

On automorphisms of a Fano plane 2-analog design

Kristijan Tabak

Rochester Institute of Technology, Zagreb Campus

Croatia

e-mail: kxtcad@rit.edu

4th Croatian Combinatorial Days, Zagreb, September 22-23, 2022

This work has been fully supported by Croatian Science Foundation under the project 6732 and 97522

Back

A (v,k,λ) -design is a collection of blocks of a size k that are subsets of a v-element set of points, where any two points are contained in λ blocks.

A (v,k,λ) -design is a collection of blocks of a size k that are subsets of a v-element set of points, where any two points are contained in λ blocks.

A q-analog of a (v,k,λ) design is a natural generalization. A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space \mathbb{F}_{q^v} will be called a q-analog of a (v,k,λ) -design if any 2-dimensional subspace of \mathbb{F}_{q^v} is contained in λ blocks.

A (v,k,λ) -design is a collection of blocks of a size k that are subsets of a v-element set of points, where any two points are contained in λ blocks.

A q-analog of a (v,k,λ) design is a natural generalization. A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space \mathbb{F}_{q^v} will be called a q-analog of a (v,k,λ) -design if any 2-dimensional subspace of \mathbb{F}_{q^v} is contained in λ blocks.

A classical example of a (v, k, λ) -design is a Fano plane, a design with parameters (7, 3, 1).

A (v,k,λ) -design is a collection of blocks of a size k that are subsets of a v-element set of points, where any two points are contained in λ blocks.

A q-analog of a (v,k,λ) design is a natural generalization. A collection of k-dimensional vector subspaces (blocks) of a v-dimensional space \mathbb{F}_{q^v} will be called a q-analog of a (v,k,λ) -design if any 2-dimensional subspace of \mathbb{F}_{q^v} is contained in λ blocks.

A classical example of a (v,k,λ) -design is a Fano plane, a design with parameters (7,3,1).

A 2-analog of a Fano plane is a collection of 3-dimensional blocks from \mathbb{F}_{2^7} such that any 2-dimensional subspace of \mathbb{F}_{2^7} is contained in one block from a collection of blocks

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.

The main ambient space in which we shall investigate binary Fano plane is elementary abelian group E_{2^7} .

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.

The main ambient space in which we shall investigate binary Fano plane is elementary abelian group E_{2^7} .

$$E_{2^k}[E_{2^7}] = \{T \mid T \le E_2^7, \ T \cong E_{2^k}\}.$$

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.

The main ambient space in which we shall investigate binary Fano plane is elementary abelian group E_{2^7} .

$$E_{2^k}[E_{2^7}] = \{T \mid T \le E_2^7, \ T \cong E_{2^k}\}.$$

$$E_{2^k}[T]^{-1} = \{ M \mid T \le M \in E_{2^k}[E_{2^7}] \}.$$

Quite recently, a first example of a 2-analog of a design was constructed by Braun, Etzion, Ostergard, Vardy and Wassermann.

It was constructed in $\mathbb{F}_{2^{13}}$ by Kramer-Mesner method.

The main ambient space in which we shall investigate binary Fano plane is elementary abelian group E_{2^7} .

$$E_{2^k}[E_{2^7}] = \{T \mid T \le E_2^7, \ T \cong E_{2^k}\}.$$

$$E_{2^k}[T]^{-1} = \{ M \mid T \le M \in E_{2^k}[E_{2^7}] \}.$$

in general
$$|E_{2^k}[E_{2^n}]| = \begin{vmatrix} n \\ k \end{vmatrix}_2$$
, where $\begin{vmatrix} n \\ k \end{vmatrix}_2$ is a gaussian 2-coefficient.

if $T\in E_{2^t}[E_{2^7}]$, then $|E_{2^k}[T]^{-1}|=|E_{2^{k-t}}[E_{2^7}/T]|=|E_{2^{k-t}}[E_{2^{7-t}}]|=\begin{bmatrix}7-t\\k-t\end{bmatrix}_2$.

Back

if
$$T \in E_{2^t}[E_{2^7}]$$
, then $|E_{2^k}[T]^{-1}| = |E_{2^{k-t}}[E_{2^7}/T]| = |E_{2^{k-t}}[E_{2^{7-t}}]| = \begin{bmatrix} 7-t \\ k-t \end{bmatrix}_2$.

if
$$T \in E_{2^t}[E_{2^7}]$$
, then $|E_{2^k}[T]^{-1}| = |E_{2^{k-t}}[E_{2^7}/T]| = |E_{2^{k-t}}[E_{2^{7-t}}]| = \begin{bmatrix} 7-t \\ k-t \end{bmatrix}$.

 $E[E_{2^7}] = \{V \mid V \leq E_{2^7}\}$ is a collection of all subgroups.

if
$$T \in E_{2^t}[E_{2^7}]$$
, then $|E_{2^k}[T]^{-1}| = |E_{2^{k-t}}[E_{2^7}/T]| = |E_{2^{k-t}}[E_{2^{7-t}}]| = \begin{bmatrix} 7-t \\ k-t \end{bmatrix}_2$.

