
Tomislav Došlić, Ivica Martinjak (Eds.)

Proceedings
of the

1st Croatian Combinatorial Days

Zagreb, September 29 – 30, 2016

Faculty of Civil Engineering, University of Zagreb



CroCoDays – 1st Croatian Combinatorial Days,

Zagreb, September 29 – 30, 2016

Editors: Tomislav Došlić, Ivica Martinjak
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Preface

The idea of organizing a gathering of Croatian combinatorialists and discrete mathe-
maticians had been around for several years. We finally decided to give it a try at the
margins of the 6th Croatian Mathematical Congress in June of 2016, when we agreed that
a rather informal and unpretentious meeting could be organized by the end of September
of 2016. The intended informal and relaxed character of the gathering was signalled by
the choice of CroCoDays as its working title.

In spite of being organized on a short notice and on a shoestring budget, the meeting
succeeded over all expectations. It was attended by over forty participants representing
institutions from five countries, and twenty five participants gave oral presentations of
their work. We are particularly glad that, besides senior scientists, the meeting also
attracted several undergraduate and graduate students, whose participation was made
in part possible by a generous subsidy from the Faculty of Civil Engineering.

At first we have not planned publishing the proceedings of our meeting. However,
motivated by wide scope and good quality of the talks, we have approached several
speakers asking them to write their contributions and submit them for a refereeing
process. The present volume is the result. It took us more time and effort than we
expected, but we do not regret the decision to publish it. We hope that it will remind
the participants on the first CroCoDays and motivate them (and also other readers) to
plan attending the next meeting(s).

We thank to all participants of the 1st CroCoDays and to all contributors to this
volume. We also thank the reviewers for their help. Particular thanks go to the Faculty
of Civil Engineering for providing logistic and financial support for both the meeting
and this publication.

Zagreb, November 2017 Tomislav Došlić

Ivica Martinjak
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On certain families of planar patterns and fractals

Ligia L. Cristea

Karl-Franzens-Universität Graz
Institut für Mathematik und Wissenschaftliches Rechnen

Heinrichstrasse 36, 8010 Graz, Austria
strublistea@gmail.com

December 8, 2017

This paper is dedicated to Professor Robert F. Tichy on the occasion of his
60 th anniversary.

Abstract

This survey article is dedicated to some families of fractals that were introduced
and studied during the last decade, more precisely, families of Sierpiński carpets:
limit net sets, generalised Sierpiński carpets and labyrinth fractals. We give a
unifying approach of these fractals and several of their topological and geometrical
properties, by using the framework of planar patterns.

Keywords: fractal, Sierpiński carpet, pattern, graph, connectedness, den-
drite, path length, arc length

MSC: 28A80, 05C38, 28A75, 51M25, 54D05, 54F50

1.1 Introduction

Sierpiński carpets are self-similar fractals in the plane that originate from the classical
Sierpiński carpet [27, 41]. Sierpiński carpets are constructed by dividing the unit square
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L. L. Cristea On certain families of planar patterns and fractals

into m×m congruent smaller subsquares of which m0 squares are cut out together with
their boundary, and then taking the closure. The resulting pattern is the generator of the
Sierpiński carpet. At each step of the iterative construction this procedure is applied to
all remaining squares, and, repeating this construction ad infinitum, the resulting object

is a fractal of Hausdorff dimension log(m2−m0)
log(m) , called a Sierpiński carpet [20]. Figure 5

shows the first two steps of the iterative construction of a Sierpiński carpet.

These fractals can also be defined as attractors of IFS (for Iterated Functions Sys-
tems we refer, e.g., to the books of Falconer [18, 19] and Barnsley [3, 4]), and occur in
several branches of mathematics. In particular, their geometric and topological proper-
ties gained a lot of interest, see, e.g., Whyburn [43], Curtis and Fort [16], McMullen [31],
Bandt and Mubarak [1], Lau et al. [25]. During the last decades Sierpiński carpets have
been used, e.g., as models for porous materials [20, 42].

Limit net sets, generalised Sierpiński carpets and labyrinth fractals are families of
Sierpiński carpets that were introduced and studied by Cristea and Steinsky [8, 9, 10, 12,
13] and some of the results were extended in recent research [14, 15] to even more general
fractal objects called mixed labyrinth fractals. Studying these objects is of interest not
just for mathematics, but also for research in physics, where some of the results have
already been used, e.g., [36, 22, 37].

In this paper we present results on topological and geometrical properties that were
obtained for the three families of Sierpiński carpets mentioned above, such as connect-
edness or lengths of arcs in these fractals, everything being done under a combinatorial
frame, where the combinatorial character of the problems comes from the combinatorics
of the generator(s) of the carpet: the pattern(s).

Although originally net sets and limit net sets were defined and constructed by means
of net matrices [8], and the labyrinth fractals by using labyrinth sets [12, 13], throughout
this paper we give a unifying approach of all the families of carpets mentioned above
by means of patterns, as it was done in the case of the generalised Sierpiński carpets
that were studied [9, 10] after the other mentioned carpets, and in more recent work, for
mixed labyrinth fractals [14, 15].

Graph directed constructions, see, e.g., [29], GDMS (Graph Directed Markov Sys-
tems, see, e.g., [30]), and random fractals [17, 28] also offer frameworks for studying the
objects that occur along this paper. Finally, we mention that there are recent results
and ongoing research on V -variable fractals, see e.g. [21], and several of the fractals
studied and mentioned in this section can be approached within the frame of V -variable
fractals. For V -variable fractals and super-fractals we also refer to Barnsley’s book [4].

Let us now give a short outline of the paper. In Section 1.2 we define planar patterns
and the graph associated to a planar pattern. Section 1.3 is dedicated to net sets and
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limit net sets. In Section 1.4 we briefly present recent research on generalised Sierpiński
carpets. Section 1.5 deals with results about self-similar and mixed labyrinth fractals
and also refers to very recent results. Finally, Section 1.6 is dedicated to conclusions and
final remarks of the survey.

1.2 Planar patterns and Sierpiński carpets

First, let us recall the definition of a pattern, as it is given in some of the above
mentioned papers [9, 10]. Let x, y, q ∈ [0, 1] such that Q = [x, x + q] × [y, y + q] ⊆
[0, 1]×[0, 1]. Then for any point (zx, zy) ∈ [0, 1]×[0, 1] we define the function PQ(zx, zy) =
(qzx + x, qzy + y).

Let m ≥ 1. For the integers i, j with 0 ≤ i, j ≤ m − 1, let Sm
i,j = {(x, y) | i

m ≤ x ≤
i+1
m and j

m ≤ y ≤ j+1
m }, and Sm = {Sm

i,j | 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ m − 1}. We call
any nonempty A ⊆ Sm an m×m pattern or, in short, m-pattern.

Figure 1: Three patterns, A1 (a 4-pattern), A2 (a 5-pattern) and A3 (a 5-
pattern)

In Figure 1 we show three such patterns that are in particular also labyrinth pat-
terns, which we define in Section 1.5. We mention that throughout this paper we think
of the black regions in the figures as being “cut out” at the corresponding step, and
subsequently the closure (with respect to the topology induced by the Euclidean metric
in the plane) of the remainder set is taken.

All families of fractals that we present in this paper can be constructed by means of
patterns, and in each case we use an iterative construction, analogous to that described
in Section 1.1 for a Sierpiński carpet.

For any pattern A ⊆ Sm, we define the graph G(A) ≡ (V(G(A)), E(G(A))) to be
the graph of A, i.e., the graph whose vertices are the (closed) white squares in A, i.e.,
V(G(A)) = A and whose set of edges E(G(A)) consists of the unordered pairs of white
squares, that share a common side.
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Figure 2: A 5-pattern A on the left, and the pattern with its corresponding
graph G(A) on the right

1.3 Limit net sets

Net set and limit net set are new concepts developed in [8], based, on the one hand,
on the observation that various porous materials present holes that at each scale are
“evenly” distributed, and, on the other hand, on the distribution properties of (t,m, s)-
nets, that are well distributed point sets in the unit cube, for more details see [33].

Originally, the net sets were defined [8] with the help of net matrices, that are 4× 4
matrices having all entries from the set {0, 1}. Here we give a (shorter) equivalent
definition of the net sets, that is appropriate for the framework of the present paper.
We call a 4 × 4 pattern a net pattern if each of the four columns and each of the four
rows (each containing four squares) contains exactly one black square, and inside each
of the four subsquares of side-length 1

2 of the unit square that share one vertex with the
unit square there lies exactly one of the black squares mentioned above. There exist 16
such net patterns, four of them are shown in Figure 3, the other 12 can be obtained by
flipping or rotating these. The union of all (closed) white squares in a given net pattern
is the corresponding net set of level 0.

Figure 3: Examples of net patterns

The iterative construction of a sequence of nested sets (net sets of level 1, 2, . . . ) is
analogous to that described in the introduction of Section 1.1 for the Sierpiński carpets,
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but there is one essential difference: each white square of some level can be replaced, by
a so-called net substitution, by any net set of level 0 scaled correspondingly, such that
different white squares can be replaced by different net sets.

We call a net substitution uniform if all white squares of a net set of some level are
substituted by the same scaled net set. Correspondingly, a net set of some level k ≥ 1
is uniform if at each step of its construction a uniform net substitution (not necessarily
the same) was applied.

Thus, by starting with a net pattern and the corresponding net set E0 of level 0,
one obtains, by applying net substitutions, a decreasing sequence of net sets E0 ⊃ E1 ⊃
. . . Ek−1 ⊃ Ek ⊃ . . . .

The fractal E∞ :=
⋂

k≥0Ek obtained as the limit set of this construction is called
the limit net set of the sequence {Ek}k≥0 and can be viewed as the limit set of a Moran

construction [32, 35, 28] with Hausdorff and box-counting dimension 1 + log 3
log 4 .

If at each step of the construction we apply a uniform net substitution, not necessarily
the same, then the sets Ek of the above sequence are called uniform net sets, and E∞ is
called a uniform limit net set. A totally uniform net set is obtained if all substitutions
use the same pattern, i.e., we apply the same net substitution at all steps, for all white
squares. In this case the obtained limit net set is self-similar: it is a Sierpiński carpet
(as defined in the introduction).

When studying connectedness properties of net sets and limit net sets, it is essential
to identify two types of patterns: connected and disconnected net patterns. In terms of
the graph of the pattern a connected net pattern is a pattern whose graph is connected.
Otherwise, the net pattern is called disconnected.

Among other, it was proven that connected net patterns (or, originally, connected
net matrices [8]) always produce connected limit net sets. For example, in Figure 3, the
first, second and fourth net pattern are connected, while the third is a disconnected net
pattern.

Criteria for different “degrees” of connectedness of these fractals have been proven.
There are four different possible connectedness “degrees” for limit net sets: net-
connectedness (a notion introduced in [8]), connectedness, disconnectedness and total
disconnectedness [8]. It was shown how the connectedness or disconnectedness of the
net patterns involved in the iterative construction affects the connectedness “degree”
of the resulting fractal. Necessary and sufficient conditions for the net-connectedness
of the fractal were proven, as well as necessary and sufficient conditions for the total
disconnectedness of the fractals, necessary and sufficient conditions for a uniform limit
net set to be connected, but not totally disconnected, or connected (in the Euclidean
sense), but not net-connected.
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Moreover, an analogon of fractal percolation in the unit cube (see, e.g., [27, 18, 17]),
called net percolation, has been introduced, and a sufficient condition for net percolation
was proven [8].

The results obtained for limit net sets provide methods for the construction of ran-
dom fractals with a certain type of “well distributed” structure (holes) by using net
patterns/net matrices, but also for constructing percolating fractal sets and sets that
have certain connectedness properties.

Later on this idea of identifying families of patterns according to their shape was
used [10] in the study of the generalised Sierpiński carpets to which the next section is
dedicated.

1.4 Generalised Sierpiński carpets

Generalized Sierpiński carpets are planar sets in the unit square that were introduced
and studied in [9, 10]. These sets generalise the Sierpiński carpets mentioned in the
introduction. They differ in several aspects from a Sierpiński carpet defined as above:
on the one hand, instead of using a single generating pattern, here we use a sequence
of patterns in order to construct the generalised carpet, on the other hand, at any step
k of the construction, a mk × mk pattern is used, where mk ≥ 2, for all k ≥ 1, and,
moreover, at any two steps k1 6= k2 we may have distinct patterns, with mk1 6= mk2 .
Thus, generalised Sierpiński carpets are in general not self-similar. With the notations
from Section 1.2 we introduce the following notions.

Let {Ak}∞k=1 be a sequence of non-empty patterns and {mk}∞k=1 be the corresponding
width-sequence, i.e., for all k ≥ 1 we have Ak ⊆ Smk

. We let W1 = A1, and call it the
set of white squares of level 1. For n ≥ 2 we define the set of white squares of level n by

Wn =
⋃

W∈An,Wn−1∈Wn−1

{PWn−1(W )}.

By defining three types of graphs associated to the patterns that generate the gener-
alised Sierpiński carpets, necessary and sufficient conditions for the connectedness (with
respect to the usual topology of the Euclidean plane) of these objects were proven [9].

A different approach, namely identifying certain families of patterns, was used [10] in
order to study the structure of the sets obtained at the nth iteration in the construction
of a generalised carpet, for n ≥ 1, and it was shown that certain families of patterns
provide total disconnectedness of the resulting fractals. Moreover, analogous results hold
even in a more general setting [10]. This approach of the carpets provides the possibility
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Figure 4: The set W2, constructed based on the patterns A1 and A2 shown in
Figure 1, that can also be viewed as a 20-pattern

to construct disconnected carpets of box-counting dimension less than or even equal to
2, as it is shown in an example in the more extended arXiv-version [11] of the published
paper [10].

The results on connected generalised carpets [9] and on distances between points
on the “classical” s-dimensional carpet [7] were extended in more recent work by Hoff-
mann [23]: analogues of the generalised Sierpiński carpets mentioned above, called gen-
eralised Sierpiński hypercubes, were defined and studied, and it has been shown that
these sets are uniformly regular, i.e., the geodesic metric is comparable to the Euclidean
metric. We also mention that in previous work, several authors [2, 6, 24, 31, 34] studied
objects called general Sierpiński carpets with respect to dimension and Hausdorff mea-
sure using rectangles instead of squares in the definition. While some of these carpets
are self-affine, those defined by Barański [2] are not self-affine.

More recently, geometrical and topological properties of fractal squares, which are
self-similar Sierpiński carpets as defined in the introduction, were studied [25, 39]. We
note that the self-similar version of the limit net sets mentioned in Section 1.3 and the
labyrinth fractals mentioned in Section 1.5 are fractal squares. Lau, Luo, and Rao [25]
study the topological structure of a fractal square by studying the connected components.
Moreover, recently there is considerable interest to study the Lipschitz equivalence of
Cantor sets and of totally disconnected fractal squares, e.g., [26, 38].

In more recent work [14] dedicated to mixed labyrinth fractals, Steinsky and Cristea
gave an other sufficient condition for the total disconnectedness of certain classes of
generalised Sierpiński carpets, that occur in relation labyrinth fractals that we present
in Section 1.5.

We note the combinatorics-flavoured approach of carpets by identifying special fami-
lies among the generating patterns that provide certain properties, which was inspired by

7
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the results that were obtained for limit net sets, that is different from the approaches of
other authors who have studied similar objects. On the other hand, Cristea and Steinsky
used graphs a lot as a tool in order to characterise some properties of the patterns or of
the prefractals obtained at some (finite) steps of the iterative construction of generalised
Sierpiński carpets [9] or other carpets [12, 13, 14], and graphs were also used by other
authors, e.g., when dealing with fractal squares [25].

1.5 Labyrinth fractals

An other new family of (self-similar) fractals, called labyrinth fractals, were intro-
duced and studied during the last decade [12, 13]. These fractal objects are (self-similar)
dendrites and a special case of the Sierpiński carpets mentioned at the beginning of Sec-
tion 1.1. First, self similar labyrinth fractals generated by a 4×4 labyrinth pattern were
studied [12]. Originally, such a generator was called “labyrinth set” [12], not “labyrinth
pattern”, as used in later work on mixed labyrinth fractals [14, 15]. Subsequently, by
proving several quite technical lemmas and theorems, the results were extended [13] to
the case of self-similar labyrinth fractals generated by m×m labyrinth patterns, for any
m ≥ 5.

Figure 5: A 4× 4 labyrinth pattern and the corresponding labyrinth set of level
2 (that can also be viewed as a 16× 16 labyrinth pattern)

To the m×m pattern that generates a labyrinth fractal we associate the set of W1

of its (closed) white squares and call it the set of white squares of level 1 or labyrinth
set of level 1, and we define L1 = ∪W∈W1. By the iterative construction described in
Section 1.1 we then obtain the sequence {Wn}n≥1, with Wn ⊂ Smn , and the decreasing
sequence of compact sets {Ln}n≥1.

A top exit in Wn is a white square in the top row of Wn, such that there is also a
white square in the same column in the bottom row. The bottom exit, left exit, and right
exit are defined analogously.

8
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A non-empty m-pattern A ⊆ Sm, m ≥ 3 is called a m × m-labyrinth pattern (in
short, labyrinth pattern) if A satisfies satisfies the following three properties:

(1) G(Wn) is a tree;

(2) exactly one top exit in Wn lies in the top row (of order n), exactly one bottom
exit lies in the bottom row, exactly one left exit lies in the left column, and exactly one
right exit lies in the right column;

(3) if there is a white square in Wn at a corner of Wn, then there is no white square
in Wn at the diagonally opposite corner of Wn.

We note that the graph G(A) introduced in Section 1.2 can also be defined in the
case A = Wn, n ≥ 1. These graphs play an important role throughout the study of
labyrinth sets and labyrinth fractals.

For any labyrinth pattern A and any integer n ≥ 1, the labyrinth set (of level n) Wn

has the above properties (1) - (3) of a labyrinth pattern [12].

The limit set L∞ of the decreasing sequence of compact sets {Ln}n≥1 is called a
labyrinth fractal. Every labyrinth fractal has four exits. The top exit of L∞ lies on the
top edge of the unit square and is the intersection (point) ∩∞

n=1Tn, where Tn is the top
exit in Wn, for all n ≥ 1. The bottom exit, the left and the right exit of L∞ are defined
analogously and lie correspondingly on the other edges of the unit square.

We say that an m × m-labyrinth pattern A is horizontally blocked if the row (of
squares) from the left to the right exit of A contains at least one black square, and it
is called vertically blocked if the column (of squares) from the top to the bottom exit
contains at least one black square. We remark that in Figure 1 the first two labyrinth
patterns are both horizontally and vertically blocked, and the third pattern is neither
horizontally, nor vertically blocked, while the 4 × 4 pattern shown in Figure 5 is both
vertically and horizontally blocked. For more examples we refer to [12, 13, 14, 15].

Both topological and geometrical properties and aspects of the labyrinth sets and
fractals were studied. It was proven that any self-similar labyrinth fractal L∞ is a
dendrite, i.e., a locally connected continuum that contains no simple closed curve [12, 13].

Subsequently, the arcs in L∞ that connect exits of the fractal were studied, with
emphasis on their length. In order to obtain results for the lengths of such arcs, we
studied the lengths of paths in the tree G(Wn) between exits in Wn. Therefore, the
path matrix M of the labyrinth set W1 was introduced, which is a 6 × 6 matrix where
each entry represents the number of a certain type of squares in one of the 6 paths in
G(W1) between two exits of W1. (For more details on the possible 6 types of squares
in a path in G(W1) see, e.g., [12].) The path matrix plays an essential role and is a
powerful instrument when dealing with lengths of paths in G(Wn) and with lengths of
arcs between exits in L∞. Moreover, this matrix actually is the matrix of a substitution.
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In order to prove the obtained results, several known theorems from different areas
of mathematics were used: the Perron-Frobenius Theorem, the Hahn-Mazurkiewicz-
Sierpiński Theorem (that characterises local connectedness), the Jordan Curve Theorem,
and a labyrinth version of the Steinhaus Chessboard Theorem, proven in [12].

