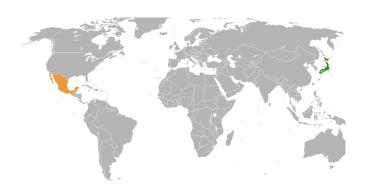
Molecular descriptors of heteratomic and multiple bonds molecules

Petra Žigert Pleteršek joint work with Brezovnik, Finšgar, Radenković, Redžepović, Tratnik

Faculty of Natural Sciences and Mathematics & Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia


Zagreb, September 2022

country	population [mil.]
Japan	125.8
Mexico	128.9

country	population [mil.]	area $[10^3\mathrm{km}^2]$
Japan	125.8	378
Mexico	128.9	1964

Source: https://en.wikipedia.org/wiki/

country	population [mil.]	$\begin{array}{c} \text{area} \\ [10^3\text{km}^2] \end{array}$	density [people per km²]
Japan	125.8	378	333
Mexico	128.9	1964	66

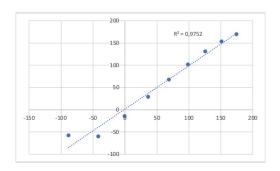
The Elder Wand

The Elder topological index

H. Wiener (1947)

The *Wiener index* is the sum of distanced between all pairs of vertices

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$


Prediction of boiling points of alkane series

$$T_B(G) = a \cdot W(G) + b \cdot p + c$$

Boiling points of alkane series

alkane	boiling point	predicted boling point
	$T_b [^{\circ}C]$	$\widehat{T}_b [{}^{\circ}C]$
ethane	-88,6	-57,3
propane	-42,1	-59,6
butane	-0,5	-13,9
pentane	36,1	28,8
hexane	68,9	67,7
heptane	98,4	102,0
octane	125,7	131,0
nonane	150,8	154,0
decane	174,1	170,1

Experimentaly determined T_b VS predicted \widehat{T}_b

Weighted graphs

$$w:V(G) o\mathbb{R}_0^+ o (G,w)$$
 vertex-weighted graph $w':E(G) o\mathbb{R}_0^+ o (G,w')$ edge-weighted graph

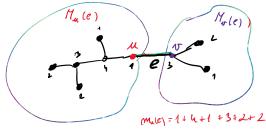
Distance based TI in vertex-weighted graphs

distance d(u, v) is the length of a shortest path between u and v

Distance based TI in vertex-weighted graphs

distance d(u, v) is the length of a shortest path between u and v

Wiener index [Klavžar, Gutman-1997]


$$W(G,w) = \sum_{\{u,v\}\subseteq V(G)} w(u)w(v)d(u,v).$$

Distance based TI of vertex-weighted graphs

$$M_{u}(e) = \{x \in V(G) \mid d(u,x) < d(v,x)\}$$

$$M_{v}(e) = \{x \in V(G) \mid d(v,x) < d(u,x)\}$$

$$m_{u}(e) = \sum_{x \in M_{u}(e)} w(x), \qquad m_{v}(e) = \sum_{x \in M_{v}(e)} w(x)$$

Distance based TI of vertex-weighted graphs

Szeged index [Gutman- 1994]

$$Sz(G, w) = \sum_{e=uv \in E(G)} m_u(e) m_v(e)$$

Degree based TI in vertex-weighted graphs

- open neighbourhood N_u is the set of vertices that are adjacent to u
- degree of a vertex u in (G, w) is the sum of weights of vertices in N(u):

$$\deg(u) = \sum_{v \in N(u)} w(v)$$

Degree based TI in vertex-weighted graphs

first Zagreb index [Gutman, Trinajstić -1997]

$$M_1(G, w) = \sum_{u \in V(G)} (\deg(u))^2$$

second Zagreb index [Gutman, Trinajstić-1997]

$$M_2(G, w) = \sum_{e=uv \in E(G)} \deg(u) \deg(v)$$

Degree based TI in vertex-weighted graphs

Randić index [Randić -1975]

$$R(G, w) = \sum_{e=uv \in E(G)} \frac{1}{\sqrt{\deg(u)\deg(v)}}$$

ABC index [Estrada et al. -1998]

$$ABC(G, w) = \sum_{e=uv \in E(G)} \sqrt{\frac{\deg(u) + \deg(v) - 2}{\deg(u) \deg(v)}}$$

