On some partition identities related to affine Lie algebra representations

Dragutin Svrtan
Department of Mathematics, University of Zagreb
Bijenička c. 30, 10002 Zagreb, CROATIA
e-mail : dsvrtan@math.hr

Abstract

In this paper, meant for combinatorialists, we give a proof of equipotence of two families of partitions ('Primc conjecture') which appeared in the early stage of representation theory of affine Lie algebra $A_{1}^{(1)}\left(\right.$ or $\left.S l(2, \mathbb{C})^{\wedge}\right)$. The result was obtained already in 1983 and it lead to the very first character formulas for the level 3 standard modules (this is mentioned in Ref[1]) on pages 2 and 77 respectively). We hope that the intricacy of handling the interlocking recursion relations may be of some interest to combinatorialists not working in Lie algebra theory.

Keywords: partition function, partition identity, Lie algebra
MSC: 05A17, 11P84

1.1 Introduction

For $\nu=0,1,2(\bmod 3)$ we introduce the following families of partitions:

$$
\left.\begin{array}{rl}
Q_{s}^{\nu}(n):=\left\{\left(n_{0}, n_{1}, \ldots, n_{s}\right) \in \mathbb{N}^{s+1} \mid\right. & n=n_{0}+n_{1}+\ldots+n_{s} \\
& n_{i} \equiv-i-\nu \quad(\bmod 3) \\
& \left.n_{i} \geq n_{i+1}-2, \quad n_{i}>n_{i+2}\right\}
\end{array}\right]
$$

DOI: https://doi.org/10.5592/CO/CCD.2016.06
and denote by

$$
\begin{align*}
& q_{s}^{\nu}(n):=\operatorname{Card} Q_{s}^{\nu}(n) \tag{10}\\
& q^{\nu}(n):=\operatorname{Card} Q^{\nu}(n) \tag{11}
\end{align*}
$$

the numbers of partitions in these families of partitions.
The partitions from (9) we shall relate to the partitions appearing in the Gordon's generalization of the Rogers-Ramanujan identities:

$$
\begin{gather*}
P_{k, i}(n, m):=\left\{\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{N}^{m} \mid n=n_{1}+\ldots+n_{m}\right. \\
n_{j} \geq n_{j+1}, n_{j} \geq n_{j+k-1}+2, \tag{12}\\
\left.\operatorname{Card}\left\{j \mid n_{j}=1<i\right\}\right\} \\
p_{k, i}(n, m):=\operatorname{Card} P_{k, i}(n, m) \tag{13}
\end{gather*}
$$

Proposition 1 The family $Q_{s}^{\nu}(n)$ is nonempty if $s(\bmod 3)$ is given by the following table,

$n(\bmod 3) \backslash \nu$	0	1	2	
0	0	or 2	1	or 2
2	2			
1		-	-	0 or 1
2		1	0	-

Proof. For any given n, ν if $\alpha=\left(n_{0}, \ldots, n_{s}\right) \in Q_{s}^{\nu}(n) \neq \emptyset$, then

$$
\begin{equation*}
n \equiv \sum_{i=0}^{s}(-i-\nu) \quad(\bmod 3)=-\frac{s(s+1)}{2}-(s+1) \nu \quad(\bmod 3) \tag{15}
\end{equation*}
$$

The recursions for the number theoretic functions $q_{s}^{\nu}(n)$ (defined by (23)) are given by the following proposition.

Proposition 2 For $n \in \mathbb{N}$, $s \in \mathbb{Z}_{+}, \nu \in \mathbb{Z}_{3}$ we have:

$$
q_{s}^{\nu}(n)= \begin{cases}q_{s}^{\nu+2}(n-2 s+2)+q_{s-2}^{\nu+2}(n-2 s-2), & \text { if } s+\nu \equiv 0 \quad(\bmod 3) \tag{16}\\ q_{s}^{\nu+1}(n-s-1), & \text { if } s+\nu \equiv 1 \quad(\bmod 3) \\ q_{s}^{\nu+1}(n-s-1)+q_{s-1}^{\nu+2}(n-s-1), & \text { if } s+\nu \equiv 2(\bmod 3)\end{cases}
$$