It was essential to establish [12, 13] a recursion and prove that the n-th power Mn

of the path matrix gives information about the lengths of paths in G(Wn). Moreover,
it was shown that the path matrix of a m ×m- labyrinth pattern (or set) is primitive
if and only if the pattern (set) is horizontally and vertically blocked. Then, the Perron-
Frobenius Theorem for primitive matrices was used, see e.g. [40, Theorem 1.1, p.3], in
order to obtain the asymptotics of the path lengths in G(Wn) as n tends to infinity. This
subsequently lead to results about the lengths of arcs in the labyrinth fractals generated
by both horizontally and vertically blocked labyrinth patterns. In the case of m ×m-
patterns with m ≥ 5, not just the path matrix mentioned above, but also use a second
matrix, the reduced path matrix, was used in order to prove the infinite length of arcs
in the fractal [13].

The main results on labyrinth fractals, both in the case when the fractal is generated
by a 4 × 4 pattern and in the case when the generating pattern is m×m, with m ≥ 5,
are contained in the following theorem [12, 13].

Theorem. If L∞ is the labyrinth fractal generated by a horizontally and vertically
blocked m × m-labyrinth pattern (m ≥ 4) with path matrix M , and r is the spectral
radius of M , then between any two points in L∞ there is a unique arc a, the length
of a is infinite, and the set of all points, at which no tangent to a exists, is dense in
a. Moreover, if a is an arc between two distinct points in L∞ then its box-counting

dimension is dimB(a) =
log(r)
log(m) .

The case when the labyrinth fractal is generated by a 4× 4-pattern that is blocked only
in one direction (e.g., only horizontally, but not vertically blocked) is also interesting:
we have proven that then there exist both arcs of finite length and arcs of infinite length
in the fractal. Moreover, in this case the box-counting dimension of every arc is 1, while
in the case of a labyrinth fractal generated by a both horizontally and vertically blocked
pattern the dimension of such arcs is always strictly greater than 1. For more details we
refer to [12].

Mixed labyrinth fractals were defined and studied later [14], as a generalisation of the
self-similar labyrinth fractals mentioned above. Here, the construction is analogous to
that of the generalised Sierpiński carpets mentioned in Section 1.4, with the difference
that all patterns that occur throughout the construction are labyrinth patterns. In other
words, mixed labyrinth fractals are a special case of generalised Sierpiński carpets. As

10
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an example, Figure 4 shows the labyrinth set of level 2, W2, generated by the patterns
A1 and A2 from Figure 1.

Mixed labyrinth fractals are, like the self-similar labyrinth fractals mentioned above,
dendrites [14], but here things get more complicated when studying lengths of paths
in the graphs of mixed labyrinth sets of some level, and a lot more complicated when
studying lengths of arcs in the fractal. The methods used in the self-similar case, based
on the path matrix, can only be applied up to a certain point in the reasoning. This is
due to the fact that in the self similar case the path matrix of a labyrinth set of level n is
just Mn, where M is the path matrix of the generating pattern, while in the mixed case
it is M1 ·M2 ·Mn, whereMk is the path matrix of the pattern Ak, for k = 1, . . . , n. Since
there are no restrictions regarding the labyrinth patterns that occur in the generating
sequence {Ak}k≥1, the methods used in the self-similar case in order to establish results
on the asymptotical behavior of the path matrix associated to the labyrinth set of level
n, for n → ∞, cannot be applied here anymore, as soon as the sequence contains more
than one pattern (unless the sequence is periodic, which is in general not the case).
Moreover, there are also other properties that get lost when we give up self-similarity,
e.g., in the case of mixed labyrinth fractals it is possible that an exit of the fractal lies,
for some n ≥ 1, in more than one white square of level n of Wn, while in the self-similar
case each exit lies in a unique such white square of level n.

In a recently published paper [15] in was shown, that in the case of a mixed labyrinth
fractal the theorem stated above does not hold. More precisely, one can prove the fol-
lowing two results.
Theorem. There exist sequences {Ak}∞k=1 of (both horizontally and vertically) blocked
labyrinth patterns, such that the limit set L∞ has the property that for any two points
in L∞ the length of the arc a ⊂ L∞ that connects them is finite. For almost all points
x0 ∈ a (with respect to the length) there exists the tangent at x0 to the arc a.

Proposition. There exist sequences {Ak}∞k=1 of (both horizontally and vertically)
blocked labyrinth patterns, such that the limit set L∞ has the property that for any two
points in L∞ the length of the arc a ⊂ L∞ that connects them is infinite.

These results were proven by using a special family of labyrinth patterns, which we
called “special cross patterns”. An example of such a pattern is shown in Figure 6.

Here, the idea was to approximate the arcs that connect exits in the labyrinth fractal
by special curves, which are related to the patterns used in the construction. For more
details we refer to the paper [15]. Analogously to the self-similar case, by chosing suitable
labyrinth patterns that are blocked in only one direction (e.g., horizontally but not
vertically blocked), one can construct also in the mixed case labyrinth fractals where
both arcs of finite length and arcs of infinite length exist between their points.

11
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Figure 6: An example: a special cross pattern with width 11

Figure 7: Examples: two wild labyrinth patterns, both vertically and horizon-
tally blocked

The following conjecture was formulated [15]:
Conjecture. A sequence of both horizontally and vertically blocked labyrinth patterns
with the property that the sequence of widths {mk}k≥1 is bounded, generates a mixed
labyrinth fractal with the property that for any x, y ∈ L∞ the length of the arc in the
fractal that connects x and y is infinite.

Finally, let us mention that in [14] it is also shown how, by relaxing the conditions
imposed on the labyrinth patterns in order to construct wild labyrinth patterns and,
correspondingly, (self-similar or mixed) wild labyrinth fractals, several properties of the
labyrinth sets and fractals change, and in general the path matrices can not be used
anymore in order to provide reliable information and results about the paths in the
graphs of the labyrinth sets G(Wn), for n ≥ 2 or the lengths of arcs in the fractal.
Figure 7 shows two wild labyrinth patterns. The first one has more than one horizontal
exit pair, and the graph of the second one is only connected, but not a tree. Moreover,
the connected net patterns mentioned in Section 1.3 are in particular 4×4 wild labyrinth
patterns.

12
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1.6 Conclusions

Although the fractals presented in this paper, limit net sets, generalised Sierpiński
carpets and labyrinth fractals, can also be studied by using other approaches than the
one used here, e.g., under the framework of IFS, graph-directed constructions, GDMS,
random fractals or V -variable fractals, here we chose this unifying and rather combina-
torial approach based on planar patterns. The motivation of this fact is that, in our
opinion, this is a way to bring them closer to other sciences, to specialists from other
fields, to a wider audience in general, since the notion of “pattern” is very intuitive,
wide-spread (even in every day life) and somehow basic for the understanding. More-
over, as it follows from the cited papers, patterns are sufficient in order to construct and
study these new, special families of fractals with remarkable properties.

The idea is that in this approach mainly by identifying families of patterns or a few
properties of the patterns that are easy to check, one can generate fractals of prefractals
with desired topological or geometrical properties (like types or degrees of connectedness,
or lengths of arcs between points in the fractal), or, in addition, with desired fractal
dimension.

It is important to add here that physicists use fractals like those mentioned above
as models in different areas, e.g, for the study of materials or of diffusion in porous
matter [20, 42, 36], planar nanostructures [22], or even for the construction of new, more
performant devices (e.g. radar antennas) [37].

In this context it is worth to remark that, while the mathematicians focus mainly
on the fractal, i.e., on the objects obtained as the limit of the iterative construction, the
physicists are usually more interested in some prefractal obtained after a high enough
number of iterations. In other words, while the mathematicians are mainly interested
in what happens in the infinite, in the limit, the physicists are interested in what is
obtained at a finite step that approximates the limit well enough, or where the scale is
fine enough, but not infinitely fine. Let us give an example. From the point of view
of research in physics, the properties (1) and (2) of labyrinth patterns are essential,
and they are sufficient, since the property (3) of labyrinth patterns only plays a role in
the limit, when dealing with the resulting labyrinth fractal: the fact that the resulting
labyrinth fractal is a dendrite played an essential role when proving some of the other
results, e.g., those on the length of arcs in the fractal.

Finally, let us mention that due to the interesting properties of limit net sets, gener-
alised Sierpiński carpets and labyrinth fractals, at the moment this research is continued
on new families of fractals, that are further generalisations of the objects mentioned
here: there is a lot of magic and still a lot to discover in this field.
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Abstract

A secondary structure is a (planar, labeled) graph on the vertex set [n] having
two kind of edges: the segments [i, i + 1], for 1 ≤ i ≤ n − 1, and arcs in the
upper half-plane connecting some vertices i, j, where j − i > l, for some fixed
integer l. Any two arcs must be totally disjoint. We establish connections between
secondary structures and some well known combinatorial families, such as lattice
paths, matchings and restricted permutations. Then we give some applications and
connections with polygon dissections and polyominoes, using earlier enumerative
results on secondary structures to provide explicit formulas and asymptotics for
enumerating sequences of those families.
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1.1 Introduction

Many interesting and important molecules belong to the class of linear polymers.
That means they are long chains built from simpler building blocks called monomers.
For example, proteins are chains of amino-acids. DNA molecules are linear polymers
too, as well as closely related molecules of RNA. They together make the class of nucleic
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acids, and their building blocks are called nucleotides. The nucleic acids are essential
for coding, transferring and retrieving genetic information, and also in directing cell
metabolism. In this paper we will look at RNA molecules.

RNA molecules are single-stranded and their nucleotides belong to one of four types.
Those four type of nucleotides differ by only one part, called base. There are four
different types of bases, denoted by letters A, C, G, and U. As we are not interested in
details of their structure, we usually identify nucleotides with bases and use the same
four letters for denoting nucleotides.

Nucleotides are polar molecules with two differing ends, usually denoted by 5’ and
3’. The 5’ end of one nucleotide readily binds to the 3’ end of another nucleotide by a
phosphorus bond (or a p-bond). In that way, nucleotides form chains in which each of
them (except the two terminal ones) is connected to exactly two neighbors via p-bonds.
Those p-bonds form the backbone of the molecule. The sequence of nucleotides (or
bases), read from the terminal nucleotide with free 5’ end, is the primary structure
of the molecule. The total number of all possible primary structures of a molecule with
n nucleotides is equal to 4n.

However, certain pairs of bases, such as C and G, A and U, and G and U, have an
affinity to each other that enables them to bind via hydrogen bonds or h-bonds. Those
bonds, when formed, cause folding of the molecular backbone into three-dimensional
configurations that minimize potential energy. Some of the folded configurations remain
planar; they are called secondary structures of an RNA molecule. Non-planar foldings
are called tertiary structures. Both secondary and tertiary structures contribute to
the shape of a folded molecule and thus determine its biological function. In this paper
we look only at secondary structures.

The secondary structures of a given molecule are subject to certain stereo-chemical
constraints. First, no base can participate in more than one h-bond. Second, a base
cannot be paired by an h-bond to a base that is too close along the backbone, due to
the rigidity of the backbone’s p-bonds. Third, and the most important, constraint on
h-bonds is that they may not cross. It means that, if there is an h-bond pairing the
bases i and j, and an h-bond pairing the bases k and l, then either i < j < k < l or
i < k < l < j. In biological terminology, this constraint prohibits pseudo-knots.

Besides their importance in molecular biology, secondary structures are also interest-
ing from the mathematical point of view. We refer the reader to several papers dealing
with various aspect of their mathematics [11, 15, 19, 20, 23, 24]. In particular, we will
rely here on several structural and enumerative results established in [7, 8, 9].
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The most suitable context for combinatorial modeling of secondary structures is
the graph theory. We represent the bases by vertices, and the bonds by edges of cer-
tain graphs. The stereo-chemical constraints translate quite naturally into the graph-
theoretical language. We refer the reader to [25] for all graph-theoretical terms not
defined here.

Let n and l are integers, n ≥ 1, l ≥ 0. A secondary structure of size n and rank
l is a labeled non-oriented graph S on the vertex set V (S) = [n] = {1, 2, ..., n} whose
edge set E(S) consists of two disjoint subsets, P (S) and H(S), satisfying the following
conditions:
(a) {i, i+ 1} ∈ P (S), for all 1 ≤ i ≤ n− 1;
(b) {i, j} ∈ H(S) and {i, k} ∈ H(S) =⇒ j = k;
(c) {i, j} ∈ H(S) =⇒ |i− j| > l;
(d) {i, j} ∈ H(s), {k, l} ∈ H(S) and i < k < j =⇒ i < l < j.

Obviously, the set P (S) contains the edges corresponding to the p-bonds of the
molecule’s backbone. The set H(S), which may be empty, contains the edges represent-
ing the h-bonds. A secondary structure S with H(S) = ∅ is called trivial. The number
of edges in H(S) is the order of S, and the parameter l is the structure’s rank. The
only secondary structure of size 1 is the graph K1.

An example of a secondary structure of size 12, rank 1 and order 3 is shown on Fig.1.
Note that every h-bond “leaps” over at least 1 base.

1 2 3 4 5 6 7 8 9 10 11 12

p−bonds

bases

h−bonds

Figure 1: An example of a secondary structure

Some basic properties of secondary structures are stated in the following proposition.

Proposition 1 [7] Let S be a secondary structure of size n ≥ 1 and rank l ≥ 0. Then
(a) S is connected;
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(b) S is simple for all l ≥ 1;
(c) S is sub-cubic, i.e. deg(v) ≤ 3 for all v ∈ V (S);
(d) S is outerplanar;
(e) girth(S) ≥ l + 2;
(f) the weak dual of S is a tree;
(g) H(S) is a matching in S.

We denote the set of all secondary structures of size n and rank l by S(l)(n), while the

set of all such structures of order k is denoted by S(l)
k (n). The cardinalities of these sets,

i.e., their enumerating sequences, will be denoted by S(l)(n) and S
(l)
k (n), respectively.

By definition, S(l)(0) = 1, for all l.

There are many ways of representing secondary structures graphically. Three of
them, the loop diagram, the chord diagram and the arc diagram, are shown on Fig.2 a),
b) and c), respectively.

3’n

5’
1

a)

5’ 3’

1 n
b)

1

5’ 3’

n
c)

Figure 2: The loop diagram, the chord diagram and the arc diagram represen-
tations of secondary structures

1.2 Combinatorial context

In this Section we establish some connections between secondary structures and
various well studied combinatorial families, such as lattice paths, matchings and permu-
tations with forbidden patterns. We start with definitions of some important families of
lattice paths and their enumerating sequences.

A Dyck path (or a “mountain path”) of length 2n is a lattice path in the coordinate
plane (x, y) from (0, 0) to (2n, 0) with steps (1, 1) (Up) and (1,−1) (Down), never falling
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below the x-axis. The number of steps in a Dyck path is called its length and it must
be even. We denote the set of all Dyck paths of length 2n by D(n).

A peak of a Dyck path is a place where an Up step is immediately followed by a
Down step. The set of all Dyck paths of length 2n with exactly k peaks (1 ≤ k ≤ n) is
denoted by Dk(n).

It is well known that Dyck paths are enumerated by Catalan numbers, i.e. that
|D(n)| = Cn. (Recall that the n-th Catalan number, Cn, n ≥ 0, is defined by Cn =
1

n+1

(

2n
n

)

= 1
2n+1

(

2n+1
n

)

. Hundreds of combinatorial families enumerated by Catalan
numbers are listed in Exercise 6. 19 of [21] and in [22].)

A Motzkin path of length n is a lattice path in (x, y) plane from (0, 0) to (n, 0)
with steps (1, 1) (Up), (1,−1) (Down) and (1, 0) (Level), never falling below the x-axis.
We denote the set of all Motzkin paths of length n (i.e. with exactly n steps) by M(n).
The numberMn = |M(n)| is n-th Motzkin number. By definition, M0 = 1. A typical
member of the Motzkin family M(17) is shown on Fig.3.

(0,0) (17,0)

terrace

peak

trench

plateau

valley

Figure 3: A Motzkin path of length 17

A peak of a Motzkin path is a place where an Up step is immediately followed
by a Down step. A plateau of length l is a sequence of l consecutive Level steps,
immediately preceded by an Up step, and immediately followed by a Down step. A
sequence of m ≥ 0 consecutive Level steps, immediately preceded by a Down step, and
immediately followed by an Up step is called a valley of width m. If m = 0, we speak
of a trench. A sequence of m ≥ 1 consecutive Level steps, immediately preceded by a
Down step, and directly followed by an Up step (or preceded by an Up step and followed
by a Down step) is called a terrace of width m. In our example of Fig.3 we can see
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peaks at the points (5, 3) and (16, 1), a plateau of length 2 formed by the steps 11 and
12, terraces of width 1 formed by the steps 2, 4 and 8, a valley of width 2 formed by
the steps 14 and 15, and a trench formed by the steps 9 and 10. We notice that a Dyck
path is a Motzkin path without any Level steps.

Let us denote by M(l)(n) the set of all paths from M(n) whose every plateau is
at least l steps long. For l = 0 we get simply M(0)(n) = M(n). there is a bijective
correspondence between M(l)(n) and S(l)(n).

Proposition 2 There is a bijection between M(l)(n) and S(l)(n), for all n ≥ 1, l ≥ 0.

This results belongs to mathematical folklore and was rediscovered several times.
The proof is very simple. Indeed, take a secondary structure from S(l)(n) and scan
it from left to right. Assign a Level step to each unpaired base, an Up step to each
base in which a new h-bond starts, and a Down step to each base in which an already
encountered h-bond terminates. It is obvious that the lattice path obtained in this way
never falls below the x-axis, that it has equally many Up and Down steps (and hence
terminates at (n, 0)), and that at least l Level steps must be found between any Up
and any Down step. So, this lattice path belongs to M(l)(n). The injectivity of the
construction is obvious.

The construction is easily seen to be invertible. Start from the first step in a path from
M(l)(n) and proceed toward the right constructing a secondary structure by assigning
an unpaired base to each Level step. To an Up step assign a base in which an h-bond
starts, and to a Down step assign a base in which the last-started h-bond terminates.
Properties of Motzkin paths now ensure that so formed h-bonds will not cross and that
the endpoints of any h-bond will be separated by at least l unpaired bases. So, we obtain
a valid secondary structure in S(l)(n), and the injectivity of the construction is, again,
obvious.

It is clear from the above construction that the number of Up steps in the Motzkin
path is equal to the order of the corresponding secondary structure. A secondary struc-
ture from S(1)(12) and the corresponding Motzkin path from M(1)(12) are shown in
Fig.4.

It was shown in Proposition 1.2 of [8] that the correspondence can be extended also
to some negative values of l. For example, there is a bijection between S(−1)(n) and
D(n + 1), where S(−1)(n) is the set of all secondary structures on n bases in which an
h-bond can form a loop, i.e., it may terminate in the same base it starts from. Of course,
such mathematical objects do not correspond to biochemically realistic structures.
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(0,0) (12,0)121
Figure 4: The folklore correspondence between secondary structures and
Motzkin paths.

Let us now turn our attention to some other combinatorial interpretations of sec-
ondary structures. One of them reflects the fact that h-bonds form a matching in a
secondary structure graph.

For a given graph G, a matching in G is any set M of edges of G such that no two
edges from M have a vertex in common. From a given graph G we get its m-th power,
Gm, by connecting by an edge any two vertices whose distance in G is at most m.

Now take a graph G and denote by G′ one of its representations in the plane. A
matching M is non-intersecting with respect to G′ if edges from M do not intersect
in G′. In Fig.5 we see two representations, G′ and G′′ of the same graph K4, and a
matching M = {ac, bd} which is non-intersecting w.r.t G′′, but not w.r.t G′.

a b

cd

a c

b

d

G’ G’’
Figure 5: The same matching in two different representations of the same graph
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Theorem 3 There is a bijection between S(l)(n) and the set of all matchings non-
intersecting w.r.t. circular representation of Kn − E(P l

n), where Pn is a path on n
vertices.

Proof. Take a copy of Kn and represent it in the plane so that its vertices lie on a
circle. Number them consecutively in, say, clockwise direction from 1 to n. Denote by
Pn the path consisting of the edges of the form {i, i+ 1}, for 1 ≤ i ≤ n− 1, and remove
all the edges of P l

n. It is obvious that every remaining edge in this graph corresponds to
a possible h-bond in a secondary structure in a molecule whose backbone corresponds to
Pn. Any matching in this graph satisfies the conditions (b) and (c) in the definition of
secondary structure, and non-intersecting matchings satisfy also the condition (d). So
we can assign a secondary structure S of size n and H(S) =M to every non-intersecting
matching M in Kn − E(P l

n), and this assignment is obviously injective.