 $E[E_{2^7}] = \{V \mid V \leq E_{2^7}\}$ is a collection of all subgroups.

we can define $Aut(\mathcal{H}) = \{\alpha \in S_{in}(E[E_{2^7}]) \mid \mathcal{H}^{\alpha} = \mathcal{H}\}$, where \mathcal{H} is a binary Fano plane.

if
$$T \in E_{2^t}[E_{2^7}]$$
, then $|E_{2^k}[T]^{-1}| = |E_{2^{k-t}}[E_{2^7}/T]| = |E_{2^{k-t}}[E_{2^{7-t}}]| = \begin{bmatrix} 7-t \\ k-t \end{bmatrix}_2$.

 $E[E_{2^7}] = \{V \mid V \leq E_{2^7}\}$ is a collection of all subgroups.

we can define $Aut(\mathcal{H}) = \{\alpha \in S_{in}(E[E_{2^7}]) \mid \mathcal{H}^{\alpha} = \mathcal{H}\}$, where \mathcal{H} is a binary Fano plane.

If $A \in E_{2^k}[E_{2^7}]$ and $\alpha \in Aut(E_{2^7})$ is of order m, we use a group ring $\mathbb{Z}[E_{2^k}[E_{2^7}]]$ to express α -orbit of A.

if
$$T \in E_{2^t}[E_{2^7}]$$
, then $|E_{2^k}[T]^{-1}| = |E_{2^{k-t}}[E_{2^7}/T]| = |E_{2^{k-t}}[E_{2^{7-t}}]| = \begin{bmatrix} 7-t \\ k-t \end{bmatrix}_2$.

 $E[E_{2^7}] = \{V \mid V \leq E_{2^7}\}$ is a collection of all subgroups.

we can define $Aut(\mathcal{H}) = \{\alpha \in S_{in}(E[E_{2^7}]) \mid \mathcal{H}^{\alpha} = \mathcal{H}\}$, where \mathcal{H} is a binary Fano plane.

If $A \in E_{2^k}[E_{2^7}]$ and $\alpha \in Aut(E_{2^7})$ is of order m, we use a group ring $\mathbb{Z}[E_{2^k}[E_{2^7}]]$ to express α -orbit of A.

$$A^{\langle \alpha \rangle} = A + A^{\alpha} + A^{\alpha^2} + \dots + A^{\alpha^{m-1}}.$$

if
$$T \in E_{2^t}[E_{2^7}]$$
, then $|E_{2^k}[T]^{-1}| = |E_{2^{k-t}}[E_{2^7}/T]| = |E_{2^{k-t}}[E_{2^{7-t}}]| = \begin{bmatrix} 7-t \\ k-t \end{bmatrix}_2$.

$$E[E_{2^7}] = \{V \mid V \leq E_{2^7}\}$$
 is a collection of all subgroups.

we can define $Aut(\mathcal{H}) = \{\alpha \in S_{in}(E[E_{2^7}]) \mid \mathcal{H}^{\alpha} = \mathcal{H}\}$, where \mathcal{H} is a binary Fano plane.

If $A \in E_{2^k}[E_{2^7}]$ and $\alpha \in Aut(E_{2^7})$ is of order m, we use a group ring $\mathbb{Z}[E_{2^k}[E_{2^7}]]$ to express α -orbit of A.

$$A^{\langle \alpha \rangle} = A + A^{\alpha} + A^{\alpha^2} + \dots + A^{\alpha^{m-1}}.$$

If $\alpha \in Aut(\mathcal{H})$, we will denote an action of α on \mathcal{H} by $\langle \alpha \rangle \hookrightarrow \mathcal{H}$. In a case when α can't act on \mathcal{H} , we will write $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

if
$$T \in E_{2^t}[E_{2^7}]$$
, then $|E_{2^k}[T]^{-1}| = |E_{2^{k-t}}[E_{2^7}/T]| = |E_{2^{k-t}}[E_{2^{7-t}}]| = \begin{bmatrix} 7-t \\ k-t \end{bmatrix}_2$.

$$E[E_{2^7}] = \{V \mid V \leq E_{2^7}\}$$
 is a collection of all subgroups.

we can define $Aut(\mathcal{H}) = \{\alpha \in S_{in}(E[E_{2^7}]) \mid \mathcal{H}^{\alpha} = \mathcal{H}\}$, where \mathcal{H} is a binary Fano plane.