with initial conditions

$$
\begin{equation*}
q_{s}^{\nu}(1)=\delta_{s, 2} \cdot \delta_{s, 0} \tag{17}
\end{equation*}
$$

together with the convention $q_{s}^{\nu}(0)=1$ if $s=\nu=0$ or $s=-1, \nu=1 ; 0$ otherwise. We put

$$
\begin{equation*}
q_{s}^{\nu}(n)=0 \tag{18}
\end{equation*}
$$

if $(s \leq 0$ or $n \leq 0)$ and $n \neq s$, so that the right-hand side of (16) is well defined. With the recursions above all functions $q_{s}^{\nu}(n)$ are uniquely defined.
Proof. We distinguish three cases depending on $(s+\nu)(\bmod 3) . s+\nu \equiv 0(\bmod 3)$. If $s=0$, then $\alpha=\left(n_{0}\right), n_{0} \equiv-\nu(\bmod 3), n_{0}>0$; so

$$
q_{0}^{\nu}(n)= \begin{cases}q_{0}^{2}(n-2), & \text { for } \nu=0 \\ q_{0}^{2}(n-1), & \text { for } \nu=1 \\ q_{0}^{0}(n-1), & \text { for } \nu=2\end{cases}
$$

If $s>0$ and $\alpha=\left(n_{0}, \ldots, n_{s}\right) \in Q_{s}^{\nu}(n)$, then $n_{s-1} \equiv-(s-1)-\nu \equiv 1(\bmod 3), n_{s}=$ $-s-\nu \equiv 0(\bmod 3)$, hence $n_{s-1} \geq 1, n_{s} \geq 3$. Then in the subcase a1) $n_{s-1} \geq 2$ we have $n_{s-1} \geq 4$ because $n_{s-1} \equiv 1(\bmod 3)$. By letting $\hat{\alpha}:=\left(n_{0}-2, \ldots, n_{s}-2\right)$ we get all partitions from $Q_{s}^{\nu+2}(n-2 s-2)$.

In the subcase a 2) $n_{s-1}=1$, from (9) it follows $n_{s-1} \geq n_{s}-2$, hence $n_{s}=3$. So $Q_{1}^{2}(4)=\{(1,3)\}$ and $q_{1}^{2}(4)=1$, and for $s \geq 2$ by letting

$$
\hat{\alpha}=\left(n_{0}-2, \ldots, n_{s-2}-2\right)
$$

we obtain all partitions from $Q_{s-2}^{\nu+2}\left(n-2 s-2\right.$, because $n_{s-2}>n_{s}(=3), n_{s-3} \geq n_{s-2}-2(\geq$ $1)$.

By combining the two bijections from a1) and a2) we obtain the first relation in (16).
b) $s+\nu \equiv 1(\bmod 3)$. For $\alpha=\left(n_{0}, \ldots, n_{s}\right) \in Q_{s}^{\nu}(n), n_{s} \equiv-s-\nu \equiv 2(\bmod 3)$, $n_{s-1} \equiv-s+1-\nu \equiv 0(\bmod 3)$.

So $n_{s} \geq 2$ and $n_{s-1} \geq 3$ (if $s>0$). Then the $\operatorname{map} \alpha \mapsto \bar{\alpha}=\left(n_{0}-1, \ldots, n_{s}-1\right)$ is a bijection onto $Q_{s}^{\nu+1}(n-s-1)$.
c) $s+\nu \equiv 2(\bmod 3)$. For $\alpha=\left(n_{0}, \ldots, n_{s}\right) \in Q_{s}^{\nu}(n)$ we have $n_{s} \equiv 1(\bmod 3)$ and $n_{s-1} \equiv 2(\bmod 3)($ if $s>0)$. Like in a) we have two subspaces:
c1) $n_{s}=1$. Then $\alpha \mapsto \bar{\alpha}=\left(n_{0}-1, \ldots, n_{s-1}-1\right)$ is a bijection onto $Q_{s-1}^{\nu+1}(n-s-1)$.
c2) $n_{s} \geq 4$. Then $n_{s-1} \geq n_{s}-2(\geq 2)$, so we get a bijection $\alpha \mapsto \bar{\alpha}=\left(n_{0}-1, \ldots, n_{s}-1\right)$ onto $Q_{s}^{\nu+1}(n-s-1)$. In the case $s=0$, we have $\nu \equiv 2(\bmod 3)$ we need to check that $q_{0}^{2}(n)=q_{0}^{0}(n-1)$. For $n>1$ it is obvious, and for $n=1, q_{0}^{(2)}(1)=1=q_{0}^{0}(0)$ by (18).