On the other hand, take a secondary structure S from S(l)(n). From Proposition
1 we know that H(S) is a matching, and by definition of secondary structure, this
matching must be non-intersecting w.r.t circular representation of Kn. As no h-bond
can connect bases whose distance is less than l+1, all permitted h-bonds must be edges
in Kn −E(P l

n), where edges of Pn correspond to the molecule’s backbone.

We conclude this section by pointing to a connection between secondary structures
and pattern avoidance in permutations. A pattern is a permutation σ ∈ Σk, and a
permutation π ∈ Σn avoids σ if there is no subsequence in π whose members are in
the same relative order as the members of σ. It is well known that the number of
permutations from Σn avoiding σ ∈ Σ3 is Cn, for all patterns σ ∈ Σ3 [6].

The notion of pattern avoidance was generalized in [1], by allowing the requirement
that two letters adjacent in a pattern must be adjacent in the permutation. An example
of a generalized pattern is 1−32, where an 1−32 subword of a permutation π = a1 . . . an is
any subword aiajaj+1 such that i < j and ai < aj+1 < aj . Generalized pattern avoidance
is treated in more detail in [4], where it is shown that the permutations from Σn that
avoid both 1− 23 and 13− 2 are enumerated by the Motzkin numbers.

Proposition 4 There is a bijection between S(l)(n) and the set of all permutations from
Σn that avoid
{1− 23, 13 − 2, ij}, where j ≤ i+ l, for all l ≥ 0.

Proof. The claim follows by closer inspection of the bijection from the proof of Proposi-
tion 24 in [4]. It is easy to see that any pattern i, i+k in a permutation σ ∈ Σn avoiding
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{1− 23, 13− 2} generates a plateau of length k − 1 in the corresponding Motzkin path.

1.3 Decomposable secondary structures

We now make a digression and consider a special class of secondary structures. A
secondary structure is decomposable if there is a base whose removal leaves two valid
secondary structures. (One, or even both of them may be empty.) In other words,
a secondary structure is decomposable if there is a horizontal step on the x-axis in
the corresponding Motzkin path. We would like to know how many of all secondary
structures of given rank and size belong to the class of decomposable structures.

Denote by D(l)(n), U (l)(n) the sets of all decomposable and undecomposable sec-
ondary structures of rank l and size n, respectively. Put D(l)(n) = |D(l)(n)|, U (l)(n) =
|U (l)(n)|.

Theorem 5 U (l)(n) = S(l)(n)− U (l)(n− 1)− . . .− U (l)(n− l − 1), for n, l ≥ 0.

Proof. We first exhibit a bijection between D(l)(n − 1) and a certain subset Pn of
S(l)(n). The claim will then follow by analyzing the structure of Pn. We describe the
bijection in terms of Motzkin paths with plateaus of length at least l. Take a path Q
from D(l)(n− 1) and consider its last (the rightmost) horizontal step on the x-axis. The
sub-path on the right of this step we leave unchanged, and the rest we transform as
follows. We replace the rightmost horizontal step by a Down step, we insert an Up step
in front of the first (the leftmost) step, and we increase the altitudes of all intervening
steps by one. In this way we obtain a path P from U (0)(n). Put P = ψ(Q). It is obvious
that ψ is an injection. Denote by Pn the image of the set D(l)(n− 1) by the mapping ψ.
Obviously, |Pn| = |D(l)(n − 1)|, and there is a function ϕ : Pn → D(l)(n − 1) such that
ϕ = ψ−1. The function ϕ acts as follows. For a given path P ∈ Pn, consider its first
return to the x-axis. Then transform the (elevated) sub-path on the left hand side of
this return in the following way. Omit the first step (which was an Up step), replace the
last step (a Down one) by a horizontal step on the x-axis, and translate all the steps in
between one unit down. The sub-path of P on the right hand side of its first return to
the x-axis leave unchanged. The path ϕ(P ) is obviously an element of D(l)(n− 1).
Now take a path from U (l)(n). For any such path S we have ϕ(S) ∈ D(l)(n − 1), so
U (l)(n) must be a subset of Pn. Are there any elements in Pn − U (l)(n)? The answer is
yes, because the function ψ can produce a path whose plateau length will be less than l.
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But the only way to get such a path is to start from a path in D(l)(n−1) beginning with
a sequence of m consecutive horizontal steps on the x-axis, where 1 ≤ m ≤ l. There are
U (l)(n−1−m) such paths for any given m. So, the total of

∑l
m=1 U

(l)(n−1−m) paths
from D(l)(n− 1) will be mapped into elements of Pn − U (l)(n). Now we have

D(l)(n− 1) = U (l)(n) +
l
∑

m=1

U (l)(n− 1−m).

From D(l)(n− 1) = S(l)(n− 1)− U (l)(n − 1) we get the claim.

Corollary 6 There are equally many Motzkin paths of length n without horizontal steps
on the x-axis and Motzkin paths of length n− 1 with at least one horizontal step on the
x-axis.

This Corollary also gives a solution of Problem 10816 in [5], p.652.

1.4 Sequences S(l)(n) and S
(l)
k (n)

In this section we summarize the main results of reference [8]. In particular, we show
how to obtain formulas for the number of secondary structures of given size, rank and
order.

Some insight can be gained with little effort. It is clear that there is no secondary
structure of order k > n−l

2 , since each h-bond consumes 2 bases, and at least l bases
must remain unpaired. Using the same arguments we can conclude that the structure of
the maximal order is unique in a molecule whose size n has the same parity as the rank
l. Also, for the molecules of size n < l+ 2, only the trivial structure is possible. So, the

numbers S
(l)
k (n) will form a triangle in a table whose rows are indexed by n and columns

by k. All non-zero elements of this table will be below the line n− 2k = l, except l 1’s,
counting the trivial secondary structures in molecules of size n < l.

Before we describe the solution of the problem of determining S
(l)
k (n), some combi-

natorial preliminaries are in order.

First recall that Dyck paths are lattice paths from (0, 0) to (2n, 0) using only the
steps (1, 1) and (1,−1), never falling below the x-axis. The set of all Dyck paths of
length 2n we denote by D(n), and their number is Cn, the n-th Catalan number.
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The Narayana numbers N(n, k) are defined for integers n, k ≥ 1 by

N(n, k) =
1

n

(n

k

)

(

n

k − 1

)

=
1

k

(

n

k − 1

)(

n− 1

k − 1

)

,

with the initial value N(0, 0) := 1 and the boundary values N(n, 0) = 0, N(n, 1) = 1 for
n ≥ 1.

It is well known that the Narayana numbers N(n, k) enumerate Dyck paths of length
2n with exactly k peaks. This fact is instrumental in obtaining explicit formulas for

S
(l)
k (n).

Theorem 7 [8]

S
(l)
k (n) =

k
∑

p=1

1

k

(

k

p

)(

k

p− 1

)(

n− lp

2k

)

S
(l)
k (n) =

k
∑

p=1

N(k, p)

(

n− lp

2k

)

for all n, p, l ≥ 0.

Proof. Consider a Dyck path P on 2k steps with exactly p peaks. We know that there
are N(k, p) such paths. By inserting l horizontal steps between every two steps forming
a peak, we get a path P ′ in M(l)(2k + lp), the set of all Motzkin paths on 2k + lp steps
with plateaus of length at least l. There are exactly N(k, p) such paths. Now take
additional m horizontal steps and distribute them at will in the path P ′. From every

path P ′ ∈ M(l)(2k + lp) we can get
(

2k+m
m

)

paths in M(l)(2k + lp+m). Denoting the

total number of steps by n, we get N(k, p)
(

n−lp
2k

)

as the number of paths from M(l)(n)

which have exactly p plateaus. Summing over all p’s from 1 to k, we get the number
of paths in M(l)(n) with k steps of the form (1, 1), whose all plateaus are at least l
steps long. Recalling our correspondence between such Motzkin paths and secondary
structures of rank l (Proposition 2), we get the claim of the theorem.

Corollary 8 S
(1)
k (n) = N(n− k, k+ 1) = 1

k+1

(

n−k
k

)(

n−k−1
k

)

= 1
n−k

(

n−k
k

)(

n−k
k+1

)

for

all n, k ≥ 0.
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The first few rows of the triangle of S
(1)
k (n) numbers are given in Table 1. below.

Closer look at this table reveals certain symmetry pattern. We see that S
(1)
k (n) =

S
(1)
n−2k−1(2n − 3k − 1). This symmetry is a consequence of the symmetry property of

Narayana numbers. We give here a combinatorial proof of this property.

n k 0 1 2 3 4 5 6 Σ = Sn

0 1 1
1 1 1
2 1 1
3 1 1 2
4 1 3 4
5 1 6 1 8
6 1 10 6 17
7 1 15 20 1 37
8 1 21 50 10 82
9 1 28 105 50 1 185
10 1 36 196 175 15 423
11 1 45 336 490 105 1 978

Table 1: The beginning rows of the triangle S
(1)
k (n)

Proposition 9 There is a bijection between the sets S(1)
k (n) and S(1)

n−2k−1(2n− 3k− 1).

Proof. Take a secondary structure S from S(1)
k (n). Map the structure S to a Dyck

path P in Dn−2k(n− k). Now invoke the bijection f : Dn−2k(n− k) → Dk+1(n− k) that
accounts for the symmetry property N(n, k) = N(n, n+1−k) of Narayana numbers and
map P into P ′ ∈ Dk+1(n− k). Finally, map the path P ′ back to a secondary structure.

The obtained secondary structure lies in S(1)
n−2k−1(2n − 3k − 1) and the correspondence

is obviously bijective.

We say that the secondary structures from S(1)
n−2k−1(2n − 3k − 1) are dual to the

structures from S(1)
k (n). The duality of sets S(1)

1 (5) and S(1)
2 (6) is illustrated on Fig. 6.
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1 23 2(5) (6)(4) (4)
(1) (1)

S D D S

Figure 6: An example of dual sets of secondary structures

1.5 Some geometric applications

The various problems of polygon dissections have attracted much attention during
last two centuries. Most of them require using of non-intersecting diagonals, i.e. diag-
onals which do not intersect in the interior of the considered polygon (e.g. [2, 3, 18]).
Strengthening a little bit the condition of non-intersecting, and requiring that the the
diagonals be totally disjoint, i.e. having no common point at all, we get an interesting
variant of the polygon dissection problem, which, to the best of our knowledge, received
no attention so far.

Problem
In how many ways one can dissect a convex n-gon using exactly k totally disjoint diag-
onals?

The problem also has an equivalent formulation as follows: How many ways are there
of selecting k totally disjoint diagonals of an n-gon?

Let us denote the number of dissections of an n-gon by k totally disjoint diagonals
by Dk(n), and the total number of all such dissections of an n-gon by D(n). Clearly,
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D(n) =
∑⌊n−2

2
⌋

k=0 Dk(n). All the four dissections of an 8-gon by three totally disjoint
diagonals are shown on Fig.7.

Figure 7: Dissections of an 8-gon with totally disjoint diagonals

We present here a simple solution of this problem, based on connections between the
polygon dissections and secondary structures.

Theorem 10 Dk(n) =
n

k(k+1)

(

n−k−2
k

)(

n−k−1
k−1

)

, for all n ≥ 3, 1 ≤ k ≤ ⌊n−2
2 ⌋.

Proof. Let us consider a secondary structure (of rank 1) of k-th order in a molecule
with n bases, k ≥ 1. If the considered structure contains an h-bond connecting the bases
1 and n, then the remaining k − 1 h-bonds form a secondary structure in a molecule of
size n−2. If the considered structure does not contain such an h-bond, then its h-bonds
form a set of k totally disjoint diagonals in an n-gon obtained by adding the side 1−n to

the molecule’s backbone. From this observation we get S
(1)
k (n) = S

(1)
k−1(n− 2) +Dk(n),

and then Dk(n) = S
(1)
k (n) − S

(1)
k−1(n − 2). The claim now follows by substituting the

explicit value for S
(1)
k (n) from Corollary 8.

Obviously, D0(n) = 1, for all n ≥ 3.

The numbers Dk(n) form a triangular number array. We tabulate here its first few
rows:

The following results are immediate consequences of Theorem 10:

Corollary 11
D(n) = S(1)(n)− S(1)(n− 2), n ≥ 3
∑

k≥0

Dk(n+ k) = Cn − Cn−1, n ≥ 3.
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n k 0 1 2 3 4 5 6 Σ = Dn

1 0 1
2 1 1
3 1 1
4 1 2 3
5 1 5 6
6 1 9 3 13
7 1 14 14 29
8 1 20 40 4 65
9 1 27 90 30 148
10 1 35 175 125 5 341
11 1 44 308 385 55 793
12 1 54 504 980 315 6 1860
13 1 65 780 2184 1274 91 4395

Table 2: The beginning rows of the triangle D
(1)
k (n)

It can be checked by direct calculations that the numbers Dk(n) are log-
concave (and hence unimodal) in k. By expressing Dk(n) in the form Dk(n) =
n(n−2k)(n−2k−1)

(k+1)(n−k)2(n−k−1)

(

n−k
k

)2
, we can establish the following asymptotic behavior of the

position of the maximal value of Dk(n).

Proposition 12 Let kn be the value of k for which the maximal value of Dk(n) is

attained, for a fixed n. Then limn→∞
kn
n = 5−

√
5

10 .

It is interesting to note that the same value, 5−
√
5

10 , appears as the asymptotic limit
of several statistics on non-decreasing Dyck paths and corresponding trees [17].

Let us now impose an additional constraint on our dissections, requiring that the
endpoints of any diagonal must be separated by at least l ≥ 1 intervening vertices. In
other words, we require that each ear of the dissection [12] be at least l + 1 edges long.
Denote the number of such dissections of a convex n-gon by k totally disjoint diagonals

by D
(l)
k (n). By a reasoning similar to that in the Theorem 10, we obtain the following

result.
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Theorem 13 For all n ≥ 3, 1 ≤ k ≤ ⌊n−2
2 ⌋ and l ≥ 1 we have

D
(l)
k (n) = S

(l)
k (n)−

l
∑

m=1

mS
(l)
k−1(n−m− 1).

Recall that the dissections of a convex n-gon by diagonals that do not intersect in
its interior are counted by the little Schröder numbers sn−2 (sequence A001003 in [16]).
We can compare asymptotic behavior of the two types of dissections.

Proposition 14

Dn

sn−2
∼
√

15 + 7
√
5

6
√
2− 8

(

1− 2

n

)−3/2
(

3 +
√
5

6 + 4
√
2

)n

.

Proof. Follows by comparing the asymptotics Dn ∼ S(1)(n) ∼
√

15+7
√
5

8π

(

3+
√
5

2

)n
n−3/2

(Proposition 2.2 of [8]) with the asymptotics for the little Schröder numbers sn given in
[16].

It is also possible to think of polygon dissections in terms of polygonal clusters [6].
We say that a connected and bounded set W ⊂ R

2 is a polygonal cluster if W is a
finite union of convex polygons which are either pairwise disjoint or share a whole edge.
Each polygon in a cluster is called a cell. The number of cells in a cluster is its size,
and the number of edges in its boundary is its circumference. Borrowing a term from
benzenoid chemistry, we say that a cluster is catacondensed if none of its vertices is
shared by more than two of its cells. The minimal number of sides over all its cells is the
girth of a given cluster. Example of a cluster is shown on Fig.8 a), and a catacondensed
cluster is represented on Fig.8 b).

Proposition 15 The number of all catacondensed polygonal clusters of size s and cir-
cumference r is Ds−1(r). The number of all catacondensed polygonal clusters of size s

with circumference r and girth at least 4 (i.e. without triangles) is D
(2)
s−1(n).

Let us present now another geometric consequence of our results on secondary struc-
tures. Consider a circle and a set of k randomly chosen chords on this circle. What is
the probability that no two of them are intersecting?
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b)a)
Figure 8: Examples of polygonal clusters

Proposition 16 The probability that among k randomly chosen chords of a circle no
two of them intersect is 2k

(k+1)! .

Proof. Consider a circular representation of Kn − E(Cn), where E(Cn) stands for the

set of edges of a cycle on n vertices. There are

(

n(n−3)
2
k

)

k-element matchings in this

graph, and any of them corresponds to a choice of a k-element subset from the set of all
diagonals in a convex (regular) n-gon. Only Dk(n) of such subsets are totally disjoint.

Our claim follows by considering the quotient Dk(n)
(

n(n−3)
2
k

) , using Theorem 10, and letting

the parameter n tend to infinity.

Our final geometric application of secondary structures concerns the theory of poly-
ominoes. (We refer the reader to [10] and [13] for basic definitions and results about
polyominoes.)

A glacial landscape of size n is a Motzkin path on n steps without peaks and
trenches. The name is motivated by the resemblance of such paths to the landscapes
eroded by action of glaciers; the peaks are flattened, and the trenches are widened
into valleys. The set of all glacial landscapes of size n is denoted by G(n), and the
set of all paths from G(n) with exactly k Up steps we denote by Gk(n). Obviously,
G(n) ⊂ M(1)(n).

Proposition 17

|Gk(n)| =
k
∑

j=1

N(k, j)

(

n− 2j + 1

2k

)

,
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for all n, k ≥ 0.

Proof. We apply the same reasoning as in the proof of Theorem 7. Namely, there
are N(k, j) Dyck paths on 2k steps with exactly j peaks (and hence with exactly j − 1
trenches). By flattening the peaks and broadening the trenches with one Level step
each, we get N(k, j) glacial landscapes of size 2k + 2j − 1, whose all plateaus and all
valleys are exactly one step wide. Additional m Level steps can now be distributed in
each of these landscapes in

(

m+2k
2k

)

different ways. The claim now follows by denoting
the total number of steps by n and summing over all 1 ≤ j ≤ k.

Hence, Gk(n) = |Gk(n)| =
∑k

j=1N(k, j)
(n−2j+1

2k

)

.

A closer look at the formula for Gk(n) reveals that Gk(n) = S
(2)
k (n+1). In a similar

way one can show that G(l)(n), the number of all Motzkin paths on n steps whose
all plateaus and valleys are at least l steps wide is equal to

∑

k

∑

j N(k, j)
(n−2lj+l

2k

)

=

S(2l)(n+ l). The numbers G(l)(n) can also be interpreted as the numbers of all walks on
nonnegative integers, beginning and ending at 0, with the steps 1, 0 and −1 with inertia
l. It means that the current direction of the walk cannot be quickly reverted.

Let us consider a glacial landscapeM from Gk(n). Clearly, the pathM has k steps of
the form (1, 1), and k steps of the form (1,−1). Replacing these steps by the steps of the
form (0, 1) and (0,−1), respectively, we get a lattice path P ′ from (0, 0) to (n − 2k, 0)
with steps (0, 1), (0,−1) and (1, 0) which never falls below the x-axis. Now join the
points (0, 0) and (n − 2k, 0) by another lattice path, starting from (0, 0) by an (0,−1)
step, then adding n − 2k steps of the form (1, 0) and finally a (0, 1) step to reach the
point (n−2k, 0). Call this path P ′′. The figure P enclosed between the paths P ′ and P ′′

is a polyomino with p = n− 2k columns and circumference of 2r = 2n− 2k+2. We call
the polyominoes of such shape Manhattan polyominoes. An example of Manhattan
polyominoes with the parameters p = 14, r = 20 is shown on Fig.9. The set of all
Manhattan polyominoes with parameters p and r we denote by Pp(r).

In this way to every glacial landscape from Gk(n) we can assign a polyomino from
Pn−2k(n− k + 1). It is obvious that this mapping is injective and that we can invert it.
Hence, we have

Proposition 18 There is a bijection between Gk(n) and Pn−2k(n− k + 1).
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(0,0) (14,0)

Figure 9: A Manhattan polyomino

Corollary 19 The number of Manhattan polyominoes with p columns and circumference
2r is given by

|Pp(r)| =
r−p−1
∑

j=1

N(r − p− 1, j)

(

2(r − j) − p+ 1

2(r − p− 1)

)

= S
(2)
r−p−1(2r − p− 1),

for r ≥ p+ 1, p ≥ 0.