If $A \in E_{2^k}[E_{2^7}]$ and $\alpha \in Aut(E_{2^7})$ is of order m, we use a group ring $\mathbb{Z}[E_{2^k}[E_{2^7}]]$ to express α -orbit of A.

$$A^{\langle \alpha \rangle} = A + A^{\alpha} + A^{\alpha^2} + \dots + A^{\alpha^{m-1}}.$$

If $\alpha \in Aut(\mathcal{H})$, we will denote an action of α on \mathcal{H} by $\langle \alpha \rangle \hookrightarrow \mathcal{H}$. In a case when α can't act on \mathcal{H} , we will write $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

V vector space over finite field \mathbb{F}_q , G group act on V, ${V\brack t}_q$ collection of t-dimensional subspaces of V

V vector space over finite field \mathbb{F}_q , G group act on V, ${V\brack t}_q$ collection of t-dimensional subspaces of V

 $M_{t,k}^G$ Kramer Mesner matrix

Back

V vector space over finite field \mathbb{F}_q , G group act on V, ${V\brack t}_q$ collection of t-dimensional subspaces of V

 $M_{t,k}^G$ Kramer Mesner matrix

rows indexed by G-orbits on $\left[\begin{smallmatrix} V \\ t \end{smallmatrix} \right]_q$

V vector space over finite field \mathbb{F}_q , G group act on V, ${V\brack t}_q$ collection of t-dimensional subspaces of V

 $M_{t,k}^G$ Kramer Mesner matrix

rows indexed by G-orbits on $\left[egin{smallmatrix} V \\ t \end{smallmatrix} \right]_q$

columns indexed by G-orbits on $\left[\begin{smallmatrix} V \\ k \end{smallmatrix} \right]_q$

V vector space over finite field \mathbb{F}_q , G group act on V, ${V\brack t}_q$ collection of t-dimensional subspaces of V

 $M_{t,k}^G$ Kramer Mesner matrix

rows indexed by G-orbits on $\left[egin{smallmatrix} V \\ t \end{smallmatrix}
ight]_q$

columns indexed by G-orbits on $\left[egin{smallmatrix} V \\ k \end{smallmatrix}
ight]_q$

the entry of ${\cal M}_{t,k}^G$ at row ${\cal T}^G$ and column ${\cal K}^G$ is

V vector space over finite field \mathbb{F}_q , G group act on V, ${V\brack t}_q$ collection of t-dimensional subspaces of V

 $M_{t,k}^G$ Kramer Mesner matrix

rows indexed by G-orbits on $\left[egin{smallmatrix} V \\ t \end{smallmatrix} \right]_q$

columns indexed by G-orbits on $\left[\begin{smallmatrix} V \\ k \end{smallmatrix} \right]_q$

the entry of ${\cal M}_{t,k}^G$ at row ${\cal T}^G$ and column ${\cal K}^G$ is

$$|\{K' \in K^G \mid T \le K'\}|$$

V vector space over finite field \mathbb{F}_q , G group act on V, ${V\brack t}_q$ collection of t-dimensional subspaces of V

 $M_{t,k}^G$ Kramer Mesner matrix

rows indexed by G-orbits on $\left[egin{smallmatrix} V \\ t \end{smallmatrix}
ight]_q$

columns indexed by G-orbits on $\left[\begin{smallmatrix} V \\ k \end{smallmatrix} \right]_q$

the entry of ${\cal M}_{t,k}^G$ at row T^G and column K^G is

$$|\{K' \in K^G \mid T \le K'\}|$$

the main result of this method is

V vector space over finite field \mathbb{F}_q , G group act on V, ${V\brack t}_q$ collection of t-dimensional subspaces of V

 $M_{t,k}^G$ Kramer Mesner matrix

rows indexed by G-orbits on $\left[egin{smallmatrix} V \\ t \end{smallmatrix} \right]_q$

columns indexed by G-orbits on $\left[\begin{smallmatrix} V \\ k \end{smallmatrix} \right]_q$

the entry of ${\cal M}_{t,k}^G$ at row ${\cal T}^G$ and column ${\cal K}^G$ is

$$|\{K' \in K^G \mid T \le K'\}|$$

the main result of this method is

 $\exists t - (n, k, \lambda)_q$ design with $G \leq Aut \Leftrightarrow \exists \{0, 1\}$ solution of $M_{t,k}^G \mathbf{x} = \lambda \mathbf{1}$

V vector space over finite field \mathbb{F}_q , G group act on V, ${V\brack t}_q$ collection of t-dimensional subspaces of V

$$M_{t,k}^G$$
 Kramer Mesner matrix

rows indexed by G-orbits on $\left[egin{smallmatrix} V \\ t \end{smallmatrix}
ight]_q$

columns indexed by G-orbits on $\left[\begin{smallmatrix} V \\ k \end{smallmatrix} \right]_q$

the entry of ${\cal M}_{t,k}^G$ at row ${\cal T}^G$ and column ${\cal K}^G$ is

$$|\{K' \in K^G \mid T \le K'\}|$$

the main result of this method is

the main result of this method is

The estimated run time for one 3-group is 75616 CPU-years

 $\exists t - (n, k, \lambda)_q$ design with $G \leq Aut \Leftrightarrow \exists \{0, 1\}$ solution of $M_{t,k}^G \mathbf{x} = \lambda \mathbf{1}$