Degree and distance based TI in vertex-weighted graphs

Schultz index [Schultz-1989, Dobrynin et al.-1993]

$$DD(G, w) = \sum_{\{u,v\} \subseteq V(G)} (\deg(u) + \deg(v)) d(u,v)$$

Gutman index [Gutman-1994]

$$Gut(G, w) = \sum_{\{u,v\} \subseteq V(G)} \deg(u) \deg(v) d(u,v)$$

Adjacency matrix of a vertex-weighted graph

$$A(G, w)_{ij} = \begin{cases} 1 & ; v_i v_j \in E(G, w) \\ 0 & ; v_i v_j \notin E(G, w) \\ w(v_i) & ; v_i = v_j \end{cases}$$

Adjacency matrix of a vertex-weighted graph

$$A(G, w)_{ij} = \begin{cases} 1 & ; v_i v_j \in E(G, w) \\ 0 & ; v_i v_j \notin E(G, w) \\ w(v_i) & ; v_i = v_j \end{cases}$$

$$\lambda_1, \lambda_2, \dots \lambda_n$$
 eigenvalues of $A(G, w)$

Eigenvalues based TI in vertex-weighted graphs

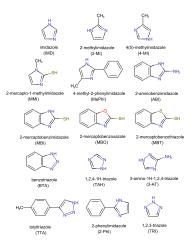
graph energy [Li, Shi, Gutman - 2012]

$$E(G, w) = \sum_{i=1}^{n} |\lambda_i|$$

Estrada index [Estrada - 2000]

$$EE(G, w) = \sum_{i=1}^{n} e^{\lambda_i}$$

Gaussian Estrada index [Estrada et al. - 2017]

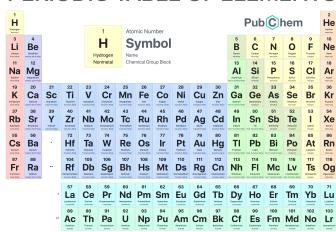

$$GEE(G, w) = \sum_{i=1}^{n} e^{-\lambda_i^2}$$

Corrosion of metals

Source: www.dynagard.info

Corrosion inhibitors

Corrosion inhibition effectiveness


$$\text{IE}\left[\%\right] = 100 \frac{\Delta m_{\text{without inhibitor}} - \Delta m_{\text{with inhibitor}}}{\Delta m_{\text{without inhibitor}}}$$

Experimentally measured IE's for 15 corrosion inhibitors

Corr.inh.	IE ₁	IE ₂	IE ₃	IE ₄	IE ₅	IE_6	IE ₇	IE ₈
IMD	2.05	11.02	2.05	24.15	-6.15	30.82	-33.94	-24.84
2-MI	-10.71	20.82	7.97	31.41	-1.14	23.37	-19.82	3.77
4-MI	-9.34	18.86	8.43	26.70	-9.34	22.20	-27.56	9.85
MMI	19.36	12.00	7.52	25.72	-18.91	29.45	-14.81	12.98
MePhI	-17.08	20.43	-0.23	24.55	-19.82	26.70	-35.76	-0.15
ABI	3.42	14.55	-3.42	28.07	0.23	28.27	-17.08	9.65
MBI	-0.68	-5.24	-23.92	13.18	-26.20	6.32	-11.16	13.38
MBO	1.59	-20.14	-7.97	18.86	-38.95	-195.74	10.25	26.51
MBT	7.52	-7.99	-23.01	-5.05	-12.98	-0.15	-34.85	-2.50
BTA	26.20	9.06	17.08	27.49	3.87	22.78	11.16	18.86
TAH	11.16	-24.64	-0.23	-16.22	-6.61	-14.45	5.69	0.44
3-AT	12.07	-7.20	-12.07	-1.91	-18.91	-7.01	-10.71	14.75
TTA	12.98	15.14	17.54	24.94	19.82	20.24	17.08	17.10
2-PhI	-10.71	16.12	-6.61	22.59	-13.44	30.03	-12.98	-20.33
TRI	-1.59	-26.21	-36.22	-61.10	-44.42	-69.33	-48.06	-88.93

