On some partition identities related to affine Lie algebra representations

Dragutin Svrtan

Department of Mathematics, University of Zagreb Bijenička c. 30, 10002 Zagreb, CROATIA e-mail: dsvrtan@math.hr

Abstract

In this paper, meant for combinatorialists, we give a proof of equipotence of two families of partitions ('Primc conjecture') which appeared in the early stage of representation theory of affine Lie algebra $A_1^{(1)}$ (or $Sl(2,\mathbb{C})^{\wedge}$). The result was obtained already in 1983 and it lead to the very first character formulas for the level 3 standard modules (this is mentioned in Ref[1]) on pages 2 and 77 respectively). We hope that the intricacy of handling the interlocking recursion relations may be of some interest to combinatorialists not working in Lie algebra theory.

Keywords: partition function, partition identity, Lie algebra

MSC: 05A17, 11P84

1.1 Introduction

For $\nu = 0, 1, 2 \pmod 3$ we introduce the following families of partitions:

$$Q_s^{\nu}(n) := \{ (n_0, n_1, ..., n_s) \in \mathbb{N}^{s+1} | n = n_0 + n_1 + ... + n_s,$$

$$n_i \equiv -i - \nu \pmod{3},$$

$$n_i \ge n_{i+1} - 2, \quad n_i > n_{i+2} \}$$

$$Q^{\nu}(n) := \bigcup_{s \ge 0} Q_s^{\nu}(n)$$

$$(9)$$

DOI: https://doi.org/10.5592/CO/CCD.2016.06

and denote by

$$q_s^{\nu}(n) := \operatorname{Card}Q_s^{\nu}(n) \tag{10}$$

$$q^{\nu}(n) := \operatorname{Card}Q^{\nu}(n) \tag{11}$$

the numbers of partitions in these families of partitions.

The partitions from (9) we shall relate to the partitions appearing in the Gordon's generalization of the Rogers-Ramanujan identities:

$$P_{k,i}(n,m) := \{ (n_1, ..., n_m) \in \mathbb{N}^m | n = n_1 + ... + n_m,$$

$$n_j \ge n_{j+1}, n_j \ge n_{j+k-1} + 2,$$

$$\operatorname{Card}\{j | n_j = 1 < i\} \}$$

$$(12)$$

$$p_{k,i}(n,m) := \operatorname{Card}P_{k,i}(n,m) \tag{13}$$

Proposition 1 The family $Q_s^{\nu}(n)$ is nonempty if $s \pmod{3}$ is given by the following table,

Proof. For any given n, ν if $\alpha = (n_0, ..., n_s) \in Q_s^{\nu}(n) \neq \emptyset$, then

$$n \equiv \sum_{i=0}^{s} (-i - \nu) \pmod{3} = -\frac{s(s+1)}{2} - (s+1)\nu \pmod{3}.$$
 (15)

The recursions for the number theoretic functions $q_s^{\nu}(n)$ (defined by (23)) are given by the following proposition.

Proposition 2 For $n \in \mathbb{N}$, $s \in \mathbb{Z}_+$, $\nu \in \mathbb{Z}_3$ we have:

$$q_s^{\nu}(n) = \begin{cases} q_s^{\nu+2}(n-2s+2) + q_{s-2}^{\nu+2}(n-2s-2), & if \ s+\nu \equiv 0 \pmod{3} \\ q_s^{\nu+1}(n-s-1), & if \ s+\nu \equiv 1 \pmod{3} \\ q_s^{\nu+1}(n-s-1) + q_{s-1}^{\nu+2}(n-s-1), & if \ s+\nu \equiv 2 \pmod{3} \end{cases}$$
(16)

with initial conditions

$$q_s^{\nu}(1) = \delta_{s,2} \cdot \delta_{s,0} \tag{17}$$

together with the convention $q_s^{\nu}(0) = 1$ if $s = \nu = 0$ or $s = -1, \nu = 1$; 0 otherwise. We put

$$q_s^{\nu}(n) = 0 \tag{18}$$

if $(s \le 0 \text{ or } n \le 0)$ and $n \ne s$, so that the right-hand side of (16) is well defined. With the recursions above all functions $q_s^{\nu}(n)$ are uniquely defined.

