visible pair

Let $w=x_{1} x_{2} \ldots x_{n}$ be a word whose letters are pairwise distinct integers. A co-visible pair in w is a pair $\left(x_{i}, x_{i+r}\right), r \geq 2$, such that $x_{j}>\max \left\{x_{i}, x_{i+r}\right\}$, for all $i<j<i+r$.

For example, the co-visible pairs of the word

$$
w=1362745
$$

Involutions avoiding 213

Definition of co-visible pair

Let $w=x_{1} x_{2} \ldots x_{n}$ be a word whose letters are pairwise distinct integers. A co-visible pair in w is a pair $\left(x_{i}, x_{i+r}\right), r \geq 2$, such that $x_{j}>\max \left\{x_{i}, x_{i+r}\right\}$, for all $i<j<i+r$.

For example, the co-visible pairs of the word

$$
w=1362745
$$

are $(2,4)$,

Involutions avoiding 213

Definition of co-visible pair

Let $w=x_{1} x_{2} \ldots x_{n}$ be a word whose letters are pairwise distinct integers. A co-visible pair in w is a pair $\left(x_{i}, x_{i+r}\right), r \geq 2$, such that $x_{j}>\max \left\{x_{i}, x_{i+r}\right\}$, for all $i<j<i+r$.

For example, the co-visible pairs of the word

$$
w=1362745
$$

are $(2,4),(3,2)$,

Involutions avoiding 213

Definition of co-visible pair

Let $w=x_{1} x_{2} \ldots x_{n}$ be a word whose letters are pairwise distinct integers. A co-visible pair in w is a pair $\left(x_{i}, x_{i+r}\right), r \geq 2$, such that $x_{j}>\max \left\{x_{i}, x_{i+r}\right\}$, for all $i<j<i+r$.

For example, the co-visible pairs of the word

$$
w=1362745
$$

are $(2,4),(3,2)$, and $(1,2)$

Involutions avoiding 213

Definition of rc operator

The reverse-complement (or rc) of a permutation $\pi \in S_{n}$ is the permutation $\pi^{r c}$ defined by

$$
\pi_{i}^{r c}=n+1-\pi_{n+1-i}
$$

Involutions avoiding 213

Definition of rc operator

The reverse-complement (or rc) of a permutation $\pi \in S_{n}$ is the permutation $\pi^{r c}$ defined by

$$
\pi_{i}^{r c}=n+1-\pi_{n+1-i}
$$

For example, if

$$
\pi=263145
$$

Involutions avoiding 213

Definition of rc operator

The reverse-complement (or rc) of a permutation $\pi \in S_{n}$ is the permutation $\pi^{\text {rc }}$ defined by

$$
\pi_{i}^{r c}=n+1-\pi_{n+1-i}
$$

For example, if

$$
\pi=263145,
$$

we have

$$
\pi^{r c}=236415
$$

Involutions avoiding 213

Definition of rc operator

The reverse-complement (or rc) of a permutation $\pi \in S_{n}$ is the permutation $\pi^{r c}$ defined by

$$
\pi_{i}^{r c}=n+1-\pi_{n+1-i}
$$

For example, if

$$
\pi=263145
$$

we have

$$
\pi^{r c}=236415
$$

The statistic number of visibile pair over $I_{n}(213)$ is equidistributed with the statistic number of co-visibile pair over $I_{n}(132)$ (via reverse-complement, which also maps involutions to involutions)

Involutions avoiding 213

Useful Lemma (2)

Let $w=x_{1} x_{2} \ldots x_{n}$ be a sequence of pairwise distinct positive integers such that $\left(x_{1}, x_{n}\right)$ is a co-visible pair. Then the number of co-visible pairs in w is $|w|-2$

Involutions avoiding 213

Useful Lemma (2)

Let $w=x_{1} x_{2} \ldots x_{n}$ be a sequence of pairwise distinct positive integers such that $\left(x_{1}, x_{n}\right)$ is a co-visible pair. Then the number of co-visible pairs in w is $|w|-2$

Every involution $\pi \in I_{n}(132)$ corresponds to the symmetric Dyck path

$$
d=\Phi(\pi)=U^{j_{1}} D^{l_{1}} U^{j_{2}} D^{I_{2}} \ldots U^{j_{s}} D^{I_{s}}
$$

Then, by Useful Lemma (2)

$$
\operatorname{covis}(\pi)=I_{1}-1+I_{2}-1+\cdots+I_{s-1}-1
$$

Involutions avoiding 213

Every $\sigma \in I_{n}(213)$ corresponds to the Dyck prefix

$$
p=U^{h_{1}} D^{k_{1}} U^{h_{2}} D^{k_{2}} \ldots U^{h_{t}} D^{k_{t}}
$$

consisting of the first n steps in $\Phi\left(\sigma^{r c}\right)$. Then:

$$
\operatorname{vis}(\sigma)=\sum_{j=2}^{t}\left(h_{j}-1\right)+\sum_{i=1}^{t-1}\left(k_{i}-1\right)+\max \left(0, k_{t}-1\right)
$$

Involutions avoiding 213

Distribution of vis over $I_{n}(213)$

Let

$$
Q(x, y)=\sum_{\pi \in I(213)} x^{|\pi|} y^{\operatorname{vis}(\pi)}=\sum_{\pi \in I(132)} x^{|\pi|} y^{\operatorname{covis}(\pi)}
$$

Then

$$
Q(x, y)=\frac{1-x+x^{2}-x^{2} y+\left(x^{2} y-x y\right) R}{(1-x)(1-x-x y)}
$$

where

$$
R=1+\frac{2 x^{2}}{1-2 x^{2} y-x^{2}+x^{2} y^{2}+\sqrt{\left(x^{2}+x^{2} y^{2}-1\right)^{2}-4 x^{4} y^{2}}}
$$

Thank you

Our paper

M. Barnabei, F. Bonetti, N. Castronuovo, and M.Silimbani, Visibility on restricted involutions, J. Differ. Equ. Appl. 27(4) (2021), pp. 481-496

Thank you for your attention!

For more questions
matteo.silimbani4@unibo.it