Periodic table

PERIODIC TABLE OF ELEMENTS

4 models of vertex-weighted molecular graphs

Atom	Model 1	Model 2	Model 3	Model 4
Carbon	1	1	6	1
N itrogen	1	7	7	7/6
O xygen	1	8	8	4/3
Sulfur	1	16	16	8/3

Data

- 15 corrosion inhibitors
- 8 types of corrosion inhibition effectiveness obtained experimentally
- 4 models for determination of weights of vertices in (G, w)
- 8 topological indices

Tools for calculations

• Input: (weighted) adjacency matrices for 15 molecules

Tools for calculations

- Input: (weighted) adjacency matrices for 15 molecules
- topological indices are calculated by programming in Sage

Tools for calculations

- Input: (weighted) adjacency matrices for 15 molecules
- topological indices are calculated by programming in Sage
- regression analysis is done in programme R

Best results

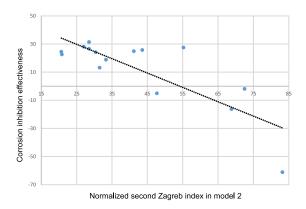


Figure: The linear regression between M_2^2/n and ${\rm IE}_4$, R=-0.81.

Best results

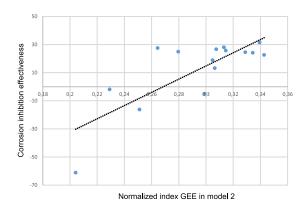
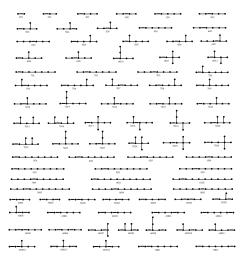


Figure: The linear regression between GEE^2/n and IE_4 , R=0.78.

Multiple bonds molecules

edge-weighted graphs (G, w')

Wiener index of (G, w')

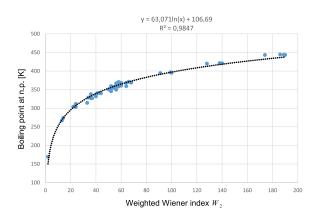

Wiener index of (G, w') [Klavžar, Nadjafi-Aranni - 2013]

$$W(G, w') = \sum_{\{u,v\} \subseteq V(G)} d_{(G,w')}(u,v)$$

shortest path P between u and v of (G, w') is a path with the minimum weight w'(P) among all possible paths between u and v:

$$d_{(G,w')}(u,v)=w'(P)$$

Molecules-alkenes and alkadienes


What is the weight of double-bond?

1, 2,
$$\frac{1}{2}$$
 or actual bond length

Bonds lengths

Bond Type	Bond Length	Relative Distance
$sp^3 - sp^3$	1.544	1.000
$sp^3 - sp^2$	1.501	0.972
$sp^2 - sp^2$	1.483	0.960
$sp^2 - sp^2 + \pi$	1.339	0.867
$sp^2 - sp + \pi$	1.309	0.848

Wiener index of alkenes with w(e) = 2

Wiener index of alkadienes with w(e) = 2

Motivation
Topological indices of weighted graphs
Corrosion inhibition effectiveness
Wiener index of alkenes and alkadienes

THE END...thanks