Proof. We distinguish three cases depending on $(s + \nu) \pmod{3}$. $s + \nu \equiv 0 \pmod{3}$. If s = 0, then $\alpha = (n_0), n_0 \equiv -\nu \pmod{3}, n_0 > 0$; so

$$q_0^{\nu}(n) = \begin{cases} q_0^2(n-2), & \text{for } \nu = 0\\ q_0^2(n-1), & \text{for } \nu = 1\\ q_0^0(n-1), & \text{for } \nu = 2 \end{cases}$$

If s > 0 and $\alpha = (n_0, ..., n_s) \in Q_s^{\nu}(n)$, then $n_{s-1} \equiv -(s-1) - \nu \equiv 1 \pmod{3}$, $n_s = -s - \nu \equiv 0 \pmod{3}$, hence $n_{s-1} \geq 1$, $n_s \geq 3$. Then in the subcase a1) $n_{s-1} \geq 2$ we have $n_{s-1} \geq 4$ because $n_{s-1} \equiv 1 \pmod{3}$. By letting $\hat{\alpha} := (n_0 - 2, ..., n_s - 2)$ we get all partitions from $Q_s^{\nu+2}(n-2s-2)$.

In the subcase a 2) $n_{s-1} = 1$, from (9) it follows $n_{s-1} \ge n_s - 2$, hence $n_s = 3$. So $Q_1^2(4) = \{(1,3)\}$ and $q_1^2(4) = 1$, and for $s \ge 2$ by letting

$$\hat{\alpha} = (n_0 - 2, ..., n_{s-2} - 2)$$

we obtain all partitions from $Q_{s-2}^{\nu+2}(n-2s-2, because n_{s-2} > n_s (= 3), n_{s-3} \ge n_{s-2} - 2 (\ge 1).$

By combining the two bijections from a1) and a2) we obtain the first relation in (16).

b) $s + \nu \equiv 1 \pmod{3}$. For $\alpha = (n_0, ..., n_s) \in Q_s^{\nu}(n)$, $n_s \equiv -s - \nu \equiv 2 \pmod{3}$, $n_{s-1} \equiv -s + 1 - \nu \equiv 0 \pmod{3}$.

So $n_s \ge 2$ and $n_{s-1} \ge 3$ (if s > 0). Then the map $\alpha \mapsto \bar{\alpha} = (n_0 - 1, ..., n_s - 1)$ is a bijection onto $Q_s^{\nu+1}(n-s-1)$.

c) $s + \nu \equiv 2 \pmod{3}$. For $\alpha = (n_0, ..., n_s) \in Q_s^{\nu}(n)$ we have $n_s \equiv 1 \pmod{3}$ and $n_{s-1} \equiv 2 \pmod{3}$ (if s > 0). Like in a) we have two subspaces:

c1) $n_s = 1$. Then $\alpha \mapsto \bar{\alpha} = (n_0 - 1, ..., n_{s-1} - 1)$ is a bijection onto $Q_{s-1}^{\nu+1}(n-s-1)$.

c2) $n_s \ge 4$. Then $n_{s-1} \ge n_s - 2(\ge 2)$, so we get a bijection $\alpha \mapsto \bar{\alpha} = (n_0 - 1, ..., n_s - 1)$ onto $Q_s^{\nu+1}(n-s-1)$. In the case s = 0, we have $\nu \equiv 2 \pmod{3}$ we need to check that $q_0^2(n) = q_0^0(n-1)$. For n > 1 it is obvious, and for n = 1, $q_0^{(2)}(1) = 1 = q_0^0(0)$ by (18).

The fact that (16) uniquely determines the functions q_s^{ν} one can prove by induction on n+s.

Corollary 3 For $n \in \mathbb{N}$, $s \in \mathbb{Z}_+$, $\nu \in \mathbb{Z}_3$ (with the conventions from the Proposition 2) we have

$$q_{s+2}^{\nu}(n) + q_s^{\nu}(n) = q_{s+2}^{\nu+1}(n+2s+6), \quad \text{if } s+\nu \equiv 0 \pmod{3}$$

$$q_s^{\nu}(n) = q_s^{\nu+2}(n+s+1), \quad \text{if } s+\nu \equiv 2 \pmod{3}$$

$$q_{s+1}^{\nu}(n) + q_s^{\nu}(n) = q_{s+1}^{\nu+2}(n+s+2), \quad \text{if } s+\nu \equiv 2 \pmod{3}$$

$$(19)$$

Corollary 4 For the number theoretic functions $q^{\nu}(n)$, $(\nu = 0, 1, 2)$ defined in (11) we have the following formulas:

$$i) \qquad q^{0}(3n) = \sum_{s\geq 1} q_{3s-1}^{1}(3n+6s)$$

$$ii) \qquad q^{0}(3n) = \sum_{s\geq 0} q_{3s}^{2}(3n+3s+1) = \sum_{s\geq 0} q_{3s}^{0}(3n+6s+2)$$

$$iii) \qquad q^{1}(3n) = \sum_{s\geq 1} q_{3s-1}^{2}(3n+6s+4)$$

$$iv) \qquad q^{1}(3n) = \sum_{s\geq 1} q_{3s-1}^{0}(3n+3s)$$

$$v) \qquad q^{2}(3n+1) = \sum_{s\geq 1} q_{3s-2}^{1}(3n+3s) = \sum_{s\geq 1} q_{3s-2}^{0}(3n+6s-1)$$