Reasoning in the same way as in Proposition 18, one can show that the number of
all Motzkin paths of length n whose all plateaus are at least l steps long, and whose all
valleys are at least m steps wide is

S(l,m)(n) = S(l+m)(n+m).

1.6 Concluding remarks

In this paper we have collected various results about secondary structures and pointed
out several connections between them and other combinatorial families. In particular,
we have used enumerative results obtained in our previous work to give explicit formulas
and asymptotic behavior for sequences enumerating various classes of polygon dissections
and restricted polyominoes.
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T. Došlić Secondary structures and some related combinatorial objects

40
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1.1 Introduction

Topological indices are numerical parameters mathematically derived from the graph
structure. They are widely used for establishing correlations between the structure of
a molecular compound and its physico-chemical properties or biological activity. With
respect to the invariant which plays a crucial role in the definition, we usually divide
topological indices into three types: degree-based indices, distance-based indices and
spectrum-based indices. Sum-Balaban index, the subject of this paper, is one of many
distance-based topological indices.

To present its definition, we first need to introduce the basic notions. For a graph G,
by V (G) and E(G) we denote the vertex and edge sets of G, respectively. Let n = |V (G)|
and m = |E(G)|. For vertices u, v ∈ V (G), by distG(u, v) (or shortly just dist(u, v)) we
denote the distance from u to v in G, and by w(u) we denote the transmission (or the
status) of u, defined as w(u) =

∑

x∈V (G) dG(u, x). A predecessor of sum-Balaban index,
Balaban index J(G) of a connected graph G, defined as

J(G) =
m

m− n+ 2

∑

e=uv

1
√

w(u) · w(v)
,

was introduced in early eighties by Balaban [2, 3]. Later Balaban et al. [4] (and in-
dependently also Deng [7]) proposed a derived measure, namely the sum-Balaban index
SJ(G) for a connected graph G:

SJ(G) =
m

m− n+ 2

∑

uv∈E(G)

1
√

w(u) +w(v)
.

Since its introduction in 2010 sum-Balaban index was successfully used in
QSAR/QSPR modeling, but recently it also attracted attention of mathematicians. In
this paper we describe the state of the art on mathematical properties of sum-Balaban
index and expose some questions, which stay unanswered.

1.2 Sum-Balaban index of trees

To avoid ambiguity we need to mention that throughout this paper we consider
simple and connected graphs. In this first section we further restrict to the class of
trees, which are especially interesting from the chemists point of view. Deng [7] and
Xing et al. [24] considered trees with the given number of vertices.
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Theorem 1 For a tree T on n ≥ 2 vertices, we have

SJ(Pn) ≤ SJ(T ) ≤ SJ(Sn)

with left (right, respectively) equality if and only if T = Pn (T = Sn, respectively), where
Pn is the path on n vertices and Sn is the star on n vertices.

In [24] also trees with the second-largest, and third-largest (as well as the second-
smallest, and third-smallest) sum-Balaban index among the n-vertex trees for n ≥ 6
were determined. Their proof is based on specific transformations, which increase sum-
Balaban index. In [19] alternative proof for the above results and tools which enabled
the authors to give further ranking up to seventh maximum sum-Balaban index were
presented. The results are summarized in Table 1, where Tk denotes the tree with the
k-th largest sum-Balaban index. In what follows we describe the graphs mentioned in
the table.

A double star Da,b is a tree consisting of a + b vertices, two of which have degrees
a and b, while the remaining ones have degree 1. By symmetry, we may assume that
a ≥ b. In Figure 1 we have the double star D7,2.

27

Figure 1: The double star D7,2.

By Ha1,a2,...,ad−1
we denote a tree consisting of a diametric path of length d (i.e., with

d + 1 vertices) and a couple of pendant edges, such that the degrees of vertices of the
diametric path are 1, a1, a2, . . . , ad−1, 1. That is, Ha1,a2,...,ad−1

is a caterpillar. Due to
symmetry, we may assume that a1 ≥ ad−1 in Ha1,a2,...,ad−1

, see Figure 2 for H3,7,2.

Let n ≥ 7. By Rn we denote the graph obtained from a star on n − 3 vertices by
subdividing three distinct edges, see Figure 3 for R11.

It was also observed in [19] that for every k, the value SJ(T1)− SJ(Tk) is tending to
ck
√
n, where ck is a constant depending on k but not on n.
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3 7 2

Figure 2: A caterpillar H3,7,2.

Figure 3: The graph R11.

For the maximum value of sum-Balaban index for trees with given diameter the
interested reader is referred to [26].

1.3 Extremal values for n-vertex graphs

In [24] various upper and lower bounds are given for graphs with given parameters
such as the maximum degree, number of edges, etc. The authors considered also the
special case of bipartite graphs. However, in this section we are interested in extremal
values of sum-Balaban index in the case when only the number of vertices is prescribed.

1.3.1 Maximum values

The cyclomatic number µ of G, which is the minimum number of edges that must
be removed from G in order to transform it to an acyclic graph, equals m− n+1. Note
that the denominator m − n + 2 in the definition of Balaban and sum-Balaban index
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n T1 T2 T3 T4 T5 T6 T7
2− 3

Sn

4

Dn−2,2

5 P5

6

Dn−3,3

H2,n−3,2 Hn−3,2,2
P6

7 H3,3,2 R7

8 D4,4 H2,5,2 Hn−3,2,2 H3,n−4,29

H2,n−3,2
Dn−4,410− 11 Dn−5,5 Hn−3,2,2

12− 22 Hn−3,2,2 H3,n−4,223−∞ Hn−3,2,2 Dn−4,4

Table 1: First seven trees with maximal values of sum-Balaban index.

can be expressed as µ+1. In [20] n-vertex graphs which contain at least one cycle were
considered.

Theorem 2 Let G be a connected graph on n vertices with µ ≥ 1. Then SJ(G) is
maximum if and only if G is the complete graph Kn.

In [21] we found an erroneous statement that complete graphs attain the maximum
sum-Balaban index among all n-vertex graphs. However this is true only for small cases
of n as proved in [20].

Theorem 3 For any connected graph G on n ≥ 2 vertices, we have

SJ(G) ≤
{

SJ(Kn), if n ≤ 5
SJ(Sn), if n ≥ 6.

Moreover, the next theorem implies that for every k and large enough n, the first k
graphs of order n with the largest value of Balaban index are trees [20].

Theorem 4 Let a and b be positive integers such that a, b ≥ 2, a + b = n and n ≥ 8.
Then SJ(Da,b) > SJ(Kn).

One can observe that Theorems 2 and 3 imply the following:
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Corollary 5 Let G be a graph with the maximum value of sum-Balaban index in the
class of k-connected (k-edge-connected) graphs of order n. Then we have:

(1) if k = 1 and, n = 2 or n ≥ 6, then G is the star Sn;

(2) if k = 1 and n ≤ 5, or k ≥ 2, then G is the complete graph Kn.

1.4 Minimum values

As in the case of Balaban index (see [13]) finding the minimum value of sum-Balaban
index among n-vertex graphs is far more complicated problem. It remains open, however,
some insight in the structure of potential candidates was given in [14]. There we have
the following results.

Theorem 6 Let G be a graph on n vertices, n ≥ 4. Then

SJ(G) ≥ 2

√

n

n− 1
.

It turns out that for large values of n a better lower bound on the sum-Balaban index
can be obtained.

Theorem 7 Let G be a graph on n vertices, where n is big enough. Then

SJ(G) ≥ 4 + o(1).

Let Ka and K ′
a′ be two disjoint complete graphs on a and a′ vertices, respectively.

We always assume a ≤ a′. Further, let Pb be a path on b vertices (v0, v1, . . . , vb−1)
disjoint from the cliques. The dumbbell graph D0

a,b,a′ is obtained from Ka ∪ Pb ∪K ′
a′ by

joining all vertices of Ka with v0 and all vertices of K ′
a′ with vb−1. Thus, D0

a,b,a′ has
a + b + a′ vertices. In the case when a = a′, we call a graph a balanced dumbbell graph
and we denote it by Ba,b. A dumbbell-like graph, Dℓ

a,b,a′ , is obtained from the dumbbell

graph D0
a,b,a′ by either inserting ℓ edges between v1 and Ka if ℓ > 0, or by removing −ℓ

edges between vb−1 and K ′
a′ if ℓ < 0.

In Figure 4 one can find graphs which attain the minimum value of sum-Balaban
index among n-vertex graphs where n ≤ 10 (we remark that by removing dotted edges we
obtain the corresponding graphs with the minimum value of Balaban index). Observe

46
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n = 3

n = 4

n = 5

n = 6

n = 7

n = 8

n = 9

n = 10

Figure 4: Graphs with the smallest value of sum-Balaban index for n ∈
{3, 4, . . . , 10}.

that all graphs in Figure 4 (with the exception of the case n = 4) are dumbbell or
dumbbell-like.

In the special case of balanced dumbbell graphs the following statement was obtained
in [14].

Theorem 8 Let Ba,b be a balanced dumbbell graph on n vertices with the small-
est possible value of sum-Balaban index. Then a and b are asymptotically equal to
4

√√
2 log

(

1 +
√
2
)√
n and n, respectively. That is, a = 4

√√
2 log

(

1 +
√
2
)√
n + o(

√
n)

and b = n− o(n).

Corollary 9 Let B be a balanced dumbbell graph on n vertices, where n is big enough,
with the minimum value of sum-Balaban index. Then

SJ(B)
.
= 4.47934.

Comparing Corollary 9 with the lower bound presented in Theorem 7, we see that the
asymptotic value of sum-Balaban index for optimum balanced dumbbell graph is only
about 1.12 times higher. Hence it can be expected that the optimal balanced dumbbell
graph is not much different from the optimal dumbbell graph.
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Conjecture 10 Among all dumbbell graphs D0
a,b,a′ on at least 14 vertices, the minimum

value of sum-Balaban index is achieved for one with a′ = a or a′ = a+ 1.

More generally, the following was conjectured in [14].

Conjecture 11 Dumbbell-like graphs Dℓ
a,b,a′ attain the minimum value of sum-Balaban

index.

1.5 Accumulation points of sum-Balaban index

In [18] it is shown that for every nonnegative real number r there exists a sequence
of graphs {Gr,i}∞i=1 such that the number of vertices of Gr,i tends to infinity as i → ∞
and limi→∞ J(Gr,i) = r. An analogous result was proved for sum-Balaban index [20].
Denote Q =

√
2 ln(1+

√
2). Observe that Q

.
= 1.24650 and 1+Q+2

√
Q

.
= 4.47934. We

have the following statement.

Theorem 12 Let r ≥ 1 +Q+ 2
√
Q. Further, let {Bai,bi}∞i=1 be a sequence of balanced

dumbbell graphs on ni = 2ai + bi vertices such that ni → ∞ and

lim
i→∞

ai√
ni

=
1√
2

√

r − 1−Q+
√

(r−1−Q)2 − 4Q.

Then limi→∞ SJ(Bai,bi) = r.

Although we conjecture that for graphs G on large number of vertices SJ(G) ≥
1+Q+2

√
Q (see Corollary 9), it is proved only that SJ(G) ≥ 4+ o(1) (see Theorem 7).

Hence, if the conjecture is false, then the problem of accumulation points of sum-Balaban
index for values in the interval [4, 4.47934) remains open.

1.6 Unicyclic and bicyclic graphs

Unicyclic graphs on n vertices with the maximum sum-Balaban index were considered
in [25]. Let S+

n denote the graph, obtained from the star Sn by adding an edge between
two nonadjacent vertices of the star.

48
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Theorem 13 Let G be a connected unicyclic graph on n ≥ 4 vertices. Then

SJ(G) ≤ n

2

(

1√
4n − 8

+
2√

3n− 5
+

n− 3√
3n− 4

)

,

where the equality holds if and only if G = S+
n .

A connected graph on n vertices is said to be bicyclic if it contains exactly n + 1
edges. Denote by S++

n the bicyclic graph obtained from the star Sn by adding two edges
with a common vertex (see Figure 5 where S++

7 is depicted).

Figure 5: The graph S++
7 .

Maximum values of sum-Balaban index were first examined in [6]. However, Fang et
al. [11] found some flaws in this paper and proved the following.

Theorem 14 The graph S++
n has the largest sum-Balaban index among all n-vertex

bicyclic graphs.

1.7 Regular graphs

Folowing the results of [15], Lei et al. [21] proved that for an r-regular graph G on
n vertices with r ≥ 3 it holds

SJ(G) ≤ r2(r − 1)n
1
2

2(r − 2)
3
2

√

2
⌊

logr−1

(

(r−2)n+2
r

)⌋

.

They also considered fullerenes, and proved that if they contain at least 60 vertices, then
SJ(G) ≤ 9n√

n
√
n
.
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[13] M. Knor, J. Kranjc, R. Škrekovski, A. Tepeh, A search for the minimum value of
Balaban index, Appl. Math. Comput. 286 (2016), 301–310.
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[22] M. Randić, On Characterization of Molecular Branching, J. Am. Chem. Soc. 97
(1975) 6609–6615.

[23] L. Sun, Bounds on the Balaban index of trees, MATCH Commun. Math. Comput.
Chem. 63 (2010) 813–818.

[24] R. Xing, B. Zhou, A. Graovac, On sum-Balaban index, Ars Combin. 104 (2012)
211–223.

[25] L. You, X. Dong, The Maximum Balaban Index (sum-Balaban Index) of Unicyclic
Graphs, J. Math. Res. Appl. 34 (2014) 392–402.

51



M. Knor, R. Škrekovski, A. Tepeh Sum-Balaban index and its properties

[26] L. You, H. Han, The maximum Balaban index (sum-Balaban index) of trees with
given diameter, Ars Combin. 112 (2013) 115–128.

[27] Z. You, H. Han, The maximum sum-Balaban index of tree graph with given vertices
and maximum degree, Adv. Appl. Math. 2 (2013) 147–151.
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1.1 Introduction

We let n and k denote non-negative integers. The Gaussian polynomial or q-binomial
coefficient is defined to be

[

n

k

]

q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

Thus, we replace each factor m in the formula for binomial coefficient, by qm − 1 to
get Gaussian coefficient. It is easily seen that Gaussian binomial coefficient reduces to
binomial coefficient when q = 1. More precisely, by the L’Hôpital’s Rule, we have

lim
q→1

[

n

k

]

q

=

(

n

k

)

.

More on this subject one can find in the book by P. Cameron [3]. Recall a classical
implication of Gaussian polynomial. The number of elements in a finite field is a prime
power and up to isomorphism there is a unique field of any prime power order (E. Galois).
We let GF(q) denote the field with q elements. Then the number of k-dimensional
subspaces of an n-dimensional vector space over GF(q) is

[ n
k

]

q
. A proof of this one

can find in a nice overview by H. Cohn [4]. It is also worth mentioning that Gaussian
polynomial are related to quantum calculus and more on this one can find in a book by
V. Kac and P. Cheung [7].

Having the q-analog of the factorial defined as

[n]q! = (1 + q)(1 + q + q2) · · · (1 + q + · · · + qn−1)

we also have
[

n

k

]

q

=
[n]q!

[k]q![n− k]q!
.

Recently, V. Guo and D. Yang [5] found Gaussian polynomial identities

⌊n/2⌋
∑

k=0

[

m+ k

k

]

q2

[

m+ 1

n− 2k

]

q

q(
n−2k

2 ) =

[

m+ n

n

]

q

,

⌊n/4⌋
∑

k=0

[

m+ k

k

]

q4

[

m+ 1

n− 4k

]

q

q(
n−4k

2 ) =

⌊n/2⌋
∑

k=0

(−1)k
[

m+ k

k

]

q2

[

m+ n− 2k

n− 2k

]

q
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which are q-analogues of binomial coefficient identities of Y. Sun,

⌊n/2⌋
∑

k=0

(

m+ k

k

)(

m+ 1

n− 2k

)

=

(

m+ n

n

)

,

⌊n/4⌋
∑

k=0

(

m+ k

k

)(

m+ 1

n− 4k

)

=

⌊n/2⌋
∑

k=0

(−1)k
(

m+ k

k

)(

m+ n− 2k

m

)

,

respectively. (For an overview of binomial coefficients we refer the reader to classical
reference by R. Graham, D. Knuth and O. Patashnik [6].) Being motivated by these
results, in this work we aim at finding further Gaussian polynomial identities.

1.2 q-binomial coefficients and weighted lattice paths

As the basic recurrences for Gaussian polynomials we have

[

n

k

]

q

=

[

n− 1

k − 1

]

q

+ qk
[

n− 1

k

]

q

(1)

and
[

n

k

]

q

= qn−k

[

n− 1

k − 1

]

q

+

[

n− 1

k

]

q

(2)

where 0 < k < n and
[

n

0

]

q

=

[

n

n

]

q

= 1.

This follows immediately from the definition. To prove (1) we have

[

n

k

]

q

−
[

n− 1

k − 1

]

q

=

(

qn − 1

qk − 1
− 1

)[

n− 1

k − 1

]

q

= qk
(

qn−k − 1

qk − 1

)[

n− 1

k − 1

]

q

= qk
[

n

k − 1

]

q

.
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In the same fashion one can prove the property of symmetry for Gaussian polynomials,
[

n

k

]

q

=

[

n

n− k

]

q

(3)

as well as an analogy of the property of absorption for binomial coefficients,
[

n

k

]

q

=
1− qn

1− qn−k

[

n− 1

k − 1

]

q

. (4)

A well known combinatorial interpretation of Gaussian polynomial
[

n
k

]

q
is that it

enumerates the number of integer partitions that fit into the square lattice region of
size k × (n − k) (see the book [2] by J. Azose, A. Benjamin and K. Garrett). More
precisely, the Gaussian polynomial can be defined as the generating function for this
type of partitions. For example, consider the polynomial

[

4

2

]

q

= q4 + q3 + 2q2 + q + 1.

This means that there are six distinct partitions whose Young diagrams fit into a 2× 2
lattice region and that these partitions are

(2, 2), (2, 1), (2), (1, 1), (1), (0)

(there are 2 partitions of the number 2 while the other partitions are of numbers 4, 3,
and 1. Now the symmetry property (3) follows immediately by conjugation of the Young
diagrams. Similar bijective proofs can also be done for recurrences (1) and (2) (see the
book [1] by G. Andrews and K. Ericcson).

Obviously, instead by partitions, one can interpret Gaussian polynomial by lattice
paths from (0, 0) to (k, n − k), where an increment by 1 right has the weight of 1 while
an increment by 1 up has the weight of qs where s is the number of previous horizontal
increments. Furthermore, we establish a bijection between these paths and a board tilings
by squares and dominoes as follows:

i) we code an increment by 1 right in a path by a domino, and

ii) we code an increment by 1 up by a square.

We illustrate this 1 to 1 correspondence in Figure 1. The reasoning above proves the
next lemma.
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Lemma 1 The Gaussian polynomial
[ n
k

]

q
represents the number of (n+k)-board tilings

by n − k squares and k dominoes where the weight of every domino is equal to 1 while
the weight of a square is equal to qs, with s being the number of preceding dominoes.

❜

❜

✲
✛

q8

q1 q3 q4

Figure 1: There is a 1 to 1 correspondence between weighted lattice paths with
k horizontal increments and weighted board tilings with k dominoes.

Note that the parameter n in Lemma 1 represents the number of parts in a tiling
(the number of increments of length 1 in a lattice path). Figure 2 shows 6-board tilings
that correspond to partitions in the example above. According to Lemma 1, these tilings
are represented by the Gaussian polynomial

[4
2

]

q
. In what follows we use Lemma 1 to

prove some Gaussian polynomial identities.

q4 q2 q1

q3 q2 1

Figure 2: All six tilings of a board of length 6 having two dominoes, which are
enumerated by the polynomial q4 + q3 + 2q2 + q + 1.

1.3 Two pairs of polynomial identities

We shall now present obtained identities for the Gaussian polynomials, in the follow-
ing statements. To get these, we enumerate elements of the set of all n-board weighted
tilings in respect to certain criterions.