V vector space over finite field \mathbb{F}_q , G group act on V, $\begin{bmatrix} V \\ t \end{bmatrix}_q$ collection of t-dimensional subspaces of V

$$M_{t,k}^G$$
 Kramer Mesner matrix

rows indexed by G-orbits on $\begin{bmatrix} V \\ t \end{bmatrix}_a$

columns indexed by G-orbits on $\begin{bmatrix} V \\ k \end{bmatrix}_a$ the entry of ${\cal M}^{\cal G}_{t,k}$ at row ${\cal T}^{\cal G}$ and column ${\cal K}^{\cal G}$ is

$$|\{K' \in K^G \mid T \le K'\}|$$

the main result of this method is

 $\exists t - (n, k, \lambda)_q$ design with $G \leq Aut \Leftrightarrow \exists \{0, 1\}$ solution of $M_{t,k}^G \mathbf{x} = \lambda \mathbf{1}$

The estimated run time for one
$$3$$
-group is 75616 CPU-years

The estimated time for involution is
$$8\times 10^{12}$$
 CPU-years

Back

the existence of $\alpha \in Aut(\mathcal{H})$ such that $o(\alpha) \in \{2,3,5,7,31,127\}$, where $o(\alpha)$ is an order of an automorphism α .

the existence of $\alpha \in Aut(\mathcal{H})$ such that $o(\alpha) \in \{2,3,5,7,31,127\}$, where $o(\alpha)$ is an order of an automorphism α .

Automorphism of order 127

the existence of $\alpha \in Aut(\mathcal{H})$ such that $o(\alpha) \in \{2,3,5,7,31,127\}$, where $o(\alpha)$ is an order of an automorphism α .

Automorphism of order 127

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 127, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

 $Aut(\mathcal{H}) \leq Aut(E_{2^7})$. It is also known that $|Aut(E_{2^7})| = 2^{21} \cdot 3^{41} \cdot 5 \cdot 7^2 \cdot 31 \cdot 127$.

the existence of $\alpha \in Aut(\mathcal{H})$ such that $o(\alpha) \in \{2,3,5,7,31,127\}$, where $o(\alpha)$ is an order of an automorphism α .

Automorphism of order 127

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 127, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

 $Aut(\mathcal{H}) \leq Aut(E_{2^7})$. It is also known that $|Aut(E_{2^7})| = 2^{21} \cdot 3^{41} \cdot 5$. $7^2 \cdot 31 \cdot 127$.

the existence of $\alpha \in Aut(\mathcal{H})$ such that $o(\alpha) \in \{2, 3, 5, 7, 31, 127\},\$ where $o(\alpha)$ is an order of an automorphism α .

Automorphism of order 127

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 127, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

we can have a decomposition $\mathcal{H}=A^{\langle\alpha\rangle}+B^{\langle\alpha\rangle}+C^{\langle\alpha\rangle}$, where $A\cong B\cong$ $C\cong E_{2^3}$ are three blocks from \mathcal{H} . Also, $|A^{\langle\alpha\rangle}|=|B^{\langle\alpha\rangle}|=|C^{\langle\alpha\rangle}|=127.$

 $Aut(\mathcal{H}) \leq Aut(E_{2^7})$. It is also known that $|Aut(E_{2^7})| = 2^{21} \cdot 3^{41} \cdot 5$. $7^2 \cdot 31 \cdot 127$.

the existence of $\alpha \in Aut(\mathcal{H})$ such that $o(\alpha) \in \{2, 3, 5, 7, 31, 127\},\$ where $o(\alpha)$ is an order of an automorphism α .

Automorphism of order 127

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 127, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

we can have a decomposition $\mathcal{H}=A^{\langle\alpha\rangle}+B^{\langle\alpha\rangle}+C^{\langle\alpha\rangle}$, where $A\cong B\cong$ $C\cong E_{2^3}$ are three blocks from \mathcal{H} . Also, $|A^{\langle\alpha\rangle}|=|B^{\langle\alpha\rangle}|=|C^{\langle\alpha\rangle}|=127.$

Using the formula of inclusion and exclusion we get $127 = X_1 - X_2 +$

$$X_3 - X_4 + \cdots$$
, where $X_j = \sum_{P \in \binom{[127]}{j}} |\bigcap_{s \in P} (A^*)^{\alpha^s}|, \ j \ge 1$, where $\binom{[127]}{j}$

is a collection of j-element subsets of $[127] = \{1, 2, \dots, 127\}$. Thus, we get $127 = 7 \cdot 127 - X_2 + X_3 - X_4 + \cdots$.