The fact that (16) uniquely determines the functions q_{s}^{ν} one can prove by induction on $n+s$.

Corollary 3 For $n \in \mathbb{N}, s \in \mathbb{Z}_{+}, \nu \in \mathbb{Z}_{3}$ (with the conventions from the Proposition 2) we have

$$
\begin{align*}
& q_{s+2}^{\nu}(n)+q_{s}^{\nu}(n)=q_{s+2}^{\nu+1}(n+2 s+6), \quad \text { if } s+\nu \equiv 0 \quad(\bmod 3) \\
& q_{s}^{\nu}(n)=q_{s}^{\nu+2}(n+s+1), \quad \text { if } s+\nu \equiv 2 \quad(\bmod 3) \tag{19}\\
& q_{s+1}^{\nu}(n)+q_{s}^{\nu}(n)=q_{s+1}^{\nu+2}(n+s+2), \quad \text { if } s+\nu \equiv 2 \quad(\bmod 3)
\end{align*}
$$

Corollary 4 For the number theoretic functions $q^{\nu}(n),(\nu=0,1,2)$ defined in (11) we have the following formulas:
i) $\quad q^{0}(3 n)=\sum_{s \geq 1} q_{3 s-1}^{1}(3 n+6 s)$
ii) $\quad q^{0}(3 n)=\sum_{s \geq 0} q_{3 s}^{2}(3 n+3 s+1)=\sum_{s \geq 0} q_{3 s}^{0}(3 n+6 s+2)$
iii) $\quad q^{1}(3 n)=\sum_{s \geq 1} q_{3 s-1}^{2}(3 n+6 s+4)$
iv) $\quad q^{1}(3 n)=\sum_{s \geq 1} q_{3 s-1}^{0}(3 n+3 s)$
v) $\quad q^{2}(3 n+1)=\sum_{s \geq 1} q_{3 s-2}^{1}(3 n+3 s)=\sum_{s \geq 1} q_{3 s-2}^{0}(3 n+6 s-1)$
vi) $q^{2}(3 n+1)=\sum_{s \geq 0} q_{3 s}^{0}(3 n+6 s+3)$
vii) $\quad q^{2}(3 n)=\sum_{s \geq 0} q_{3 s+2}^{2}(3 n)=\sum_{s \geq 1} q_{3 s-1}^{0}(3 n-3 s)$
viii) $q^{0}(3 n+2)=\sum_{s \geq 0} q_{3 s+1}^{0}(3 n+2)=\sum_{s \geq 0} q_{3 s+1}^{1}(3 n-3 s)$
ix) $\quad q^{1}(3 n+2)=\sum_{s \geq 0} q_{3 s}^{1}(3 n+2)=\sum_{s \geq 0} q_{3 s}^{2}(3 n-3 s+1)$
x) $\quad q^{0}(3 n+1)=q^{1}(3 n+1)=q^{2}(3 n+2)=0$.

Proof. Follows easily by Corollary 3 with the help of Proposition 1.

1.2 Relation to Gordon partitions

In this subsection we shall relate partition families $Q_{s}^{\nu}(n)$ from (9) firstly to standard partitions with additional difference conditions and secondly to Gordon partitions. For $n \in \mathbb{N}, s \in \mathbb{Z}_{+}, \nu \in \mathbb{Z}_{3}$ we introduce the following families of partitions:

$$
\begin{align*}
\bar{Q}_{s}^{\nu}(n) & :=\left\{\left(n_{0}, n_{1}, \ldots, n_{s}\right) \in \mathbb{N}^{s+1} \mid n_{j} \equiv-s-\nu(\bmod 3)\right. \\
& n \tag{21}\\
& \left.=n_{0}+\ldots+n_{s}, n_{j} \geq n_{j+1}, n_{j}-n_{j+2} \geq 5, n_{s-1}>2\right\} \\
\bar{Q}^{\nu}(n) & :=\bigcup_{s \geq 0} \bar{Q}_{s}^{\nu}(n)
\end{align*}
$$

and denote by

$$
\begin{align*}
\bar{q}_{s}^{\nu}(n) & :=\operatorname{Card} \bar{Q}_{s}^{\nu}(n) \tag{22}\\
\bar{q}^{\nu}(n) & :=\operatorname{Card} \bar{Q}^{\nu}(n) \tag{23}
\end{align*}
$$

Proposition 3 For any $n \in \mathbb{N}$ and $0 \leq s \leq n$ we have

$$
\begin{equation*}
q_{s}^{\nu}(n)=\bar{q}_{s}^{\nu}(n+s(s+1)) \tag{24}
\end{equation*}
$$

Proof. For $\alpha=\left(n_{0}, \ldots, n_{s}\right) \in Q_{s}^{\nu}(n)$ let $\alpha^{\prime}=\left(n_{0}^{\prime}, \ldots, s_{s}^{\prime}\right)$ be defined by

$$
n_{i}^{\prime}=n_{i}+2(s-i)
$$

We claim that $\alpha \mapsto \alpha^{\prime}$ is a bijection of $Q_{s}^{\nu}(n)$ with $\bar{Q}_{s}^{\nu}(n)$. From $\sum_{i=0}^{s} 2(s-i)=s(s+1)$ and $n_{i}^{\prime}=n_{i}+2(s-i) \geq n_{i+1}-2+2(s-i)=n_{i+1}^{\prime}$ it follows that α^{\prime} is a partition of $n+s(s+1)$. Since $\left.n_{i}^{\prime} \equiv-i-\nu+2(s-i) \equiv-s-\nu(\bmod 3)\right)$,

$$
n_{i}^{\prime}=n_{i}+2(s-i)>n_{i+2}+2(s-i)=n_{i+2}^{\prime}+4
$$

and

$$
n_{s-1}^{\prime}=n_{s-1}+2>2
$$

then the partition α^{\prime} belongs to $\bar{Q}_{s}^{\nu}(n+s(s+1))$.
Conversely for any partition $\beta=\left(m_{0}, m_{1}, \ldots, m_{s}\right) \in \bar{Q}_{s}^{\nu}(n+s(s+1))$ let $\alpha=$ $\left(n_{0}, \ldots, n_{s}\right)$, where $n_{i}:=m_{i}-2(s-i)$. Then $n_{i} \in \mathbb{N}$, because for $i=s-2 j$

$$
n_{s-2 j}=m_{s-2 j}-4 j>m_{s-2 j+2}-4(j-1)>\ldots>m_{s}>0
$$

and for $i=s-2 j-1$

$$
n_{s-2 j-1}=m_{s-2 j-1}-4 j-2>\ldots>m_{s-1}-2>0
$$

where we have used the defining inequalities in $\bar{Q}_{s}^{\nu}(n)$ twice. Thus we have proved that $\alpha \mapsto \alpha^{\prime}$ is a bijection, hence the identity (24) follows.

Now we shall relate the partition families $\bar{Q}_{s}^{\nu}(n)$ to the Gordon's partitions families defined in (12).

Proposition 4 In terms of the numbers $p_{k, i}(n, m)$ of Gordon partitions defined in (12) we have the following formulas:

$$
\bar{q}_{s}^{\nu}(n)=\left\{\begin{array}{lll}
p_{3,3}\left(\frac{n}{3}, s+1\right), & \text { if } s+\nu \equiv 0 & (\bmod 3), n \equiv 0 \quad(\bmod 3) \\
p_{3,2}\left(\frac{n+s+1}{3}, s+1\right), & \text { if } s+\nu \equiv 1 \quad(\bmod 3), n \equiv 2 s+2 \quad(\bmod 3) \\
p_{3,2}\left(\frac{n+2 s+2}{3}, s+1\right), & \text { if } s+\nu \equiv 2 \quad(\bmod 3), n \equiv s+1 \quad(\bmod 3)
\end{array}\right.
$$