Theorem 1 For natural numbers n and k, where n ≥ k, we have

k
∑

i=0

qi
[

n− k − 1 + i

i

]

q

=

[

n

k

]

q

.

57



I. Martinjak, I. Zubac Lattice Paths Enumeration by Gaussian Polynomials

Proof. We consider weighted (n+ k)-board tilings with k dominoes and n− k squares,
in respect to the last square in a tiling. The set S of all such tilings we separate into k
disjoint subsets S1, S2, . . . , Sk such that in set S1 there are tilings having the last square
on the position n + k − 1. In S2 there are tilings having the last square on position
n + k − 3 (meaning that there are k − 1 dominoes left from the last square and a sole
domino is placed right from the last square). Furthermore, in S3 the last square is on
position n+ k − 5, etc.

Now, the tilings in S1 are represented by
[

n− 1

k

]

q

qk.

Namely, by Lemma 1, tilings of the length n+ k − 1 are represented by
[n−1

k

]

q
and the

weight of the last square is qk (since there are k dominoes placed on the left of the last
square). Furthermore, by an analogue argument, tilings in S2 are represented by

[

n− 2

k − 1

]

q

qk−1,

etc. Finally, tilings in the set Sk are represented by
[

n− k − 1

0

]

q

,

since there are no dominoes on the left of the last square. Having in mind that the sets
Si are disjoint, the sum

[

n− 1

k

]

q

qk +

[

n− 2

k − 1

]

q

qk−1 + · · · +
[

n− k − 1

0

]

q

represents the set S and this fact completes the proof.

For the purpose of proving the following theorem, again we consider weighted (n+k)-
board tilings with k dominoes and n−k squares, but now with respect to the last domino
in a tiling.

Theorem 2 For natural numbers n and k, where n ≥ k, we have

n−k
∑

i=0

qk(n−k−i)

[

k − 1 + i

k − 1

]

q

=

[

n

k

]

q

.
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Proof. The set S of weighted tilings of length n + k we decompose into partition of
n−k+1 disjoint subsets S0, S1, S2, . . . , Sn−k, such that in the subset Si there are exactly
n− k − i squares on the right hand side of the last domino in a tiling.

The set S0 is represented by

[

k − 1

k − 1

]

q

qk(n−k).

This holds true since on the left hand side from the last domino in S0 there are k − 1
dominoes and from the fact that there are n − k squares on the right hand side of the
last domino - in every of these tilings. Tilings in the set S1 have n− r − 1 dominoes on
the right hand side of the last domino which means that they are enumerated by

[

k

k − 1

]

q

qk(n−k−1),

etc. Finally, tilings in the set Sn−k are represented by the polynomial

[

n− 1

k − 1

]

q

.

Thus, the sum of these terms,

[

k − 1

k − 1

]

q

qk(n−k) +

[

k

k − 1

]

q

qk(n−k−1) + · · ·+
[

n− 1

k − 1

]

q

is equal to the polynomial
[n
k

]

q
.

Figure 3 shows tilings of length 7 with two dominoes and three squares separated
into subsets S0, S1, S2, S3, with respect to the last domino. One can easily establish that
|S0| = 1, |S1| = 2, |S2| = 3, |S3| = 4 and that polynomial

[

5
2

]

q
enumerates these tilings.

In order to prove Theorem 3 we consider a class of tilings with an odd number of
dominoes. More precisely, we take into account weighted (n + 2r + 1)-board tilings
with 2r + 1 dominoes. The set S of all such tilings we separate into n − 2r subsets
S1, S2, . . . , Sn−2r, by means of the median domino. Tilings in set Si have the median
domino covering cells 2r + i and 2r + i + 1. Thus, in S1 there are tilings having the
median domino covering cells 2r+1 and 2r+2. This means that on the left hand side of
the median domino there are r dominoes covering cells 1 through 2r. Now we separate a
tiling into parts t1 - from cells 1 through 2r and t2 - from cells 2r+3 through n+2r+1.
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S0

S1

S2

S3

Figure 3: Tilings of length 7 with two dominoes and three squares separated
into four subsets, with respect to the last domino in a tiling.

Clearly, the tilings in the set t1 are enumerated by
[ r
r

]

q
. The tilings in t2 are enumerated

by
[

n− r − 1

r

]

q

q(r+1)(n−2r−1),

where the factor q(r+1)(n−2r−1) is added because there are r + 1 dominoes left from a
tiling in t2 and there are n− 2r− 1 squares in a such tiling. By the same arguments one
can conclude that the tilings in S2 are enumerated by the polynomial

[

r + 1

r

]

q

[

n− r

r

]

q

q(r+1)(n−2r−2),

tilings in S3 by
[

r + 2

r

]

q

[

n− r + 1

r

]

q

q(r+1)(n−2r−3),

. . . , and tilings in Sn−2r by
[

n− r − 1

r

]

q

[

r

r

]

q

.

Finally, these terms sum up to

[

r

r

]

q

[

n− r − 1

r

]

q

q(r+1)(n−2r−1) + · · ·+
[

n− r − 1

r

]

q

[

r

r

]

q

which is the polynomial
[ n
2r+1

]

q
. This reasoning completes the proof of Theorem 3.
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Theorem 3 For natural numbers n and r, where n ≥ 2r + 1, we have

n−2r
∑

i=1

q(r+1)(n−2r−i)

[

r − 1 + i

r

]

q

[

n− r − i

r

]

q

=

[

n

2r + 1

]

q

.

As an illustration of Theorem 3 we can take that there are 20 tilings of the length
9, tiled by three dominoes and three squares. These can be separated by means of the
median domino into sets S1, S2, S3 and S4, where |S1| = 4, |S2| = 6, |S3| = 6, |S4| = 4
(Figure 4). These cardinalities correspond to the terms in the equality stated in Theorem
3 for n = 6 and r = 1. The Gaussian polynomial

[6
3

]

q
representing these tilings reads as

q9 + q8 + 2q7 + 3q6 + 3q5 + 3q4 + 3q3 + 2q2 + q + 1.

Figure 4: Representatives of sets S1, . . . , S4, respectively, of tilings of length 9
with three dominoes, with the central domino marked.

Having in mind the symmetry of pairs of factors under the sum in Theorem 3, we
have a simple consequence to binomial coefficients. By the substitution m = n− 2r we
immediately obtain the following corollary.

Corollary 1 For natural numbers n and r, where n is even we have

2

n/2
∑

i=1

(

r − 1 + i

r

)(

n+ r − i

r

)

=

(

n+ 2r

2r + 1

)

.

In order to prove our next result, we consider the class of (n+r)-board tilings having
r dominoes where the constraint on the length of a tiling is that n − r must be odd.
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Thus, the number of squares in a tiling is odd which provides us a double counting of
tilings. By Lemma 1, the coefficient

[n
r

]

q
enumerates these tilings. On the other hand,

the sum
[ n−r−1

2

0

]

q

[ n−r−1
2 + r

k

]

q

+

[ n−r−1
2 + 1

1

]

q

[ n−r−1
2 + r − 1

k − 1

]

q

q(n−r+1)/2 + · · · +
[ n−r−1

2 + r

k

]

q

[ n−r−1
2

0

]

q

qr(n−r+1)/2

consisting of r + 1 terms also enumerates them. This follows by analogue arguments as
in the previous proof, with the difference that here we enumerate tilings with respect
to the median square (which always exists since their number is odd). Now, by the
substitution m := n− r, we have the following statement.

Theorem 4 For natural numbers n and r, where n is odd, we have

r
∑

i=0

qi(n+1)/2

[n−1
2 + i

i

]

q

[ n−1
2 + r − i

r − i

]

q

=

[

n+ r

r

]

q

.

In the same fashion as in case of Theorem 3 we consider, as an illustration of Theorem
4, tilings of the length 13. The Gaussian polynomial

[

9
4

]

q
representing these tilings reads

as

q20 + q19 + 2q18 + 3q17 + 5q16 + 6q15 + 8q14 + 9q13 + 11q12 + 11q11 +

12q10 + 11q9 + 11q8 + 9q7 + 8q6 + 6q5 + 5q4 + 3q3 + 2q2 + q + 1.

Again we have a consequence to binomial coefficients and we state it in Corollary 2.

Corollary 2 For odd natural numbers n and r we have

2

(r+1)/2
∑

i=0

(n−1
2 + i

i

)(n−1
2 + r − i

r − i

)

=

(

n+ r

r

)

.
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1.4 Concluding remarks

In this paper we use a combinatorial interpretation of q-binomial coefficients through
the weighted lattice paths to establish identities for these polynomials. In particular, we
establish two duals of Gaussian polynomial identities. A pair of identities is stated in
Theorems 1 and 8. In Theorems 3 and 4 we evaluate the sum with terms of two factors.

We believe that ideas and results presented here could be used to get further Gaussian
polynomial identities. Here we enumerate weighted tilings with respect to position of
the last square, the last domino, the median domino and the median square. We are
fairly convinced that one can found other similar criteria and employ them to obtain
further identities. More refined constraints on tilings could possibly lead to even more
interesting relations for Gaussian polynomials.
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This paper addresses an overview on the recent development of the area known
as the tropical geometry. In particular we point out combinatorial aspect of the
field. After a brief introduction to tropical algebra we discuss tropical hypersurfaces
and applications in enumerative geometry.
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1.1 Introduction

The tropical geometry is a very new area in mathematics, that is in essence closely
related to algebraic geometry. While rapid development of the area begins with this
century, its leading ideas had appeared in earlier works of G. M. Bergman and others.
Recent significant contribution to the theory has been made by G. Mikhalkin in par-
ticular within the paper that can be understand as foundation of enumerative algebraic
geometry (see [17, 18, 19, 21]).

It is worth mentioning that the attribute ”tropical” has no any intuitive meaning
related to the theory but was coined by French mathematicians in honor of the Brazilian

DOI: https://doi.org/10.5592/CO/CCD.2016.05
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mathematician Imre Simon, who contributes to the field [24]. In what follows we are
firstly concerned with tropical arithmetic and its relations to classical arithmetic. Then
we give an example of tropical geometry and combinatorial mathematics. Besides we
define tropical curves and correlation with enumerative algebraic geometry.

We also presents recent results of Maclagan and Sturmfels (see [16]) and Mikhalkin
(see [19]). For further introduction to tropical geometry one can look at references
[2, 6, 10, 14, 23, 25, 26, 27]. A more advanced reader may refer to [3, 15, 20].

As an introduction to the field we present basic ideas and facts of tropical algebra.
The set of tropical numbers is defined as T = R ∪ {∞} whereas operations of tropical
addition and multiplication on T are defined as

x⊕ y := min(x, y)

x⊙ y := x+ y,

with the usual conventions when one of the operands is ∞ [16]. For example, we
have 3 ⊕ 5 = 3, 3 ⊙ 5 = 8. The set T equipped with these operations form a tropical
semiring (R,⊕,⊙) or the min-plus algebra. In this triple one can replace the operation
of minimum by maximum to get the isomorphic max-plus algebra. Many of axioms
from arithmetic remain also in tropical algebra. As it is the case in classical algebra, we
abbreviate multiplication x⊙ y by xy.

Having in mind that zero is the neutral element in respect to multiplication, for the
coefficients in Pascal triangle we have

When applying the binomial theorem on the third row of the triangle we get

(x⊕y)3 = (x⊕y)⊙(x⊕y)⊙(x⊕y) = 0⊙x3⊕0⊙x2y⊕0⊙xy2⊕0⊙y3 = x3⊕x2y⊕xy2⊕y3

and furthermore
(x⊕ y)3 = x3 ⊕ y3.
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Clearly, in classical arithmetic we have

3 ·min{x, y} = min{3x, 2x + y, x+ 2y, 3y} = min{3x, 3y}

for every x, y ∈ R. A simple generalization of this statement give as a tropical version
of the binomial theorem,

(x⊕ y)n = xn ⊕ yn, n ∈ N. (5)

Over the tropical semiring, we can define a linear algebra operations of adding and
multiplying vectors and matrices in the usual way. For instance,

(

0 1
2 3

)

⊙
(

4 5
6 7

)

=

(

0⊙ 4⊕ 1⊙ 6 0⊙ 5⊕ 1⊙ 7
2⊙ 4⊕ 3⊙ 6 2⊙ 5⊕ 3⊙ 7

)

=

(

4 5
6 7

)

.

We let x1, x2, . . . , xn be elements of (T,⊕,⊙). Then one can define both monomials
and polynomials in these variables on the tropical algebra. A tropical polynomial p in n
variables is defined as the function p : Rn → R,

p(x1, . . . , xn) = a⊙ xi11 x
i2
2 · · · xinn ⊕ b⊙ xj11 x

j2
2 · · · xjnn ⊕ · · · , (6)

with a, b, . . . ∈ R, i1, j1, . . . ∈ Z. According to the definition of tropical addition and
multiplication we also have

p(x1, . . . , xn) = min(a+ i1x1 + · · ·+ inxn, b+ j1x1 + · · · + jnxn, . . .).

The following Lemma 1 tell us that a graph of tropical polynomial is consisted by linear
functions.

Lemma 1 Tropical polynomials in n variables x1, . . . , xn are linear piecewise concave
functions on R

n with integer coefficients.

The values of arguments of tropical polynomial function p in the breakpoints where p
fails to be linear are zeros of p, the so-called hypersurface V (p). As a concrete example
of a tropical polynomial in one variable we consider

p(x) = 3⊙ x3 ⊕ 1⊙ x2 ⊕ 2⊙ x⊕ 4

= min(3 + 3x, 1 + 2x, 2 + x, 4).
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The graph of this function consists of four lines: y = 3x+ 3, y = 2x+ 1, y = x+ 2 and
y = 4 (see Figure 1) and related hypersurface is V (p) = {−2, 1, 2}. The fundamental
theorem of algebra holds true also in tropical algebra, thus tropical polynomial function
can be whiten as a tropical product of linear functions. In this particular example zeros
are −2, 1, 2 so we have

p(x) = 3⊙ (x⊕ (−2))⊙ (x⊕ 1)⊙ (x⊕ 2).

4)

Figure 1: Graph of the tropical polynomial p(x) = 3x3 ⊕ 1x2 ⊕ 2x⊕ 4.

1.2 Shortest path, tropical distance and volume

We let G denote a directed graph with n nodes that are labeled by 1, 2, . . . , n. Every
directed edge (i, j) in G has an associated length dij ∈ R≥0. If (i, j) is not an edge of
G then we set di,j = +∞. We represent the weighted directed graph G by its n × n
adjacency matrix DG,

DG =











0 d1,2 · · · d1,n
d2,1 0 · · · d2,n
...

...
. . .

...
dn,1 dn,2 · · · 0











.

Off-diagonal entries are the edge lengths dij . The matrix DG need not be symmetric.
Now, consider the n × n matrix which is obtained from topically multiplying the given
adjacency matrix DG with itself n− 1 times

D⊙n−1
G = DG ⊙DG ⊙ · · · ⊙DG.
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The problem of finding shortest paths in a weighted directed graph G is solved in the
following Lemma 2.

Lemma 2 Let G be a weighted directed graph on n nodes with n × n adjacency matrix
DG. The entry of the matrix D⊙n−1

G in row i and column j equals the length of a shortest
path from node i to node j in G.

For r ≥ 0, a recursive formula for the length of a shortest path from node i to node j
which uses at most r edges in G we can write in the following way:

d
(r)
ij = min{d(r−1)

ik + dkj : k = 1, 2, . . . , n}.

This recursion is used in the Floyd-Warshall algorithm. This algorithm is known as
the fastest algorithm for finding shortest paths in a weighted graph. For us, running
that algorithm means performing the matrix multiplication

D⊙r
G = D⊙r−1

G ⊙DG for r = 2, . . . n− 1.

In this section we will still define tropical distance and tropical volume. For more see
[4, 5]. For two points v,w ∈ T

d the tropical distance is the number

tdist(v,w) := max{(vi − wi) | i ∈ [d]} −min{(vi − wi) | i ∈ [d]}

= max
i,j∈[d]

|vi − wi + wj − vj | .

This number is given in [4, 5] and he is the Euclidean distance in the tropical setting.

Let A = (aij) ∈ T
d×d be a square matrix. Tropical volume of A is given as the

expression

tvol A :=

∣

∣

∣

∣

∣

⊕

σ∈Sym(d)

∑

ai,σ(i) −
⊕

τ∈(Sym(d)−σopt)

∑

ai,τ(i)

∣

∣

∣

∣

∣

where σopt is a permutation for which
∑

ai,σopt(i) coincides with the tropical determinant
of A. Tropical determinant is defined in the following way

tropdet(A) :=
⊕

σ∈Sn

x1σ(1) ⊙ x2σ(2) ⊙ · · · ⊙ xnσ(n).
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1.3 Tropical curves in T
2

In the introduction we consider a graph of a tropical polynomial in one variable and
have seen that such a graph is a collection of linear concave functions. Naturally an
extension of this notion within polynomials of any degree and any number of variables
lead to tropical curves. For the purpose to have conceptually simpler definitions and
examples here we restrict discussion to curves in T

2 instead of Tn. In order to define
tropical curve, we must first define tropical hypersurface we mentioned in the intro-
duction. Tropical hypersurface V (p) of p is the set of all points w ∈ T

2 at which this
minimum is attained at least twice. Equivalently, a point w ∈ T

2 lies in V (p) if and only
if p is not linear at w. Plane tropical curve is tropical hypersurface V (p) of a polynomial
in two variables

p(x, y) =
⊕

(i,j)

cij ⊙ xi ⊙ yj.

A tropical line of a 2-variable polynomial p is a hypersurface V (p) of the first degree
p,

p(x, y) = a⊙ x⊕ b⊙ y ⊕ c = min(a+ x, b+ y, c),

with a, b, c ∈ R. This tropical line consists of three semi-lines with source in (c−a, c− b)
where directions of lines are north, east and south-west i.e. they are defined by relations
x = c − a ≤ y, y = c − b ≤ x and y = x, respectively. Figure 2 a) depicts such a line.
In the same fashion one can study tropical quadratic curves as well as the other higher
order curves. In general, tropical curve defined by p(x, y) is a graph having defined the
weight function on the edges, and this function is defined by means of the polynomial
degree and the coefficients [2].

As an even more illustrative example let us consider a quadratic curve, defined by
the polynomial p(x, y) = a ⊙ x2 ⊕ b ⊙ xy ⊕ c ⊙ y2 ⊕ d ⊙ y ⊕ e ⊕ f ⊙ x. To draw the
related curve one have to take into account 15 constraints arising from the definition of
polynomial, which give the curve having three segments and six semi-lines. The Figure
2 b) shows a tropical conic defined by

p(x, y) = 2⊙ x2 ⊕ xy ⊕ 2⊙ y2 ⊕ x⊕ (−1)⊙ y ⊕ 3.

The following Lemma 3 summarizes the salient features of a plane tropical curve.

Lemma 3 The curve V (p) is a finite graph that is embedded in the plane R
2. It has

both bounded and unbounded edges, all edge slopes are rational, and this graph satisfies
a balancing condition around each node.
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Figure 2: A tropical line and a tropical quadratic curve.

Below we give another way we can describe the tropical curves. The Newton polygon
of the implicit equation f(x, y) is the convex hull in R

2 of all points (i, j) ∈ Z
2 such that

xiyj appears with non-zero coefficient in the expansion of f(x, y).

Lemma 4 We let p is a tropical polynomial. Then V (p) is a planar graph which is a
dual of regular subdivision of the Newtonian polygon Newt(p).

The unbounded rays of a tropical curve V (p) are perpendicular to the edges of the
Newton polygon. The Figure 3 a) shows a subdivisions of the Newton polygon and the
Figure 3 b) shows belongs to the tropical biquadratic curve.

Let consider tropical curves having Newtonian polygon being triangle with vertices
(0, 0), (0, d) and (d, 0). These curves we shall call curves of the degree d. The curve of
the degree d has d semi-lines, taking into account multiplicity (the weights of edges),
which are perpendicular to each of three edges of the Newtonian triangle [16, 22]. There
are some facts known about intersection of two curves of a certain degree. We have it
by the following Bézout’s theorem (see [1, 9]).

Theorem 5 (Bézout) We let C and D be two tropical curves of the degrees c and d in
R
2. If these curves intersect transversely then the number of intersecting points, counted

with multiplicity, is equal to cd.