We get
$$127 = 7 \cdot 127 - X_2 + {5 \choose 1} X_2 - {5 \choose 2} X_2 + {5 \choose 3} X_2 - {5 \choose 4} X_2 + {5 \choose 5} X_2 = 7 \cdot 127.$$

$$127 = 7 \cdot 127 - X_2 + {5 \choose 1} X_2 - {5 \choose 2} X_2 + {5 \choose 3} X_2 - {5 \choose 4} X_2 + {5 \choose 5} X_2 = 7 \cdot 127.$$

Automorphism of order 31

$$127 = 7 \cdot 127 - X_2 + {5 \choose 1} X_2 - {5 \choose 2} X_2 + {5 \choose 3} X_2 - {5 \choose 4} X_2 + {5 \choose 5} X_2 = 7 \cdot 127.$$

Automorphism of order 31

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 31, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

$$127 = 7 \cdot 127 - X_2 + {5 \choose 1} X_2 - {5 \choose 2} X_2 + {5 \choose 3} X_2 - {5 \choose 4} X_2 + {5 \choose 5} X_2 = 7 \cdot 127.$$

Automorphism of order 31

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 31, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

Back

$$127 = 7 \cdot 127 - X_2 + {5 \choose 1} X_2 - {5 \choose 2} X_2 + {5 \choose 3} X_2 - {5 \choose 4} X_2 + {5 \choose 5} X_2 = 7 \cdot 127.$$

Automorphism of order 31

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 31, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

Let us assume the opposite. Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 31. Let $\mathcal{H}_g = \{ H \in \mathcal{H} \mid g \in H \}$. One can see that $|\mathcal{H}_g| = 21$. Also, from $|\{\mathcal{H}_g\}_{g \neq 1}| = 127$, we get $|Fix(\alpha, \{\mathcal{H}_g\}_{g \neq 1})| \equiv 3 \pmod{31}$.

Back Close

$$127 = 7 \cdot 127 - X_2 + {5 \choose 1} X_2 - {5 \choose 2} X_2 + {5 \choose 3} X_2 - {5 \choose 4} X_2 + {5 \choose 5} X_2 = 7 \cdot 127.$$

李子 7/12

Automorphism of order 31

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 31, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

Let us assume the opposite. Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 31. Let $\mathcal{H}_g = \{H \in \mathcal{H} \mid g \in H\}$. One can see that $|\mathcal{H}_g| = 21$. Also, from $|\{\mathcal{H}_g\}_{g\neq 1}| = 127$, we get $|Fix(\alpha, \{\mathcal{H}_g\}_{g\neq 1})| \equiv 3 \pmod{31}$.

...., we get $\alpha = id$. A contradiction

Back

$$127 = 7 \cdot 127 - X_2 + {5 \choose 1} X_2 - {5 \choose 2} X_2 + {5 \choose 3} X_2 - {5 \choose 4} X_2 + {5 \choose 5} X_2 = 7 \cdot 127.$$

李子 7/12

Automorphism of order 31

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 31, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

Let us assume the opposite. Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 31. Let $\mathcal{H}_g = \{H \in \mathcal{H} \mid g \in H\}$. One can see that $|\mathcal{H}_g| = 21$. Also, from $|\{\mathcal{H}_g\}_{g\neq 1}| = 127$, we get $|Fix(\alpha, \{\mathcal{H}_g\}_{g\neq 1})| \equiv 3 \pmod{31}$.

...., we get $\alpha = id$. A contradiction

Back

Back Close

Difficult case, since order of Singer automorphism of E_8 is SEVEN

Difficult case, since order of Singer automorphism of E_8 is SEVEN Also

Difficult case, since order of Singer automorphism of E_8 is SEVEN

Also

$$|\mathcal{H}_c| = 21 = 3 \cdot 7.$$

Difficult case, since order of Singer automorphism of E_8 is SEVEN

Also

$$|\mathcal{H}_c| = 21 = 3 \cdot 7.$$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 7, then $|Fix(\alpha)| \in \{1, 15\}$. Furthermore, $|Fix(\alpha, E_{2^3}[E_{2^7}])| \equiv 2 \pmod{7}$ and $|Fix(\alpha, \mathcal{H})| \equiv 3 \pmod{7}$.