Proof. 1.) Let $s+\nu \equiv 0(\bmod 3)$. Then each $\alpha=\left(n_{0}, n_{1}, \ldots, n_{s}\right) \in \bar{Q}_{s}^{\nu}(n)$ satisfies $n_{i} \equiv 0(\bmod 3), n_{i} \geq n_{i+1}, n_{i}-n_{i+2} \geq 5, n_{s-1}>2$. By defining $\alpha^{\prime}=\left(m_{0}, \ldots, m_{s}\right)$, with $m_{i}=n_{i} / 3$ we see that $m_{i} \geq m_{i+1}, m_{i} \in \mathbb{N}, m_{i}-m_{i+2} \geq 2, m_{s-1}>1$. This implies that $\alpha^{\prime} \in P_{3,3}\left(\frac{n}{3}, s+1\right)$ and clearly $\alpha \mapsto \alpha^{\prime}$ is a bijection.
2.) $s+\nu \equiv 1(\bmod 3)$. Then $n_{i} \equiv 2(\bmod 3)$, $n_{i} \geq n_{i+1}, n_{i}-n_{i+2} \geq 5, n_{s-1}>$ $2\left(\Longrightarrow n_{s-1} \geq 5\right)$. By defining $\alpha^{\prime}=\left(m_{0}, \ldots, m_{s}\right)$ where $m_{i}=\left(n_{i}+1\right) / 3$ we see that $m_{i} \geq m_{i+1}, m_{i}-m_{i+2} \geq 2, m_{s-1}>1$ so α^{\prime} belongs to $P_{3,2}\left(\frac{n+s+1}{3}, s+1\right)$ and again $\alpha \mapsto \alpha^{\prime}$ is a bijection.
3.) $s+\nu \equiv 2(\bmod 3)$. Then $n_{i} \equiv 1(\bmod 3)$, $n_{s-1}>2\left(\Longrightarrow n_{s-1} \geq 4\right)$. Let $\alpha^{\prime}=\left(m_{0}, \ldots, m_{s}\right)$ where $m_{i}=\left(n_{i}+2\right) / 3$. Then $m_{i} \in \mathbb{N}, m_{i}-m_{i+2} \geq 2, m_{s-1}>1$. So $\alpha^{\prime} \in P_{3,2}\left(\frac{n+2 s+2}{3}, s+1\right)$ and $\alpha \mapsto \alpha^{\prime}$ is a bijection. The proof is finished.

By combining the Proposition 3 and Proposition 4 we obtain

Corollary 5 For any $n \in \mathbb{N}$ and $0 \leq s \leq n, \nu \in\{0,1,2\}$ we have

$$
q_{s}^{\nu}(n)=\left\{\begin{array}{lll}
p_{3,3}\left(\frac{n+s(s+1)}{3}, s+1\right), & \text { if } s+\nu \equiv 0 & (\bmod 3) \\
p_{3,2}\left(\frac{n+(s+1)^{2}}{3}, s+1\right), & \text { if } s+\nu \equiv 1 & (\bmod 3) \\
p_{3,2}\left(\frac{n+(s+1)(s+2)}{3}, s+1\right), & \text { if } s+\nu \equiv 2 & (\bmod 3)
\end{array}\right.
$$

where $p_{3, i}(n, m)$ is the number of partitions $\left(n_{1}, \ldots, n_{m}\right)$ of $n\left(=n_{1}+\ldots+n_{m}\right)$ such that $n_{j}-n_{j+2} \geq 2, \operatorname{Card}\left\{j \mid n_{j}=1\right\}<i .(c f$. (12))

Remark 5 We have
i) $p_{3,3}(n, m) \neq 0 \Longrightarrow m^{2} \leq 2 n$
ii) $p_{3,2}(n, m) \neq 0 \Longrightarrow m(m+1) \leq 2 n$