On the other hand, it is possible that the two curves have no neither transversal nor
finite intersection. This possibility is called stable intersection and more details on it
one can find at [16].
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a) b)

Figure 3: Subdivisions of a Newton polygon and the tropical biquadratic curve

1.4 Gromov-Witten invariants

A complex algebraic curve is the set of zeros of a homogeneous polynomial P (x, y, z) =
0 in the complex projective space P

2. The degree of a complex algebraic curve is simply
the degree of the polynomial P (x, y, z) [7].

The central subject of the enumerative geometry is to determine Gromov-Witten
invariants. This invariant counts how many of complex algebraic curves of a given degree
and genus are incident with certain number of points. It is proven by G. Mikhalkin that
complex algebraic curves can be replaced by tropical curves in that sense and he used
this fact to derive combinatorial expression for the number of curves in the tropical case
[8, 12, 13, 16].

Recall that if C is a smooth curve of the degree d in the projective plane P
2, then

its genus g(C) is equal to

g(C) =
1

2
(d− 1)(d− 2).

We also have
g(C) = #(int(Newt(C)) ∩ Z

3).

The set of all curves of the degree d forms projective space of the dimension

(

d+ 2

2

)

− 1 =
1

2
(d− 1)(d − 2) + 3d− 1.
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We let Csing denote a singular curves having ν knots. Then for its genus we have
g(Csing) =

1
2(d− 1)(d− 2)− ν.

Now, the question arising is what is the number Ng,d of irreducible curves of genus g
and degree d, which are incident with g + 3d− 1 general points in a complex projective
plane P

2. It is remarkable fact that the number Ng,d can be found and it can be done
by methods of tropical geometry. In particular we have the following theorem, known
as the Mikhailkin theorem of correspondence.

Theorem 6 The number of irreducible tropical curves of the degree d and genus g which
are incident with g + 3d − 1 general points in R

2, where each curve is counted with
multiplicity, is equal to the Gromov-Witten number Ng,d of the complex projective plane
P
2.

In order to illustrate this statement let us list several values of the Gromov-Witten
invariants. The simplest Gromov-Witten invariants are N0,1 = 1 and N0,2 = 1. It state
that a unique line passes through two points, and that a unique quadric passes through
five points. The first non-trivial number is N0,3 = 12. We will explain it briefly. Let
curves be defined as cubic polynomials

f = c0x
3 + c1x

2y + c2x
2z + c3xy

2 + c4xyz + c5xz
2 + c6y

3 + c7y
2z + c8yz

2 + c9z
3.

For general coefficients c0, c1, . . . , c9, the curve {f = 0} is smooth of genus g = 1. The
curve becomes rational, i.e. the genus drops to g = 0, precisely when it has a singular
point. This is happening if and only if the discriminant of f vanishes. The discriminant
∆(f) is a homogeneous polynomial of degree 12 in the 10 coefficients c0, c1, . . . c9 which
are unknown. It is a sum of 2040 monomials:

∆(f) = 19683c40c
4
6c

4
9 − 26244c40c

3
6c7c8c

3
9 + · · · − c22c3c

4
4c

3
5c

2
6. (7)

Discriminants (7) is calculated using [11]. Further, suppose the cubic {f = 0} is
required to pass through eight given points in P

2. This translates into eight linear equa-
tions in c0, c1, . . . c9. Combining the equation ∆(f) = 0 with the eight linear equations,
we obtain a system of equations that has 12 solutions in P

9. These solutions are the
coefficient of the N0,3 = 12 rational cubics we seek.

The other non-trivial numbers are N3,4 = 1, N2,4 = 27, N1,4 = 255, N0,4 = 620.
When g = 0 these values satisfy a nice recurrence relation

N0,d =
∑

d1+d2=d
d1,d2>0

(

d21d
2
2

(

3d− 4

3d1 − 2

)

− d31d2

(

3d− 4

3d1 − 1

))

N0,d1N0,d2 . (8)
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1.5 Concluding remarks

Tropical geometry is a rather new field at the interface between algebraic geometry
and combinatorics, and with connections to many other fields. Respectively it is a linear
version of algebraic geometry in which polynomials are replaced with piecewise-linear
functions, and their zero sets into polyhedral complexes. As such, it is suitable to study
using the aid of combinatorics. It has shown that many algebraically difficult operations
become easier in the tropical setting, as the structure of the objects seems to be simpler.
Because of that tropical geometry has found significant applications, in particular in
dynamic programming. In enumerative geometry many open problems are solved using
ideas of tropical geometry. It also takes a role in physics, since it appears in the study
of the string theory.
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On some partition identities related to affine Lie algebra
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Abstract

In this paper, meant for combinatorialists, we give a proof of equipotence of
two families of partitions (’Primc conjecture’) which appeared in the early stage

of representation theory of affine Lie algebra A
(1)
1 (or Sl(2,C)∧). The result

was obtained already in 1983 and it lead to the very first character formulas
for the level 3 standard modules (this is mentioned in Ref[1]) on pages 2 and 77
respectively). We hope that the intricacy of handling the interlocking recursion rela-
tions may be of some interest to combinatorialists not working in Lie algebra theory.

Keywords : partition function, partition identity, Lie algebra

MSC: 05A17, 11P84

1.1 Introduction

For ν = 0, 1, 2 (mod 3) we introduce the following families of partitions:

Qν
s(n) := {(n0, n1, ..., ns) ∈ N

s+1|n = n0 + n1 + ...+ ns,

ni ≡ −i− ν (mod 3),

ni ≥ ni+1 − 2, ni > ni+2}
Qν(n) :=

⋃

s≥0

Qν
s (n)

(9)
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and denote by

qνs (n) := CardQν
s(n) (10)

qν(n) := CardQν(n) (11)

the numbers of partitions in these families of partitions.

The partitions from (9) we shall relate to the partitions appearing in the Gordon’s
generalization of the Rogers-Ramanujan identities:

Pk,i(n,m) := {(n1, ..., nm) ∈ N
m|n = n1 + ...+ nm,

nj ≥ nj+1, nj ≥ nj+k−1 + 2,

Card{j|nj = 1 < i}}
(12)

pk,i(n,m) := CardPk,i(n,m) (13)

Proposition 1 The family Qν
s(n) is nonempty if s (mod 3) is given by the following

table,

n (mod 3) \ ν 0 1 2

0 0 or 2 1 or 2 2
1 − − 0 or 1
2 1 0 −

(14)

Proof. For any given n, ν if α = (n0, ..., ns) ∈ Qν
s(n) 6= ∅, then

n ≡
s
∑

i=0

(−i− ν) (mod 3) = −s(s+ 1)

2
− (s+ 1)ν (mod 3). (15)

The recursions for the number theoretic functions qνs (n) (defined by (23) ) are given by
the following proposition.

Proposition 2 For n ∈ N, s ∈ Z+, ν ∈ Z3 we have:

qνs (n) =











qν+2
s (n− 2s + 2) + qν+2

s−2 (n− 2s− 2), if s+ ν ≡ 0 (mod 3)

qν+1
s (n− s− 1), if s+ ν ≡ 1 (mod 3)

qν+1
s (n− s− 1) + qν+2

s−1 (n− s− 1), if s+ ν ≡ 2 (mod 3)

(16)
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with initial conditions

qνs (1) = δs,2 · δs,0 (17)

together with the convention qνs (0) = 1 if s = ν = 0 or s = −1, ν = 1; 0 otherwise. We
put

qνs (n) = 0 (18)

if (s ≤ 0 or n ≤ 0) and n 6= s, so that the right-hand side of (16) is well defined. With
the recursions above all functions qνs (n) are uniquely defined.
Proof. We distinguish three cases depending on (s + ν) (mod 3). s+ ν ≡ 0(mod3). If
s = 0, then α = (n0), n0 ≡ −ν(mod3), n0 > 0; so

qν0 (n) =











q20(n− 2), for ν = 0

q20(n− 1), for ν = 1

q00(n− 1), for ν = 2

.

If s > 0 and α = (n0, ..., ns) ∈ Qν
s(n), then ns−1 ≡ −(s − 1) − ν ≡ 1(mod3), ns =

−s − ν ≡ 0(mod3), hence ns−1 ≥ 1, ns ≥ 3. Then in the subcase a1) ns−1 ≥ 2 we
have ns−1 ≥ 4 because ns−1 ≡ 1(mod3). By letting α̂ := (n0 − 2, ..., ns − 2) we get all
partitions from Qν+2

s (n− 2s − 2).

In the subcase a 2) ns−1 = 1, from (9) it follows ns−1 ≥ ns − 2, hence ns = 3. So
Q2

1(4) = {(1, 3)} and q21(4) = 1, and for s ≥ 2 by letting

α̂ = (n0 − 2, ..., ns−2 − 2)

we obtain all partitions from Qν+2
s−2(n−2s−2, because ns−2 > ns(= 3), ns−3 ≥ ns−2−2(≥

1).

By combining the two bijections from a1) and a2) we obtain the first relation in (16).

b) s + ν ≡ 1 (mod 3). For α = (n0, ..., ns) ∈ Qν
s(n), ns ≡ −s − ν ≡ 2 (mod 3),

ns−1 ≡ −s+ 1− ν ≡ 0 (mod 3).

So ns ≥ 2 and ns−1 ≥ 3 (if s > 0). Then the map α 7→ ᾱ = (n0 − 1, ..., ns − 1) is a
bijection onto Qν+1

s (n− s− 1).

c) s + ν ≡ 2 (mod 3). For α = (n0, ..., ns) ∈ Qν
s(n) we have ns ≡ 1 (mod 3) and

ns−1 ≡ 2 (mod 3) (if s > 0). Like in a) we have two subspaces:

c1) ns = 1. Then α 7→ ᾱ = (n0 − 1, ..., ns−1 − 1) is a bijection onto Qν+1
s−1(n− s− 1).
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c2) ns ≥ 4. Then ns−1 ≥ ns−2(≥ 2), so we get a bijection α 7→ ᾱ = (n0−1, ..., ns−1)
onto Qν+1

s (n − s − 1). In the case s = 0, we have ν ≡ 2 (mod 3) we need to check that

q20(n) = q00(n− 1). For n > 1 it is obvious, and for n = 1, q
(2)
0 (1) = 1 = q00(0) by (18).

The fact that (16) uniquely determines the functions qνs one can prove by induction
on n+ s.

Corollary 3 For n ∈ N, s ∈ Z+, ν ∈ Z3 (with the conventions from the Proposition 2)
we have

qνs+2(n) + qνs (n) = qν+1
s+2 (n+ 2s+ 6), if s+ ν ≡ 0 (mod 3)

qνs (n) = qν+2
s (n+ s+ 1), if s+ ν ≡ 2 (mod 3)

qνs+1(n) + qνs (n) = qν+2
s+1 (n+ s+ 2), if s+ ν ≡ 2 (mod 3)

(19)

Corollary 4 For the number theoretic functions qν(n), (ν = 0, 1, 2) defined in (11) we
have the following formulas:
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i) q0(3n) =
∑

s≥1

q13s−1(3n + 6s)

ii) q0(3n) =
∑

s≥0

q23s(3n + 3s+ 1) =
∑

s≥0

q03s(3n+ 6s + 2)

iii) q1(3n) =
∑

s≥1

q23s−1(3n + 6s+ 4)

iv) q1(3n) =
∑

s≥1

q03s−1(3n + 3s)

v) q2(3n + 1) =
∑

s≥1

q13s−2(3n + 3s) =
∑

s≥1

q03s−2(3n+ 6s− 1)

vi) q2(3n + 1) =
∑

s≥0

q03s(3n + 6s+ 3)

vii) q2(3n) =
∑

s≥0

q23s+2(3n) =
∑

s≥1

q03s−1(3n− 3s)

viii) q0(3n + 2) =
∑

s≥0

q03s+1(3n + 2) =
∑

s≥0

q13s+1(3n − 3s)

ix) q1(3n + 2) =
∑

s≥0

q13s(3n + 2) =
∑

s≥0

q23s(3n− 3s+ 1)

x) q0(3n + 1) = q1(3n + 1) = q2(3n + 2) = 0.

(20)

Proof. Follows easily by Corollary 3 with the help of Proposition 1.

1.2 Relation to Gordon partitions

In this subsection we shall relate partition families Qν
s (n) from (9) firstly to standard

partitions with additional difference conditions and secondly to Gordon partitions. For
n ∈ N, s ∈ Z+, ν ∈ Z3 we introduce the following families of partitions:

Q̄ν
s(n) := {(n0, n1, ..., ns) ∈ N

s+1|nj ≡ −s− ν(mod3),

n = n0 + ...+ ns, nj ≥ nj+1, nj − nj+2 ≥ 5, ns−1 > 2}
Q̄ν(n) :=

⋃

s≥0

Q̄ν
s(n)

(21)
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and denote by

q̄νs (n) := CardQ̄ν
s(n) (22)

q̄ν(n) := CardQ̄ν(n). (23)

Proposition 3 For any n ∈ N and 0 ≤ s ≤ n we have

qνs (n) = q̄νs (n+ s(s+ 1)) (24)

Proof. For α = (n0, ..., ns) ∈ Qν
s(n) let α

′ = (n
′

0, ..., s
′

s) be defined by

n
′

i = ni + 2(s − i).

We claim that α 7→ α
′

is a bijection of Qν
s(n) with Q̄

ν
s(n). From

∑s
i=0 2(s− i) = s(s+1)

and n
′

i = ni + 2(s − i) ≥ ni+1 − 2 + 2(s − i) = n
′

i+1 it follows that α
′

is a partition of

n+ s(s+ 1). Since n
′

i ≡ −i− ν + 2(s − i) ≡ −s− ν (mod 3)),

n
′

i = ni + 2(s − i) > ni+2 + 2(s − i) = n
′

i+2 + 4

and
n

′

s−1 = ns−1 + 2 > 2.

then the partition α
′

belongs to Q̄ν
s(n+ s(s+ 1)).

Conversely for any partition β = (m0,m1, ...,ms) ∈ Q̄ν
s(n + s(s + 1)) let α =

(n0, ..., ns), where ni := mi − 2(s − i). Then ni ∈ N, because for i = s− 2j

ns−2j = ms−2j − 4j > ms−2j+2 − 4(j − 1) > ... > ms > 0

and for i = s− 2j − 1

ns−2j−1 = ms−2j−1 − 4j − 2 > ... > ms−1 − 2 > 0

where we have used the defining inequalities in Q̄ν
s(n) twice. Thus we have proved that

α 7→ α
′

is a bijection, hence the identity (24) follows.

Now we shall relate the partition families Q̄ν
s(n) to the Gordon’s partitions families

defined in (12).
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Proposition 4 In terms of the numbers pk,i(n,m) of Gordon partitions defined in (12)
we have the following formulas:

q̄νs (n) =











p3,3(
n
3 , s+ 1), if s+ ν ≡ 0 (mod 3), n ≡ 0 (mod 3)

p3,2(
n+s+1

3 , s + 1), if s+ ν ≡ 1 (mod 3), n ≡ 2s+ 2 (mod 3)

p3,2(
n+2s+2

3 , s+ 1), if s+ ν ≡ 2 (mod 3), n ≡ s+ 1 (mod 3)

Proof. 1.) Let s + ν ≡ 0 (mod 3). Then each α = (n0, n1, ..., ns) ∈ Q̄ν
s(n) satisfies

ni ≡ 0 (mod 3), ni ≥ ni+1, ni−ni+2 ≥ 5, ns−1 > 2. By defining α
′

= (m0, ...,ms), with
mi = ni/3 we see that mi ≥ mi+1, mi ∈ N, mi −mi+2 ≥ 2, ms−1 > 1. This implies that
α

′ ∈ P3,3(
n
3 , s+ 1) and clearly α 7→ α

′

is a bijection.

2.) s + ν ≡ 1 (mod 3). Then ni ≡ 2 (mod 3), ni ≥ ni+1, ni − ni+2 ≥ 5, ns−1 >
2( =⇒ ns−1 ≥ 5). By defining α

′

= (m0, ...,ms) where mi = (ni + 1)/3 we see that
mi ≥ mi+1, mi − mi+2 ≥ 2, ms−1 > 1 so α

′

belongs to P3,2(
n+s+1

3 , s + 1) and again

α 7→ α
′

is a bijection.

3.) s + ν ≡ 2 (mod 3). Then ni ≡ 1 (mod 3), ns−1 > 2( =⇒ ns−1 ≥ 4). Let
α

′

= (m0, ...,ms) where mi = (ni + 2)/3. Then mi ∈ N, mi −mi+2 ≥ 2, ms−1 > 1. So
α

′ ∈ P3,2(
n+2s+2

3 , s+ 1) and α 7→ α
′

is a bijection. The proof is finished.

By combining the Proposition 3 and Proposition 4 we obtain

Corollary 5 For any n ∈ N and 0 ≤ s ≤ n, ν ∈ {0, 1, 2} we have

qνs (n) =











p3,3(
n+s(s+1)

3 , s+ 1), if s+ ν ≡ 0 (mod 3)

p3,2(
n+(s+1)2

3 , s+ 1), if s+ ν ≡ 1 (mod 3)

p3,2(
n+(s+1)(s+2)

3 , s+ 1), if s+ ν ≡ 2 (mod 3)

where p3,i(n,m) is the number of partitions (n1, ..., nm) of n(= n1 + ... + nm) such that
nj − nj+2 ≥ 2, Card{j|nj = 1} < i. (cf. (12) )

Remark 5 We have

i) p3,3(n,m) 6= 0 =⇒ m2 ≤ 2n

ii) p3,2(n,m) 6= 0 =⇒ m(m+ 1) ≤ 2n
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For i), if (n1, ..., nm) ∈ P3,3(n,m) then

n = n1 + ...+ nm ≥
{

(m+ (m− 1) + (m− 1) + ...+ 3 + 3 + 1 + 1 = m2+1
2 , if m odd

((m− 1) + (m− 1) + ...+ 3 + 3 + 1 + 1 = m2

2 , if m even

For ii), if (n1, ..., nm) ∈ P3,2(n,m) then

n = n1 + ...+ nm ≥ m+ (m− 1) + ...+ 2 + 1 = m(m+ 1)/2.

Remark 6 We have

qνs (n) 6= 0 =⇒











(s+ 2)2 < 2n, if s+ ν ≡ 0 (mod 3)

(s+ 1)(s + 4) ≤ 2n, if s+ ν ≡ 1 (mod 3)

(s+ 1)(s + 2) ≤ 2n, if s+ ν ≡ 2 (mod 3).

1.3 Equipotence of the families Qν(n), ν = 0, 1 of partitions

Theorem 7 For n ∈ 3N, ν = 0, 1, the set of partitions

Qν(n) := {(n0, n1, ..., ns) ∈ N
s+1 | ni ≡ −i− ν (mod 3), s ≥ 0,

n = n0 + ...+ ns,

ni > ni+2,

ni ≥ ni+1 − 2}

are equinumerous, i.e. Card Q0(n) = Card Q1(n).

Proof. We have to prove that CardQ0(n) = CardQ1(n) (n ∈ 3N) or, by using the
notation (11) that

q0(n) = q1(n), n ∈ 3N (25)

By relations (20) i), iv) of Corollary 4 this is equivalent to

∑

s≡2 (mod 3)

q1s(n+ 2s+ 2) =
∑

s≡2 (mod 3)

q0s(n + s+ 1), n ∈ 3N, s ≥ 0 (26)
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and, by Corollary 5. this is equivalent to

∑

s≡0 (mod 3)

p3,3

(

n+ s(s+ 1)

3
, s

)

=
∑

s≡ (mod 3)

p3,2(
n+ s(s+ 2)

3
, s), (27)

with n ∈ 3N, s > 0.