Difficult case, since order of Singer automorphism of E_8 is SEVEN Also

$$|\mathcal{H}_c| = 21 = 3 \cdot 7.$$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 7, then $|Fix(\alpha)| \in \{1, 15\}$. Furthermore, $|Fix(\alpha, E_{2^3}[E_{2^7}])| \equiv 2 \pmod{7}$ and $|Fix(\alpha, \mathcal{H})| \equiv 3 \pmod{7}$.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 7 and let $|Fix(\alpha)| = 1$, where $Fix(\alpha) = \{c\}$. Then, there are \widetilde{X}_i , $\widetilde{Y}_i \in E_2[E_{2^7}/\langle c \rangle]$ and $\widetilde{\alpha} \in Aut(E_{2^7}/\langle c \rangle)$, given by a rule $(g\langle c \rangle)^{\widetilde{\alpha}} = g^{\alpha}\langle c \rangle$, such that all $\widetilde{X}_i\widetilde{Y}_i \cong E_{2^2}$ are mutually disjoint. Furthermore, the following holds: $\sum_{i=1}^3 (\widetilde{X}_i\widetilde{Y}_i)^{\langle \widetilde{\alpha} \rangle} = E_{2^7}/\langle c \rangle + 20\langle c \rangle$ and $|Fix(\widetilde{\alpha})| = 0$ and $\widetilde{\alpha}$ is of order 7.

Difficult case, since order of Singer automorphism of E_8 is SEVEN

Also

$$|\mathcal{H}_c| = 21 = 3 \cdot 7.$$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 7, then $|Fix(\alpha)| \in \{1, 15\}$. Furthermore, $|Fix(\alpha, E_{2^3}[E_{2^7}])| \equiv 2 \pmod{7}$ and $|Fix(\alpha, \mathcal{H})| \equiv 3 \pmod{7}$.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 7 and let $|Fix(\alpha)| = 1$, where $Fix(\alpha) = \{c\}$. Then, there are \widetilde{X}_i , $\widetilde{Y}_i \in E_2[E_{2^7}/\langle c \rangle]$ and $\widetilde{\alpha} \in Aut(E_{2^7}/\langle c \rangle)$, given by a rule $(g\langle c \rangle)^{\widetilde{\alpha}} = g^{\alpha}\langle c \rangle$, such that all $\widetilde{X}_i\widetilde{Y}_i \cong E_{2^2}$ are mutually disjoint. Furthermore, the following holds: $\sum_{i=1}^3 (\widetilde{X}_i\widetilde{Y}_i)^{\langle \widetilde{\alpha} \rangle} = E_{2^7}/\langle c \rangle + 20\langle c \rangle$ and $|Fix(\widetilde{\alpha})| = 0$ and $\widetilde{\alpha}$ is of order 7.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 7. Then, $|Fix(\alpha)| = 1$.

Back

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Back

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 5

Back

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 5

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $|Fix(\alpha)| = 7$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 5

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $|Fix(\alpha)| = 7$.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $Fix(\alpha, E_{2^3}[E_{2^7}]) = Fix(\alpha, \mathcal{H})$ and $|Fix(\alpha, \mathcal{H})| = 1$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 5

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $|Fix(\alpha)| = 7$.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $Fix(\alpha, E_{2^3}[E_{2^7}]) = Fix(\alpha, \mathcal{H})$ and $|Fix(\alpha, \mathcal{H})| = 1$.

Lemma: If $\alpha \in Aut(E_{2^7})$ is of order 5, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 5

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $|Fix(\alpha)| = 7$.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $Fix(\alpha, E_{2^3}[E_{2^7}]) = Fix(\alpha, \mathcal{H})$ and $|Fix(\alpha, \mathcal{H})| = 1$.

Lemma: If $\alpha \in Aut(E_{2^7})$ is of order 5, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Sketch:

Back

Theorem: Let $\alpha \in Aut(E_{2^6})$ be of order 7 and $Fix(\alpha) = \phi$. If $\langle g^{\langle \alpha \rangle} \rangle < E_{2^6}$, then, $\langle g^{\langle \alpha \rangle} \rangle \cong E_{2^3}$. Furthermore, $Fix(\alpha, E_{2^3}[E_{2^6}]) = \{A, B\}$ and $E_{2^6} = A \times B$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 7, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 5

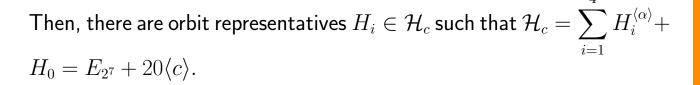
Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $|Fix(\alpha)| = 7$.

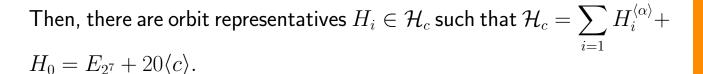
Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 5. Then $Fix(\alpha, E_{2^3}[E_{2^7}]) = Fix(\alpha, \mathcal{H})$ and $|Fix(\alpha, \mathcal{H})| = 1$.

Lemma: If $\alpha \in Aut(E_{2^7})$ is of order 5, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

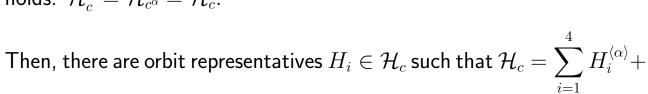
Sketch:

Let's assume the opposite. Then, $|Fix(\alpha)| = 7$, $Fix(\alpha, E_{2^3}[E_{2^7}]) = Fix(\alpha, \mathcal{H}) = H_0$.