For $i)$, if $\left(n_{1}, \ldots, n_{m}\right) \in P_{3,3}(n, m)$ then
$n=n_{1}+\ldots+n_{m} \geq \begin{cases}\left(m+(m-1)+(m-1)+\ldots+3+3+1+1=\frac{m^{2}+1}{2},\right. & \text { if } m \text { odd } \\ \left((m-1)+(m-1)+\ldots+3+3+1+1=\frac{m^{2}}{2},\right. & \text { if } m \text { even }\end{cases}$
For ii), if $\left(n_{1}, \ldots, n_{m}\right) \in P_{3,2}(n, m)$ then

$$
n=n_{1}+\ldots+n_{m} \geq m+(m-1)+\ldots+2+1=m(m+1) / 2
$$

Remark 6 We have

$$
q_{s}^{\nu}(n) \neq 0 \Longrightarrow\left\{\begin{array}{lll}
(s+2)^{2}<2 n, & \text { if } s+\nu \equiv 0 & (\bmod 3) \\
(s+1)(s+4) \leq 2 n, & \text { if } s+\nu \equiv 1 & (\bmod 3) \\
(s+1)(s+2) \leq 2 n, & \text { if } s+\nu \equiv 2 & (\bmod 3)
\end{array}\right.
$$

1.3 Equipotence of the families $Q^{\nu}(n), \nu=0,1$ of partitions

Theorem 7 For $n \in 3 \mathbb{N}, \nu=0,1$, the set of partitions

$$
\begin{aligned}
Q^{\nu}(n):=\left\{\left(n_{0}, n_{1}, \ldots, n_{s}\right) \in \mathbb{N}^{s+1} \mid\right. & n_{i} \equiv-i-\nu \quad(\bmod 3), s \geq 0 \\
& n=n_{0}+\ldots+n_{s} \\
& n_{i}>n_{i+2} \\
& \left.n_{i} \geq n_{i+1}-2\right\}
\end{aligned}
$$

are equinumerous, i.e. Card $Q^{0}(n)=\operatorname{Card} Q^{1}(n)$.

Proof. We have to prove that $\operatorname{Card} Q^{0}(n)=\operatorname{Card} Q^{1}(n)(n \in 3 \mathbb{N})$ or, by using the notation (11) that

$$
\begin{equation*}
q^{0}(n)=q^{1}(n), \quad n \in 3 \mathbb{N} \tag{25}
\end{equation*}
$$

By relations (20) i), iv) of Corollary 4 this is equivalent to

$$
\begin{equation*}
\sum_{s \equiv 2} q_{s}^{1}(n+2 s+2)=\sum_{s \equiv 2} q_{(\bmod 3)}^{0}(n+s+1), \quad n \in 3 \mathbb{N}, \quad s \geq 0 \tag{26}
\end{equation*}
$$

and, by Corollary 5. this is equivalent to

$$
\begin{equation*}
\sum_{(\bmod 3)} p_{3,3}\left(\frac{n+s(s+1)}{3}, s\right)=\sum_{s \equiv}^{(\bmod 3)} p_{3,2}\left(\frac{n+s(s+2)}{3}, s\right), \tag{27}
\end{equation*}
$$

with $n \in 3 \mathbb{N}, s>0$.
Now we employ the Theorem 1 of reference [2] in the special case $k=3, i=2,3, d=0$. In our notations (13) and by replacing q for q^{3} special case reads as follows:

$$
\sum_{n \geq 0} \sum_{m \geq 0} p_{3, i}(n, m) q^{3 n} z^{m}=\sum_{n_{1} \geq 0} \sum_{n_{2} \geq 0} \frac{z^{N_{1}+N_{2}}}{\left(q^{3}\right)_{n_{1}}\left(q^{3}\right)_{n_{2}}} \begin{cases}q^{3\left(N_{1}^{2}+N_{2}^{2}\right)}, & \text { if } i=3 \tag{28}\\ q^{3\left(N_{1}^{2}+N_{2}^{2}+N_{2}\right)}, & \text { if } i=2\end{cases}
$$

where $N_{1}=n_{1}+n_{2}, N_{2}=n_{2}$ and $(q)_{k}=(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{k}\right)$. From (28) it follows easily