Now we employ the Theorem 1 of reference [2] in the special case k = 3, i = 2, 3, d = 0.
In our notations (13) and by replacing q for q3 special case reads as follows:

∑

n≥0

∑

m≥0

p3,i(n,m)q3nzm =
∑

n1≥0

∑

n2≥0

zN1+N2

(q3)n1(q
3)n2

{

q3(N
2
1+N2

2 ), if i = 3

q3(N
2
1+N2

2+N2), if i = 2
(28)

where N1 = n1 + n2, N2 = n2 and (q)k = (1 − q)(1 − q2)...(1 − qk). From (28) it
follows easily

p3,3

(

n+ s(s+ 1)

3
, s

)

= [qn+s(s+1)]
∑

n1,n2≥0,N1+N2=s

q3(N
2
1+N2

2 )

(q3)n1(q
3)n2

(29)

= [qn]
∑

n1,n2≥0,N1+N2=s

q3N
2
1+3N2

2−s(s+1)

(q3)n1(q
3)n2

= [qn]
∑

n1,n2≥0,N1+N2=s

q2(N
2
1−N1N2+N2

2 )−N1−N2

(q3)n1(q
3)n2

.

Similarly we get

p3,2

(

n+ s(s+ 2)

3
, s

)

= [qn]
∑

n1,n2≥0,N1+N2=s

q2(N
2
1−N1N2+N2

2 )+N2−2N1

(q3)n1(q
3)n2

. (30)

From (25) ⇐⇒ (26) ⇐⇒ (27) and (29) , (30) to prove (25) it is enough to prove the
equality of generating functions
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1 +
∑

n≥1,n≡0 (mod 3)

q0(n)xn =
∑

n1,n2≥0,N1+N2≡0 (mod 3)

x2(N
2
1−N1N2+N2

2 )−N1−N2

(x3)n1(x
3)n2

(31)

and

1 +
∑

n≥1,n≡0 (mod 3)

q1(n)xn =
∑

n1,n2≥0,N1+N2≡0 (mod 3)

x2(N
2
1−N1N2+N2

2 )+N2−2N1

(x3)n1(x
3)n2

(32)

Observe now that for (n1, n2 ∈ N
2) we have

n1 + 2n2 ≡ 0 (mod 3) ⇐⇒ n2 + 2n1 ≡ 0 (mod 3).

By change of variables (n1, n2) → (n2, n1) in (32), the quantity N2 − 2N1 = n2 −
2(n1 + n2) = −2n1 − n2 gets transformed to −n1 − 2n2 = −N1 −N2 and the R.H.S of
(32) becomes the R.H.S of (31) so the R.H.S of (31) and (32) are equal. This proves the
Theorem 7

Theorem 8 For the functions q(0)(n), q(1)(n), q(n) we have the following generating
functions:

i) 1 +
∑

n≡0 (mod 3)

q(0)(n)xn =
∑

n1,n2≥0,N1+N2≡0 (mod 3)

x2(N
2
1−N1N2+N2

2 )−N1−N2

(x3)n1(x
3)n2

(33)

ii)
∑

n≡0 (mod 3)

q(1)(n)xn =
∑

n1,n2≥0,N1+N2≡2 (mod 3)

x2(N
2
1−N1N2+N2

2 )−N1−N2

(x3)n1(x
3)n2

(34)

iii)
∑

n≡1 (mod 3)

q(2)(n)xn =
∑

n1,n2≥0,N1+N2≡1 (mod 3)

x2(N
2
1−N1N2+N2

2 )−N1−N2

(x3)n1(x
3)n2

(35)
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Proof. The relation i) is obtained in (31). In order to prove relation ii) we use (20),
iii) to get

q(1)(n) =
∑

s∈3Z++1

q(2)s (n+ 2s + 2).

Furthermore, according to Corollary 5 we have

q(1)(n) =
∑

s∈3Z++1

p3,3

(

n+ (s+ 1)(s + 2)

3
, s+ 1

)

=
∑

t∈3Z++2

[xn+t(t+1)]
∑

n1,n2≥0,N1+N2≡2 (mod 3)

x(3N
2
1+3N2

2 )

(x3)n1(x
3)n2

= [xn]
∑

n1,n2≥0,N1+N2≡2 (mod 3)

x2(N
2
1−N1N2+N2

2 )−N1−N2

(x3)n1(x
3)n2

.

Now, by substitution into generating function for q(1) we obtain relation ii).

For the purpose to to prove relation iii) firstly we use relation vi) in Corollary 5 to
get:

q(2)(n) =
∑

s∈3Z++1

q(0)s (n+ 2s + 2), n ≡ 1 (mod 3)

=
∑

s∈3Z+

p3,3

(

n+ (s+ 1)(s + 2)

3
, s + 1

)

=
∑

t∈3Z++1

[xn+t(t+1)]
∑

n1,n2≥0,N1+N2≡t (mod 3)

x(3N
2
1+3N2

2 )

(x3)n1(x
3)n2

= [xn]
∑

n1,n2≥0,N1+N2≡1 (mod 3)

x2(N
2
1−N1N2+N2

2 )−N1−N2

(x3)n1(x
3)n2

.

Once having this relation, the statement iii) follows directly.

Corollary 6 We let χ denote the generating function which is the sum of generating
function of i), ii) and iii) in Theorem 8. Then, we have

χ =
∑

n1,n2≥0

x2(N
2
1−N1N2+N2

2 )−N1−N2

(x3)n1(x
3)n2

. (36)
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Abstract

An known elementary proof of existence of infinitely many solutions (and a procedure
of their construction) to the Prouhet-Tarry-Escott problem is given together with its
connection to the Prouhet–Thue–Morse sequence. Another very short and possibly
not yet published proof is presented utilizing Taylor expansion of a suitably chosen
function represented in two different ways.

The Prouhet-Tarry-Escott problem is a classical problem in Diophantine equations
that consists of finding two different lists (i.e. multisets) of integers [a1, a2, . . . an] and
[b1, b2, . . . bn] (repetitions are allowed) such that

a1 + · · · + an = b1 + · · · + bn
a21 + · · · + a2n = b21 + · · · + b2n
...

...
...

am1 + · · · + amn = bm1 + · · · + bmn

where m and n are some natural numbers. It is known that n must be strictly greater
than m (of special interest are so called ideal solutions where m = n − 1). The above
system can be written as [ai] =m [bi]. The earliest occurrence of a problem of this kind
can be traced down to Euler and Goldbach 1750–1751 when they noted that

[a, b, c, a + b+ c] =2 [a+ b, a+ c, b+ c].
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The problem was named after E. Prouhet, who studied it in the early 1850s, and G.
Tarry and Escott, who studied it in the early 1910s.

We shall restrict the problem to disjoint sets (or multisets).

Definition 1 Two finite sets (or multisets) A,B ⊂ C are said to have (or satisfy)
n–property if A,B 6= ∅, A ∩B = ∅ and for any k ∈ {0, 1, 2, . . . , n − 1} we have

∑

Ak :=
∑

a∈A
ak =

∑

b∈B
bk =

∑

Bk.

Example 2 The sets A := {0, 3, 5, 6} and B := {1, 2, 4, 7} have 3–property because
∑

A0 = 00 + 30 + 50 + 60 = 4 = 10 + 20 + 40 + 70 =
∑

B0

∑

A1 = 01 + 31 + 51 + 61 = 14 = 11 + 21 + 41 + 71 =
∑

B1

∑

A2 = 02 + 32 + 52 + 62 = 70 = 12 + 22 + 42 + 72 =
∑

B2.

Definition 3 Let S ⊆ C and c ∈ C. Then we define

S + c := {s+ c | s ∈ S}.

Lemma 4 Let A,B ⊂ C satisfy n–property. Then for any c ∈ C the sets A + c and
B + c also have n–property.

Proof.

∑

(A+ c)k =
∑

a∈A
(a+ c)k =

∑

a∈A

k
∑

j=0

(

k

j

)

ajck−j =

k
∑

j=0

(

k

j

)

ck−j
∑

a∈A
aj =

=
k
∑

j=0

(

k

j

)

ck−j
∑

b∈B
bj =

∑

(B + c)k

Example 5 The sets C = A − 4 = A + (−4) = {−4,−1, 1, 2} and D = B − 4 =
{−3,−2, 0, 3}, where A and B are the same as in Example 2, also have 3–property:

∑

C0 = 4 =
∑

D0

∑

C1 = −2 =
∑

D1

∑

C2 = 22 =
∑

D2.
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Lemma 6 Let A,B,C,D ⊂ C and (A∪B)∩ (C ∪D) = ∅. Then if two pairs of sets A,
B and C, D both have n–property then the sets A∪C and B ∪D also have n–property.

Proof. Obvious.

Proposition 7 If sets A,B ⊂ C have n–property then for any c ∈ C such that (A∪B)∩
((A+c)∪ (B+c)) = ∅ sets A1 = (B+c)∪A and B1 = (A+c)∪B have (n+1)–property.

Proof. Lemmas 4 and 6 imply that the sets A1 and B1 have n–property. It is easy to

check that A1 ∩B1 = ∅. Now we have to prove that equality
∑

An
1 =

∑

Bn
1 holds:

∑

An
1 =

∑

((B + c) ∪A)n =
∑

(B + c)n +
∑

An

=
∑

Bn +

n−1
∑

j=0

(

n

j

)

cn−j
∑

b∈B
bj +

∑

An

=
∑

Bn +

n−1
∑

j=0

(

n

j

)

cn−j
∑

a∈A
aj +

∑

An

=
∑

Bn +
∑

(A+ c)n

=
∑

Bn
1 .

Example 8 Let A and B are as in Example 2. If we set c = 8 then A1 =
{0, 3, 5, 6, 9, 10, 12, 15} and B1 = {1, 2, 4, 7, 8, 11, 13, 14} have 4–property:

∑

A0
1 = 8 =

∑

B0
1

∑

A1
1 = 60 =

∑

B1
1

∑

A2
1 = 620 =

∑

B2
1

∑

A3
1 = 7200 =

∑

B3
1

Example 9 Starting with A0 := {0} and B0 := {i} (note that any pair of singletons
has 1–property) and taking c1 := 1 and then c2 :=

√
2 we obtain (applying the procedure
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from Proposition 7 twice) A2 = {0, 1 + i, i+
√
2, 1+

√
2} and B2 = {1, i,

√
2, 1+

√
2+ i}

that have 3–property:
∑

A0
2 = 4 =

∑

B0
2

∑

A1
2 = 2(1 +

√
2 + i) =

∑

B1
2

∑

A2
2 = 4 + 2

√
2 + (2 + 2

√
2)i =

∑

B2
2

Example 10 The sets A0 := {0} and B0 := {1} have 1–property. Suppose that sets
An−1 and Bn−1 have n–property. Then by Proposition 7 for cn := 1+max(An−1∪Bn−1)
the sets An := An−1∪(Bn−1+cn) and Bn := Bn−1∪(An−1+cn) have (n+1)–property. By
the definition of cn it follows that max(An−1∪Bn−1) < cn ≤ min((An−1+cn)∪(Bn+cn))
which proves that (An−1 ∪Bn−1) ∩ ((An−1 + c) ∪ (Bn−1 + c)) = ∅.

Lemma 11 Let α2(m) be the sum of digits of binary representation of number m. The
sets An and Bn defined in Example 10 can be characterized in the following way:

An = {m ∈ {0, 1, 2, . . . , 2n+1 − 1} | α2(m) ∈ 2N},
Bn = {m ∈ {0, 1, 2, . . . , 2n+1 − 1} | α2(m) ∈ 2N + 1},

i.e., An is the set of all natural numbers less than 2n+1 having even number of digits 1
in their binary representations. Likewise, Bn consists of all natural numbers less than
2n+1 having odd number of digits 1 in their binary representations. Note that cn = 2n+1.

Proof. By induction on n we prove the statement of the Lemma 11 and that cn = 2n+1.
Induction base is clear. Suppose now that

An−1 = {m ∈ {0, 1, 2, . . . , 2n − 1} | α2(m) ∈ 2N},
Bn−1 = {m ∈ {0, 1, 2, . . . , 2n − 1} | α2(m) ∈ 2N+ 1}.

and cn = 2n. By definition we have

An = An−1 ∪ (Bn−1 + cn),

Bn = Bn−1 ∪ (An−1 + cn).

Also, max(An ∪ Bn) = cn +max(An−1 ∪ Bn−1) = 2cn − 1 = 2n+2 − 1, so cn+1 = 2n+2.
Now, (Bn−1 + cn) = {m ∈ {0, 1, 2, . . . , 2n − 1} | α2(m) ∈ 2N + 1} + 2n+1, so
An = An−1 ∪ (Bn−1 + cn) = {m ∈ {m ∈ {0, 1, 2, . . . , 2n+1 − 1} | α2(m) ∈ 2N}.
(Adding cn = 2n to numbers of Bn−1 is equivalent to prefixing their binary repre-
sentation with 1 together with some zeroes if necessary.) The proof for Bn is analogous.
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Remark 12 The sequence tn := α2(n) mod 2 is known as the Prouhet–Thue–Morse
sequence (see [1] or [2], example 12.). Sets An and Bn can be characterized as follows:

An = {m ∈ {0, 1, 2, . . . , 2n+1−1} | tm = 0}, Bn = {m ∈ {0, 1, 2, . . . , 2n+1−1} | tm = 1}.

In other wording An (resp. Bn) consists of all nonnegative integers less than 2n+1

which are expressible as a sum of even (resp. odd) number of powers of 2.

Now we can elucidate this remarkable property by generalizing An (resp. Bn) to be
sum of even (resp. odd) numbers of indeterminates x0, . . . , xn−1. (Then Lemma 11 is
just a very special case xk = 2k.)
The existence of different finite sets (of numbers) A and B having the n–property for
any n can be proved quickly by using Taylor expansion of the following function F :=
∏n−1

j=0 (1− etxj ). We have

F =

n−1
∏

j=0

(1− etxj ) =

= 1− (etx0 + · · · + etxn−1) +
(

et(x0+x1) + · · · + et(xn−2+xn−1)
)

− · · · =

=

n
∑

r=0

(−1)r
∑

0≤j1<···<jr<n

et(xj1
+···+xjr ) =

=
∞
∑

k=0

n
∑

r=0

(−1)r

k!
tk

∑

0≤j1<···<jr<n

(xj1 + · · ·+ xjr)
k .

On the other hand we have

F =

n−1
∏

j=0

(

−txj −
t2x2j
2!

−
t3x3j
3!

− · · ·
)

=

= (−1)nx0x1 · · · xn−1t
n
n−1
∏

j=0

(

1 +
txj
2!

+
t2x2j
3!

+ · · ·
)

.

Now for k < n we get

0 = k![tk]F =

n
∑

r=0

(−1)r
∑

0≤j1<···<jr<n

(xj1 + · · ·+ xjr)
k,
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i.e.
n
∑

r = 0
r even

∑

0≤j1<···<jr<n

(xj1 + · · · + xjr)
k =

n
∑

r = 0
r odd

∑

0≤j1<···<jr<n

(xj1 + · · · + xjr)
k .

It follows immediately that the sets

A = {xj1 + · · ·+ xjr | 0 ≤ r ≤ n, r ∈ 2N, 0 ≤ j1 < · · · < jr < n}
and

B = {xj1 + · · · + xjr | 0 < r ≤ n, r ∈ 2N+ 1, 0 ≤ j1 < · · · < jr < n}
have n–property.

Example 13 Starting with x1 = 1, x2 = −2, x3 = 3, x4 = −4, x5 = 5 we arrive (after
removing numbers belonging to the both sets) at the sets A = {−6,−1, 0, 1, 7, 8} and
B = {−5,−4, 2, 3, 4, 9} that have 5–property. (Zero in set A is obtained as an empty
sum.)

References

[1] Jean–Paul Allouche and Jeffrey Shallit, The ubiquitous Prouhet–Thue–Morse se-
quence, in C. Ding. T. Helleseth, and H. Niederreiter, eds., Sequences and Their
Applications: Proceedings of SETA ’98, Springer-Verlag, 1999, pp. 1-16.

[2] Jeffrey Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992),
163–197

[3] Peter Borwein, The Prouhet–Tarry–Escott Problem, Computational Excursions in
Analysis and Number Theory, CMS Books in Mathematics / Ouvrages de mathma-
tiques de la SMC, Springer, New York, NY, 2002, pp. 85-96

[4] L. J. Lander, T. R. Parkin, and J. L. Selfridge, A Survey of Equal Sums of Like
Powers, Mathematics of Computation, 21, 1967, pp. 446-459.
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Abstract

The square of the sum of squares of three consecutive Fibonacci numbers is twice
the sum of their fourth powers. This is Candido’s identity. Abstractly, it holds
for any two elements and their sum in any commutative ring. Geometrically, it
reveals the degeneracy of a triangle via Heron’s area formula. Higher dimensional
analogues via volume formulas of tetrahedra are also discussed. The identity and
its cubic variant can be applied to various combinatorial and geometric formulas to
obtain corresponding symmetric identities, and an algebraic application is to the
polynomial Fermat’s cubic equation.

Keywords: Candido’s identity; Heron’s formula; Fibonacci numbers
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1.1 Candido’s identity and some applications

The Candido identity (named after Giacomo Candido, 1871-1941) was published in
1951, and says that the square of the sum of squares of three consecutive Fibonacci
numbers is equal twice the sum of their fourth powers. Thus,

(F 2
n−1 + F 2

n + F 2
n+1)

2 = 2(F 4
n−1 + F 4

n + F 4
n+1).
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To prove it geometrically, recall first that the area S of a triangle ∆ABC with side lengths
a, b and c is given by Heron’s formula from about 60 AD, but apparently Archimedes
knew it some 300 years earlier. It reads as follows.

(4S)2 = (a2 + b2 + c2)2 − 2(a4 + b4 + c4) = (2ab)2 − (a2 + b2− c2)2

= (a+ b+ c)(−a+ b+ c)(a− b+ c)(a + b− c).

(A quick proof of Heron’s formula is by using Pythagoras’ theorem cos2 C + sin2C = 1,
and cosine and sine rules: cosC = (a2+ b2− c2)/(2ab) and sinC = 2S/(ab).) Now, from
the basic Fibonacci recurrence Fn+1 = Fn+Fn−1, it follows that the triangle whose side
lengths are these numbers is degenerated. Hence, its area S is zero. By Heron’s formula,
the difference between the left and right side of Candido’s identity is zero. This proves
the identity.

By the same geometric argument, Candido’s identity holds for any two positive
numbers and their sum. For a genuine triangle, of course, we have the corresponding
Candido’s inequality.

In a pure algebraic setting, for every two elements x, y of any commutative ring, the
Candido identity is a curious equality (and can simply be checked by expanding both
sides):

(x2 + y2 + (x+ y)2)2 = 2(x4 + y4 + (x+ y)4).

For three summands, x + (y + z) = (x + y) + z, we obtain two corresponding Candido
identities etc.

Interpretations and visual proofs of the identity for real positive numbers are given
in [1] and [2]. We remark that Candido’s identity and the basic Fibonacci recurrence
are equivalent, again by Heron’s formula. Note that this identity also holds for Lucas

numbers, Pell numbers, hyper-Fibonacci numbers (defined for n, r ≥ 1 by F
(r)
n = F

(r)
n−1+

F
(r−1)
n , and F

(0)
n = Fn, F

(r)
0 = 0, F

(r)
1 = 1, for n, r ≥ 0), Horadam polynomial second

order recurrences, and many other sequences of that type. In fact, it holds for every
sequence defined by recurrence or formula of the form x+ y = z.

A generalization of Candido’s identity is the following functional equation for an
unknown function f defined on positive real numbers with values also in positive reals:

f [f(x) + f(y) + f(x+ y)] = 2[f(f(x)) + f(f(y)) + f(f(x+ y))].

The only solution when f is a continuous surjection with f(0) = 0 is the squaring
function (times a constant), i.e., f(x) = Cx2, see [1]. Proof boils down to prove that the
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set {2m3n : m,n integers} is dense on positive reals, and this follows from the fact that
the sequence log2 3, 2 log2 3, 3 log2 3, ... of multiples of the transcendental number log2 3
is uniformly distributed modulo 1.

Candido’s identity simply transforms a recurrence or formula (automatically)
in terms of sums of squares and fourth powers or in terms of other symmet-
ric functions. For example, consider combinatorially interesting Padovan’s sequence
1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, . . . where each member (except first three) is the sum of
the second and third preceding it; Pn+2 = Pn + Pn−1, P0 = P1 = P2 = 1. The n-th
Padovan number Pn, n ≥ 2, is the number of ways of writing n + 2 as an ordered sum
(composition) of 2’s and 3’s. (Recall, Fn+1, n ≥ 1, is the number of compositions of 1’s
and 2’s whose sum is n.) In the same manner as before, we have

(P 2
n−1 + P 2

n + P 2
n+2)

2 = 2(P 4
n−1 + P 4

n + P 4
n+2).