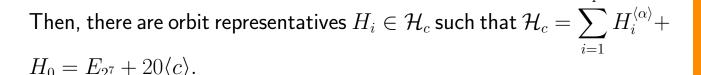
We can expand the natural epimorphism $E_{2^7} \to E_{2^7}/H_0$ to a group ring by $\varphi : \mathbb{Z}[E_{2^7}] \to \mathbb{Z}[E_{2^7}/H_0]$, where $\varphi(H_i^{\alpha^j}) = 2H_i^{\alpha^j}/H_0$, $i \in [4], j \in [5]$.



We can expand the natural epimorphism $E_{2^7} \to E_{2^7}/H_0$ to a group ring by $\varphi: \mathbb{Z}[E_{2^7}] \to \mathbb{Z}[E_{2^7}/H_0]$, where $\varphi(H_i^{\alpha^j}) = 2H_i^{\alpha^j}/H_0$, $i \in [4], j \in [5]$.

Automorphism of order 3

 $H_0 = E_{27} + 20\langle c \rangle$.



We can expand the natural epimorphism $E_{2^7} \to E_{2^7}/H_0$ to a group ring by $\varphi: \mathbb{Z}[E_{2^7}] \to \mathbb{Z}[E_{2^7}/H_0]$, where $\varphi(H_i^{\alpha^j}) = 2H_i^{\alpha^j}/H_0$, $i \in [4], j \in [5]$.

Automorphism of order 3

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 3, then $|Fix(\alpha)| \in \{1,7,31\}$.

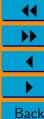
Then, there are orbit representatives $H_i \in \mathcal{H}_c$ such that $\mathcal{H}_c = \sum_{i=1}^r H_i^{\langle \alpha \rangle} + H_0 = E_{2^7} + 20 \langle c \rangle$.

We can expand the natural epimorphism $E_{2^7} \to E_{2^7}/H_0$ to a group ring by $\varphi: \mathbb{Z}[E_{2^7}] \to \mathbb{Z}[E_{2^7}/H_0]$, where $\varphi(H_i^{\alpha^j}) = 2H_i^{\alpha^j}/H_0$, $i \in [4], j \in [5]$.

Automorphism of order 3

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$, where α is of order 3, then $|Fix(\alpha)| \in \{1,7,31\}$.

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 3, where $Fix(\alpha) = \{c\}$. Then $Fix(\alpha, \mathcal{H}_c) = \{H_i\}_1^{3m}, \ m \leq 7$, and there are $A_i, \ i \in [3m], \ B_j \in \mathcal{H}_i$



$$E_{2^2}[E_{2^6}], \ j \in [7-m], \ \beta \in Aut(E_{2^6}) \ {
m of \ order} \ 3, \ {
m such \ that}$$

$$\sum_{i=1}^{3m} A_i + \sum_{j=1}^{7-m} B_j^{\langle \alpha \rangle} = E_{2^6} + 20$$

and
$$A_i^{eta}=A_i,\ B_j^{eta}
eq B_j$$

$$E_{2^2}[E_{2^6}], \ j \in [7-m], \ \beta \in Aut(E_{2^6}) \ \text{of order } 3, \ \text{such that}$$

$$\sum_{i=1}^{3m} A_i + \sum_{j=1}^{7-m} B_j^{\langle \alpha \rangle} = E_{2^6} + 20$$

and
$$A_i^eta = A_i, \,\, B_j^eta
eq B_j$$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 3 and $|Fix(\alpha)| = 7$. Then $1 + Fix(\alpha) \in \mathcal{H}$.

 $E_{2^2}[E_{2^6}], j \in [7-m], \beta \in Aut(E_{2^6}) \text{ of order } 3, \text{ such that }$

$$\sum_{i=1}^{3m} A_i + \sum_{j=1}^{7-m} B_j^{\langle \alpha \rangle} = E_{2^6} + 20$$

and $A_i^eta = A_i, \,\, B_j^eta
eq B_j$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 3 and $|Fix(\alpha)| = 7$. Then $1 + Fix(\alpha) \in \mathcal{H}$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 3, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Back

 $E_{2^2}[E_{2^6}], j \in [7-m], \beta \in Aut(E_{2^6}) \text{ of order } 3, \text{ such that }$

$$\sum_{i=1}^{3m} A_i + \sum_{j=1}^{7-m} B_j^{\langle \alpha \rangle} = E_{2^6} + 20$$

and $A_i^eta = A_i, \,\, B_j^eta
eq B_j$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 3 and $|Fix(\alpha)| = 7$. Then $1 + Fix(\alpha) \in \mathcal{H}$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 3, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 4

 $E_{2^2}[E_{2^6}], j \in [7-m], \beta \in Aut(E_{2^6}) \text{ of order } 3, \text{ such that }$

$$\sum_{i=1}^{3m} A_i + \sum_{j=1}^{7-m} B_j^{\langle \alpha \rangle} = E_{2^6} + 20$$

and $A_i^eta = A_i, \ B_j^eta
eq B_j$

Lemma: Let $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ be of order 3 and $|Fix(\alpha)| = 7$. Then $1 + Fix(\alpha) \in \mathcal{H}$.