$$
\begin{gather*}
p_{3,3}\left(\frac{n+s(s+1)}{3}, s\right)=\left[q^{n+s(s+1)}\right] \sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2}=s} \frac{q^{3\left(N_{1}^{2}+N_{2}^{2}\right)}}{\left(q^{3}\right)_{n_{1}}\left(q^{3}\right)_{n_{2}}} \tag{29}\\
=\left[q^{n}\right] \sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2}=s} \frac{q^{3 N_{1}^{2}+3 N_{2}^{2}-s(s+1)}}{\left(q^{3}\right)_{n_{1}}\left(q^{3}\right)_{n_{2}}} \\
=\left[q^{n}\right] \sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2}=s} \frac{q^{2\left(N_{1}^{2}-N_{1} N_{2}+N_{2}^{2}\right)-N_{1}-N_{2}}}{\left(q^{3}\right)_{n_{1}}\left(q^{3}\right)_{n_{2}}} .
\end{gather*}
$$

Similarly we get

$$
\begin{equation*}
p_{3,2}\left(\frac{n+s(s+2)}{3}, s\right)=\left[q^{n}\right] \sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2}=s} \frac{q^{2\left(N_{1}^{2}-N_{1} N_{2}+N_{2}^{2}\right)+N_{2}-2 N_{1}}}{\left(q^{3}\right)_{n_{1}}\left(q^{3}\right)_{n_{2}}} . \tag{30}
\end{equation*}
$$

From $(25) \Longleftrightarrow(26) \Longleftrightarrow(27)$ and $(29),(30)$ to prove (25) it is enough to prove the equality of generating functions

$$
\begin{equation*}
1+\sum_{n \geq 1, n \equiv 0} q^{0}(n) x^{n}=\sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2} \equiv 0}{ }_{(\bmod 3)} \frac{x^{2\left(N_{1}^{2}-N_{1} N_{2}+N_{2}^{2}\right)-N_{1}-N_{2}}}{\left(x^{3}\right)_{n_{1}}\left(x^{3}\right)_{n_{2}}} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\sum_{n \geq 1, n \equiv 0} q^{1}(n) x^{n}=\sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2} \equiv 0} q_{(\bmod 3)} \frac{x^{2\left(N_{1}^{2}-N_{1} N_{2}+N_{2}^{2}\right)+N_{2}-2 N_{1}}}{\left(x^{3}\right)_{n_{1}}\left(x^{3}\right)_{n_{2}}} \tag{32}
\end{equation*}
$$

Observe now that for $\left(n_{1}, n_{2} \in \mathbb{N}^{2}\right)$ we have

$$
n_{1}+2 n_{2} \equiv 0 \quad(\bmod 3) \Longleftrightarrow n_{2}+2 n_{1} \equiv 0 \quad(\bmod 3)
$$

By change of variables $\left(n_{1}, n_{2}\right) \rightarrow\left(n_{2}, n_{1}\right)$ in (32), the quantity $N_{2}-2 N_{1}=n_{2}-$ $2\left(n_{1}+n_{2}\right)=-2 n_{1}-n_{2}$ gets transformed to $-n_{1}-2 n_{2}=-N_{1}-N_{2}$ and the R.H.S of (32) becomes the R.H.S of (31) so the R.H.S of (31) and (32) are equal. This proves the Theorem 7

Theorem 8 For the functions $q^{(0)}(n), q^{(1)}(n), q(n)$ we have the following generating functions:

$$
\begin{align*}
& \text { i) } 1+\sum_{n \equiv 0} q^{(0)}(n) x^{n}=\sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2} \equiv 0} \sum_{(\bmod 3)} \frac{x^{2\left(N_{1}^{2}-N_{1} N_{2}+N_{2}^{2}\right)-N_{1}-N_{2}}}{\left(x^{3}\right)_{n_{1}}\left(x^{3}\right)_{n_{2}}} \tag{33}\\
& \text { ii) } \sum_{n \equiv 0} \sum_{(\bmod 3)} q^{(1)}(n) x^{n}=\sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2} \equiv 2} \frac{x_{(\bmod 3)}^{2\left(N_{1}^{2}-N_{1} N_{2}+N_{2}^{2}\right)-N_{1}-N_{2}}}{\left(x^{3}\right)_{n_{1}}\left(x^{3}\right)_{n_{2}}} \tag{34}\\
& \text { iii) } \sum_{n \equiv 1}^{\sum_{(\bmod 3)} q^{(2)}(n) x^{n}}=\sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2} \equiv 1} \sum_{(\bmod 3)} \frac{x^{2\left(N_{1}^{2}-N_{1} N_{2}+N_{2}^{2}\right)-N_{1}-N_{2}}}{\left(x^{3}\right)_{n_{1}}\left(x^{3}\right)_{n_{2}}} \tag{35}
\end{align*}
$$