As the golden ratio is attached to Fibonacci numbers, consecutive Padovan numbers ra-
tios tend to the plastic number p (approximately 1,3247...), satisfying the cubic equation
p3 = p+1. Yet another combinatorial example is to apply Candido’ s identity to Pascal’s
formula for binomial coefficients

(n+1
k

)

=
( n
k−1

)

+
(n
k

)

to get a symmetric expression in
all three of them. So, we get “for free” the following identity:

[

(

n

k − 1

)2

+

(

n

k

)2

+

(

n+ 1

k

)2
]2

= 2

[

(

n

k − 1

)4

+

(

n

k

)4

+

(

n+ 1

k

)4
]

.

A geometric example is to apply Candido’s identity to the Pythagorean theorem (c2 =
a2 + b2). The result is totally symmetric. So, a triangle is right if and only if the square
of the sum of fourth powers of its side lengths is twice the sum of their eight powers:

(a4 + b4 + c4)2 = 2(a8 + b8 + c8).

Denoting by pn the sum of n-th powers in variables a, b and c, the Pythagorean theorem
then reads as follows:

p24 = 2p8.

The form a2 + b2 = c2 needs 8 symbols, while the above version needs only 7 symbols (5
different). Note that degenerate Heronian triangles (integer side lengths and area zero)
are not accounted by parametrizations given by Brahmagupta and later by Euler (see
[3]). Of course, they are parametrized by two nonnegative integers (and their sum).
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1.2 The cubic Candido’s identity, Fermat’s equality and other appli-

cations

Heron’s formula can also be written in the following way. Let e1 = a + b + c = 2s
(perimeter), e2 = ab+ bc+ ca, e3 = abc, be the elementary symmetric functions of a, b
and c. Then from

(4S)2 = 2s(2s − 2a)(2s − 2b)(2s − 2c) = e1(4e1e2 − e31 − 8e3)

we get that S = 0 if and only if 4e1e2 − e31 − 8e3 = 0 (assuming non degeneracy e1 6= 0).
So, D3(a, b, c) := (−a + b − c)(a − b + c)(a + b − c) = 0 implies the cubic Candido’s
identity

(a+ b+ c)3 + 8abc = 4(a+ b+ c)(ab+ bc+ ca).

This identity also makes sense in any integral domain (commutative ring without zero
divisors), for elements a, b, c whose sum is not zero, but one of them is the sum of the
other two. In geometric terms of the semi-perimeter s of a triangle, it can simply be
written as:

s3 + e3 = se2.

Hence, we have the corresponding cubic Candido identities for Fibonacci numbers,
Padovan numbers, Pascal’s formula, Horadam polynomials, etc. before substitution
a+ b = c.

For any triangle (genuine or degenerate) we have the cubic Candido’s triangle in-
equality:

s3 + abc ≤ s(ab+ bc+ ca),

with equality if and only if the triangle is degenerate (just multiply all three triangle
inequalities). Algebraically, Candido’s identity p22 = 2p4 is equivalent to e1(e

3
1 − 4e1e2 +

8e3) = 0, and this follows simply by expressing power sums p2 and p4 in terms of e1, e2
and e3.

As a combinatorial example this time, consider the sequence
1,1,2,4,9,21,51,127,323,... of Motzkin numbers Mn given by

(n + 2)Mn = (2n+ 1)Mn−1 + 3(n − 1)Mn−2,

and M0 = M1 = 1. The Motzkin number Mn+1 counts n-tuples of positive integers
which start and end by either 1 or 2 with differences between neighbors -1,0, or 1. The
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quotients Mn+1/Mn → 3 as n → ∞. By the cubic Candido’s identity we have (again
“for free”) the corresponding identity for Motzkin numbers:

((n + 2)Mn + (2n+ 1)Mn−1 + 3(n − 1)Mn−2)
3 + 24(n + 2)(2n + 1)(n − 1)MnMn−1Mn−2

= 4[(n + 2)Mn + (2n + 1)Mn−1 + 3(n− 1)Mn−2]

×[(2n2 + 5n+ 2)MnMn−1 + 3(n2 + n− 2)MnMn−2 + 3(2n2 − n− 1)Mn−1Mn−2].

If we apply Candido’s cubic identity to the Pythagorean theorem a2+ b2 = c2, now with
e1 = a2 + b2 + c2, e2 = a2b2 + b2c2 + c2a2, e3 = a2b2c2, then s3 + e3 = se2 implies the
following symmetric identity of degree 6 (before substituting a2 + b2 = c2):

(a2 + b2 + c2)3 + 8(abc)2 = 4(a2 + b2 + c2)((ab)2 + (bc)2 + (ca)2).

We can apply Candido’s cubic identity to the Ptolemy theorem (ef = ac + bd for a
circumscribed quadrilateral with side lengths a, b, c, d and diagonals e, f), and many
other basic geometric facts equivalent to the Euclidean fifth postulate, but we shall skip
it here.

Consider now the cubic (“Fermat”) equality a3+ b3 = c3 for relatively prime polyno-
mials a = a(x) etc. over integers, and at least one of the polynomials a, b, c non constant.
From cubic Candido’s identity e31 + 8e3 = 4e1e2, we have

(a3 + b3 + c3)3 + (2abc)3 = 4(a3 + b3 + c3)((ab)3 + (bc)3 + (ca)3).

In the ring of integer polynomials we have two relatively prime polynomial factorizations
into symmetric homogeneous irreducible factors of degrees 3 and 6 in variables a, b, c
(before substituting a3 + b3 = c3):

(a3 + b3 + c3 + 2abc)((a3 + b3 + c3)2 − 2(abc)(a3 + b3 + c3) + 4(abc)2)

= 4(a3 + b3 + c3)((ab)3 + (bc)3 + (ca)3).

If we write it as PQ = 4RS, the only possibilities are P = kR, Q = lS, where k, l are
integers with kl = 4. For x = 0 denote a0 = a(0) etc. Then a30 + b30 = c30, where we may
assume that a0, b0, c0 are coprime integers. So, only one of them is even. Say, a0 is even
and b0, c0 odd. If k = l = 2, i.e., P = 2R, Q = 2S, we get 2(abc)2 = (ab)3 + (a3 + b3)

2,
and for x = 0, on the left is an even number, and on the right an odd number, a
contradiction. If k = 1 (and l = 4), then abc = 0, say a = 0, and this contradicts the
fact that a, b, c are coprime. If k = 4 (and l = 1), and k = −1, k = −2 and k = −4,
the even-odd game brings us again to absurds. The same argument works not only for
cubes but also for all multiple powers of 3.
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Let us only briefly recall that in general, if f, g and h are relatively prime polynomials
(over complex numbers), at least one of them non constant, and such that fn+gn = hn,
then n ≤ 2. To prove it, recall first Mason’s lemma (from 1984): if a + b = c, where
a = a(x), b = b(x), c = c(x) are coprime polynomials, at least one of them non constant,
then max{deg a,deg b,deg c} < n0(abc). Here n0(f) := deg (rad f), where rad f is the
product of all distinct prime factors of the polynomial f = f(x), i.e., n0(f) is the
number of all distinct roots of f , and n0(0) := −∞. The “moral” of Mason’s lemma is
that the number of distinct prime divisors of the product of three coprime members is
not very small if one of the factors is the sum of the other two. (The corresponding “abc
conjecture” in number theory seems to be much more subtle.)

A quick proof of Mason’s lemma is to observe that f/rad f divides the derivative f ′

(just write f as the product of powers of prime factors). From a+ b = c and a′+ b′ = c′,
it is easy to check that ab′ − a′b = b′c − bc′. Next, c/rad c divides both c and c′, hence
b′c − bc′, and similarly b/rad b. Also, a/rad a divides ab′ − a′b = b′c − bc′. Since a, b, c
are coprime, so are a/rad a, b/rad b, c/rad c. Therefore, their product divides b′c − bc′.
Assume conversely that deg a ≥ n0(abc). This implies

deg (abc/rad (abc)) = deg (abc)−n0(abc) ≥ deg (abc)− deg a = deg (bc) > deg (b′c− bc′).

But only the zero polynomial (of degree −∞) can be divisible with a polynomial of
higher degree. So, b′c− bc′ = ab′ − a′b = 0. Since a divides ab′, it follows that a divides
ba′, but since gcd(a, b) = 1, it follows that a divides a′, and this in turn implies a′ = 0,
and similarly b′ = c′ = 0, i.e., all a, b and c are constants. This contradiction proves the
lemma.

Now the polynomial “FLT” follows easily, since fn + gn = hn implies by Mason’s
lemma that the degrees of fn, gn, hn are less than or equal to deg f + deg g + deg h− 1
(by assumption this is ≥ 0). Addition of three inequalities yields

n(deg f + deg g + deg h) ≤ 3(deg f + deg g + deg h)− 3,

implying n ≤ 2. More generally, by using Mason’s lemma, it is easy to show that the
polynomial Diophantine equation fp+gq = hr, where 2 ≤ p ≤ q ≤ r, can have solutions
only if (p, q, r) = (2, 2, r), (2, 3, 3), (2, 3, 4) or (2, 3, 5).

1.3 Higher dimensional Candido’s identity and concluding remarks

Now, in 3D and higher dimensions, a similar “zero-volume” method could be applied
as well. Heron’s formula for the volume V of an n-simplex A0A1...An in terms of its
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edge lengths di,j = d(Ai, Aj) is also known as the Cayley-Menger formula from 1928:

(−1)n+12n(n!V )2 = det(CMn),

where CMn is the (n+ 2) × (n+ 2) matrix obtained from the (n+ 1) × (n+ 1) matrix
M = (d2i,j) by bordering M with a top row (0, 1, ..., 1) and a left column (0, 1, ..., 1)T ;
references for proof are in [4], see also [5, 6].

So, the volume vol(T ) of a tetrahedron T whose basis is a triangle with edge lengths
U, V and W and opposite (disjoint) to them u, v and w, respectively, is given by (Piero
della Francesca, 15th century):

(12vol(T ))2 = (U2 + u2)(−U2u2 + V 2v2 +W 2w2) + (V 2 + v2)(U2u2 − V 2v2 +W 2w2)

+(W 2 + w2)(U2u2 + V 2v2 −W 2w2)− (Uvw)2 − (uV w)2 − (uvW )2

−(UVW )2,

or as Euler presented it in 1752:

(12vol(T ))2 = (2uvw)2 − u2(v2 + w2 − U2)2 − v2(w2 + u2 − V 2)2 − w2(u2 + v2 −W 2)2

+(v2 +w2 − U2)(w2 + u2 − V 2)(u2 + v2 −W 2).

The polynomials on the right hand sides do not factorize (see [4]), but the (1, 1)-minor
of det(CM3), which is the squared area of the triangle with side lengths Uu, V v and
Ww factorizes. In fact, we have the following product formula for volume (see, e.g., [5]
or [6]):

(24Rvol(T ))2 = (Uu+V v+Ww)(−Uu+V v+Ww)(Uu−V v+Ww)(Uu+V v−Ww),

where R is the circumradius of the tetrahedron T .

If one of the last three factors in the above formula is zero, then T is a circumscribed
quadrilateral by Ptolemy’s theorem.

There are many interesting consequences of the fact that vol(T ) = 0. For example, if
we take any point in the plane of an equilateral triangle with side length a and distances
d0, d1 and d2 to the vertices of the triangle, then the volume of this planar four-point
configuration is zero, and the following quartic Candido type identity holds (e.g., from
Euler’s volume formula):

(a2 + d20 + d21 + d22)
2 = 3(a4 + d40 + d41 + d42).
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A simple (integer) example (a, d0, d1, d2) is (8, 3, 5, 7), and another one is (112, 57, 65, 73).
If a point is taken in space, but out of the plane of the triangle, then the inequality >
occurs instead of equality =.

Similarly, if we take a point in a regular tetrahedron of edge length a, with distances
d0, d1, d2 and d3 to the vertices of the tetrahedron, then we have the following Candido
type identity (think of the methane molecule CH4, where the atom C is in the center
or perhaps displaced a bit from the center of the H-tetrahedron):

(a2 + d20 + d21 + d22 + d23)
2 = 4(a4 + d40 + d41 + d42 + d43).

This is useful in chemistry, and can serve as an equation for unknown a or one of di’s.

In general, for a regular n-simplex with edge length a and a point in the hyperplane
spanned by it, with distances to the vertices di for i = 0, 1, . . . , n, we have (from the
Cayley-Menger formula):

(a2 +
∑

d2i )
2 = (n+ 1)(a4 +

∑

d4i ).

Note that the ordinary Candido identity is the 1-dimensional case of the this formula.

The above identity is reminiscent of Soddy’s mutually kissing (tangent) spheres for-
mula: if n+2 spheres of dimension n− 1 in the Euclidean n-space kiss each other, then
(
∑

ci)
2 = n

∑

c2i , where ci = 1/ri is the curvature of the i-th sphere, i = 1, 2, ..., n + 2.
In particular, for n = 2, this is the famous Descartes’ four circle theorem from 1643. No
wonder, it is also a consequence of Heron’s formula.

The “zero-volume” geometric procedure can, in principle, be applied to any n-
simplex. However, the Cayley-Menger polynomial is irreducible in dimension n ≥ 3
(see [4]); in other words, there is no Heron’s type product formula for volume of a sim-
plex in terms of edges in higher dimensions, and hence no general symmetric identities
of Candido’s type, except in special cases as above. For a general n-simplex there are
some sharp symmetric inequalities for volume V in terms of edges di,j. For example (see
[7]),

2n(n!V )2 ≤ (n+ 1)
(

∏

di,j

)4/(n+1)
,

with equality if and only if the simplex is regular.

In dimension 3 for a tetrahedron T there is also Kahan’s product formula for volume
from 1985 (available online). As before, let u,U ; v, V and w,W , respectively, be pairs
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of opposite side lengths of T , where u, v and w have a common vertex. Then the volume
vol(T ) of T is given by:

(3 · 26 · uvw · vol(T ))2 = (−a+ b+ c+ d)(a− b+ c+ d)(a + b− c+ d)(a + b+ c− d),

where a =
√
xY Z, b =

√
XyZ, c =

√
XY z, d =

√
xyz, and X = (−U+v+w)(U+v+w),

x = (U − v+w)(U + v−w) and similarly Y = (u− V +w)(u+ V +w), y = (−u+ V +
w)(u + V − w), Z = (u+ v −W )(u+ v +W ), z = (−u+ v +W )(u− v +W ).

For instance, if T is a regular tetrahedron with side length t, then a = b = c = 3t3,
and d = t3; next if T is a corner of a brick with edges u, v, w, then X = x = 2vw,
Y = y = 2uw, Z = z = 2uv, and a = b = c = d = 2uvw

√
2, while if u = v = w = t

√
3,

and U = V = W = 3t , then a = b = c = 9t3 and d = 27t3, and T is an equilateral
triangle and its center (so, vol(T ) = 0). Let us mention here that it is an open problem
(“perfect Euler’s brick problem”) whether there exist integers u, v, w as brick edge lengths
such that plane diagonals U, V,W and space diagonal

√
u2 + v2 + w2 all have integer

lengths.

A Heronian tetrahedron example is U, V,W = 25, 39, 56 and u, v, w = 120, 160, 153,
having face areas area(25, 39, 56) = 420, area(25, 153, 160) = 1404, area(39, 120, 153) =
1872, area(56, 120, 160) = 2688, and volume 8064. X = 2634132, x = 2632, Y = 2333132,
y = 2433, Z = 283 · 72, z = 29 · 3, then a = 28337 · 13

√
2, b = 29347 · 132, c = 2934132,

d= 2933
√
2. (U, V,W and u, v, w are length edges of a tetrahedron iff they obey all

triangle inequalities and the (1,1)-minor of CM3 has positive determinant, for a nice
proof see [8].)

From six facial difference products (of three faces, not of the base UVW -triangle),
as positive independent variables, we can reconstruct all six edge lengths, e.g.,

(2u)2 = (Y + y)(Z + z)/(X + x),

(2U)2 = (X(Y + y − Z − z)2 + x(Y + y + Z + z)2)/(Y + y)(Z + z),

etc.

Suppose, for instance, that in Kahan’s formula b+ c+ d = a, i.e.
√
XyZ +

√
XY z+√

xyz =
√
xY Z. By substituting u, v, w,U, V,W we obtain the sum of three square

roots, equals also to a square root and each square root has 6 factors. The volume
of T is then zero, and we have as a result of “freeing the square roots” the following
polynomial identity of degree 6 (from Euler’s volume expression):

(2uvw)2 + (v2 + w2 − U2)(w2 + u2 − V 2)(u2 + v2 −W 2)

= u2(v2 + w2 − U2)2 + v2(w2 + u2 − V 2)2 + w2(u2 + v2 −W 2)2.
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From the product formula it is also equivalent to

(−uU + vV + wW )(uU − vV + wW )(uU + vV − wW ) = 0,

and this is again cubic Candido’s identity for quantities uU , vV and wW .

An interesting special case is when opposite edges are equal. Then T is called equifac-
etal (or disphenoid). In this case we get the same identity as for the Pythagorean theo-
rem, e31 + 8e3 = 4e1e2 in variables A2, B2, C2, where A = u = U etc.

Back to Kahan’s formula, vol(T ) = 0 (assuming uvw 6= 0) if and only if

D4(a, b, c, d) := (−a+ b+ c+ d)(a− b+ c+ d)(a+ b− c+ d)(a + b+ c− d) = 0.

In terms of elementary symmetric functions e1 = e1(a, b, c, d), and similarly e2, e3, e4, we
have that vol(T ) = 0, if and only if e1(e

3
1 + 8e3 − 4e1e2) = 16e4.

As a combinatorial example, consider Tribonacci numbers Tn, i.e.
0, 0, 1, 1, 2, 4, 7, 13, 24, 44, ... given by T0 = T1 = 0, T2 = 1, Tn + 2 = Tn+1 + Tn + Tn−1.
Tn+2 is the number of compositions of n as sums of 1’s, 2’s and 3’s. Note that Tn+1/Tn
,as n→ ∞, tends to the “metallic” number t ≈ 1.83929... which satisfies t3 = t2 + t+1.
If ei are symmetric functions of Tj ’s then we get again “for free” the identity for
Tribonacci numbers of Candido’s type in the above form.

Finally, we describe one more volume formula where the ordinary Candido form
occurs. Let T = A0A1A2A3 be a tetrahedron, let Fi be the face against Ai, i = 0, 1, 2, 3,
and let (ik) be the face angle of T at the vertex Ak in Fi, (i 6= k). Let Ri be the
circumradius of Fi and R the circumradius of T . Then (see [9]) the volume of T is given
by 3R · vol(T ) = R2

1R
2
3

√
N , where N = 2[(AB)2 + (BC)2 + (CA)2] − (A4 + B4 + C4),

and A = sin(32) sin(10), B = sin(31) sin(20) sin(12)/ sin(21), C = sin(30) sin(12). Recall
that the ordinary Candido identity is equivalent to N := 2[(AB)2 + (BC)2 + (CA)2] −
(A4 + B4 + C4) = 0. We see that the Candido’s form on the right hand side occurs in
this volume formula. Clearly, R · vol(T ) = 0 if and only if N is 0, because in this case R
becomes infinite (and R1 and R3 can be considered constant).The vanishing of Candido’
s form N (this time in trigonometric terms of face angles) shows that T is degenerate.
A similar formula ([9]), but a bit more involved, can also be given in terms of inradii of
faces, circumradius R and face angles, again in a Candido-type form.

To conclude, we see that a simple addition of two elements is via Candido’s identity
transformed into a symmetric equation involving sums of squares, cubes, fourth powers
or other symmetric functions of summands and the sum. It is amazing that a purely
algebraic formula has a simple geometric proof, and how it applies to various situations
in combinatorics, algebra, geometry and analysis.
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University of Osijek, Croatia

istipan@gfos.hr

27. Dragutin Svrtan,

University of Zagreb, Croatia

dsvrtan@math.hr

28. Domagoj Ševerdija,
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