Theorem: If $\alpha \in Aut(E_{2^7})$ is of order 3, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Automorphism of order 4

Lemma: Let $\beta \in Aut(E_{2^n})$ be of order 2. Let $F = 1 + Fix(\beta)$. Then $|F| \geq 2^{n/2}$.

Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H} .

Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H} .

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H} .

Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H} .

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H} .

Lemma: If $\alpha \in Aut(\mathcal{H})$ is of order 2, then $|Fix(\alpha)| = 15$.

Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H} .

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H} .

Lemma: If $\alpha \in Aut(\mathcal{H})$ is of order 2, then $|Fix(\alpha)| = 15$.

Lemma: Let $\alpha \in Aut(\mathcal{H})$ is of order 4. Then there are 28 α -orbits on E_{2^7} of a size 4. Furthermore, $Fix(\alpha^2) = Fix(\alpha) + \sum_{i=1}^{a_2} x_i^{\langle \alpha \rangle}$, where a_2 is the number of α -orbits on E_{2^7} of a size 2.

Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H} .

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H} .

Lemma: If $\alpha \in Aut(\mathcal{H})$ is of order 2, then $|Fix(\alpha)| = 15$.

Lemma: Let $\alpha \in Aut(\mathcal{H})$ is of order 4. Then there are 28 α -orbits on E_{2^7} of a size 4. Furthermore, $Fix(\alpha^2) = Fix(\alpha) + \sum_{i=1}^{a_2} x_i^{\langle \alpha \rangle}$, where a_2 is the number of α -orbits on E_{2^7} of a size 2.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \leq 2^3$ i.e. k = 4 is not possible.

Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H} .

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H} .

Lemma: If $\alpha \in Aut(\mathcal{H})$ is of order 2, then $|Fix(\alpha)| = 15$.

Lemma: Let $\alpha \in Aut(\mathcal{H})$ is of order 4. Then there are 28 α -orbits on E_{2^7} of a size 4. Furthermore, $Fix(\alpha^2) = Fix(\alpha) + \sum_{i=1}^{a_2} x_i^{\langle \alpha \rangle}$, where a_2 is the number of α -orbits on E_{2^7} of a size 2.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \leq 2^3$ i.e. k = 4 is not possible.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \geq 2^2$, i.e. k = 1 is not possible.

Back

Lemma: An automorphism of order 2 with 31 fixed point can't act on \mathcal{H} .

Lemma: An automorphism of order 2 with 63 fixed point can't act on \mathcal{H} .

Lemma: If $\alpha \in Aut(\mathcal{H})$ is of order 2, then $|Fix(\alpha)| = 15$.

Lemma: Let $\alpha \in Aut(\mathcal{H})$ is of order 4. Then there are 28 α -orbits on E_{2^7} of a size 4. Furthermore, $Fix(\alpha^2) = Fix(\alpha) + \sum_{i=1}^{a_2} x_i^{\langle \alpha \rangle}$, where a_2 is the number of α -orbits on E_{2^7} of a size 2.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \leq 2^3$ i.e. k = 4 is not possible.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \geq 2^2$, i.e. k = 1 is not possible.

Back

Back

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^3$, i.e. k = 3 is not possible.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^3$, i.e. k = 3 is not possible.

Theorem: If $\alpha \in Aut(E_{2^7})$ and $o(\alpha) = 4$, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

Back

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^3$, i.e. k = 3 is not possible.

Theorem: If $\alpha \in Aut(E_{2^7})$ and $o(\alpha) = 4$, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

So, finally, we have proved the following:

Back

- **Lemma:** If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^2$, i.e. k=2 is not possible.
- **Lemma:** If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^3$, i.e. k = 3 is not possible.
- **Theorem:** If $\alpha \in Aut(E_{2^7})$ and $o(\alpha) = 4$, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.
- So, finally, we have proved the following:
- **Theorem:** If \mathcal{H} is a binary Fano plane, then $|Aut(\mathcal{H})| \leq 2$.

Lemma: If $\langle \alpha \rangle \hookrightarrow \mathcal{H}$ and α is of order 4, then $|1 + Fix(\alpha)| \neq 2^3$, i.e. k = 3 is not possible.

Theorem: If $\alpha \in Aut(E_{2^7})$ and $o(\alpha) = 4$, then $\langle \alpha \rangle \not\hookrightarrow \mathcal{H}$.

So, finally, we have proved the following:

Theorem: If \mathcal{H} is a binary Fano plane, then $|Aut(\mathcal{H})| \leq 2$.

Thank You!