Proof. The relation i) is obtained in (31). In order to prove relation $i i$) we use (20), iii) to get

$$
q^{(1)}(n)=\sum_{s \in 3 \mathbb{Z}_{+}+1} q_{s}^{(2)}(n+2 s+2)
$$

Furthermore, according to Corollary 5 we have

$$
\begin{aligned}
q^{(1)}(n) & =\sum_{s \in 3 \mathbb{Z}_{+}+1} p_{3,3}\left(\frac{n+(s+1)(s+2)}{3}, s+1\right) \\
& =\sum_{t \in 3 \mathbb{Z}_{+}+2}\left[x^{n+t(t+1)}\right] \sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2} \equiv 2} \frac{x^{\left(3 N_{1}^{2}+3 N_{2}^{2}\right)}}{\left(x^{3}\right)_{n_{1}}\left(x^{3}\right)_{n_{2}}} \\
& =\left[x^{n}\right] \sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2} \equiv 2} \quad \frac{x^{2\left(N_{1}^{2}-N_{1} N_{2}+N_{2}^{2}\right)-N_{1}-N_{2}}}{\left(x^{3}\right)_{n_{1}}\left(x^{3}\right)_{n_{2}}} .
\end{aligned}
$$

Now, by substitution into generating function for $q^{(1)}$ we obtain relation $\left.i i\right)$.
For the purpose to to prove relation $i i i$) firstly we use relation $v i$) in Corollary 5 to get:

$$
\begin{aligned}
q^{(2)}(n) & =\sum_{s \in 3 \mathbb{Z}_{+}+1} q_{s}^{(0)}(n+2 s+2), n \equiv 1 \quad(\bmod 3) \\
& =\sum_{s \in 3 \mathbb{Z}_{+}} p_{3,3}\left(\frac{n+(s+1)(s+2)}{3}, s+1\right) \\
& =\sum_{t \in 3 \mathbb{Z}_{+}+1}\left[x^{n+t(t+1)}\right] \sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2} \equiv t}(\bmod 3) \\
& \frac{x^{\left(3 N_{1}^{2}+3 N_{2}^{2}\right)}}{\left(x^{3}\right)_{n_{1}}\left(x^{3}\right)_{n_{2}}} \\
& =\left[x^{n}\right] \sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2} \equiv 1} \frac{x^{2\left(N_{1}^{2}-N_{1} N_{2}+N_{2}^{2}\right)-N_{1}-N_{2}}}{\left(x^{3}\right)_{n_{1}}\left(x^{3}\right)_{n_{2}}} .
\end{aligned}
$$

Once having this relation, the statement iii) follows directly.

Corollary 6 We let χ denote the generating function which is the sum of generating function of i), ii) and iii) in Theorem 8. Then, we have

$$
\begin{equation*}
\chi=\sum_{n_{1}, n_{2} \geq 0} \frac{x^{2\left(N_{1}^{2}-N_{1} N_{2}+N_{2}^{2}\right)-N_{1}-N_{2}}}{\left(x^{3}\right)_{n_{1}}\left(x^{3}\right)_{n_{2}}} \tag{36}
\end{equation*}
$$

References

[1] J. Lepowsky, M. Primc, Structure of the standard modules for the affine Lie Algebra A1(1), Contemporary Math. 46, Amer. Math. Soc., Providence, Rhode Island, 1985, 1-84.
[2] G. E. Andrews, Multiple q-series identities, Houston J. Math, 7 (1981), 11-22.