$$vi) \qquad q^{2}(3n+1) = \sum_{s\geq 0} q_{3s}^{0}(3n+6s+3)$$

$$vii) \qquad q^{2}(3n) = \sum_{s\geq 0} q_{3s+2}^{2}(3n) = \sum_{s\geq 1} q_{3s-1}^{0}(3n-3s)$$

$$viii) \qquad q^{0}(3n+2) = \sum_{s\geq 0} q_{3s+1}^{0}(3n+2) = \sum_{s\geq 0} q_{3s+1}^{1}(3n-3s)$$

$$ix) \qquad q^{1}(3n+2) = \sum_{s\geq 0} q_{3s}^{1}(3n+2) = \sum_{s\geq 0} q_{3s}^{2}(3n-3s+1)$$

$$x) \qquad q^{0}(3n+1) = q^{1}(3n+1) = q^{2}(3n+2) = 0.$$

Proof. Follows easily by Corollary 3 with the help of Proposition 1.

1.2 Relation to Gordon partitions

In this subsection we shall relate partition families $Q_s^{\nu}(n)$ from (9) firstly to standard partitions with additional difference conditions and secondly to Gordon partitions. For $n \in \mathbb{N}$, $s \in \mathbb{Z}_+$, $\nu \in \mathbb{Z}_3$ we introduce the following families of partitions:

$$\bar{Q}_{s}^{\nu}(n) := \{ (n_{0}, n_{1}, ..., n_{s}) \in \mathbb{N}^{s+1} | n_{j} \equiv -s - \nu (mod3),
n = n_{0} + ... + n_{s}, n_{j} \ge n_{j+1}, n_{j} - n_{j+2} \ge 5, n_{s-1} > 2 \}
\bar{Q}^{\nu}(n) := \bigcup_{s>0} \bar{Q}_{s}^{\nu}(n)$$
(21)

and denote by

$$\bar{q}_s^{\nu}(n) := \operatorname{Card}\bar{Q}_s^{\nu}(n)$$
 (22)

$$\bar{q}^{\nu}(n) := \operatorname{Card}\bar{Q}^{\nu}(n).$$
 (23)

Proposition 3 For any $n \in \mathbb{N}$ and $0 \le s \le n$ we have

$$q_s^{\nu}(n) = \bar{q}_s^{\nu}(n + s(s+1)) \tag{24}$$

Proof. For $\alpha = (n_0, ..., n_s) \in Q_s^{\nu}(n)$ let $\alpha' = (n'_0, ..., s'_s)$ be defined by

$$n_i' = n_i + 2(s - i).$$

We claim that $\alpha \mapsto \alpha^{'}$ is a bijection of $Q_s^{\nu}(n)$ with $\bar{Q}_s^{\nu}(n)$. From $\sum_{i=0}^{s} 2(s-i) = s(s+1)$ and $n_i^{'} = n_i + 2(s-i) \geq n_{i+1} - 2 + 2(s-i) = n_{i+1}^{'}$ it follows that $\alpha^{'}$ is a partition of n + s(s+1). Since $n_i^{'} \equiv -i - \nu + 2(s-i) \equiv -s - \nu \pmod 3$,

$$n'_{i} = n_{i} + 2(s - i) > n_{i+2} + 2(s - i) = n'_{i+2} + 4$$

and

$$n'_{s-1} = n_{s-1} + 2 > 2.$$

then the partition α' belongs to $\bar{Q}^{\nu}_{s}(n+s(s+1))$.

Conversely for any partition $\beta = (m_0, m_1, ..., m_s) \in \bar{Q}_s^{\nu}(n + s(s+1))$ let $\alpha = (n_0, ..., n_s)$, where $n_i := m_i - 2(s-i)$. Then $n_i \in \mathbb{N}$, because for i = s-2j

$$n_{s-2j} = m_{s-2j} - 4j > m_{s-2j+2} - 4(j-1) > \dots > m_s > 0$$

and for i = s - 2j - 1

$$n_{s-2i-1} = m_{s-2i-1} - 4j - 2 > \dots > m_{s-1} - 2 > 0$$

where we have used the defining inequalities in $\bar{Q}_s^{\nu}(n)$ twice. Thus we have proved that $\alpha \mapsto \alpha'$ is a bijection, hence the identity (24) follows.

Now we shall relate the partition families $\bar{Q}_s^{\nu}(n)$ to the Gordon's partitions families defined in (12).

Proposition 4 In terms of the numbers $p_{k,i}(n,m)$ of Gordon partitions defined in (12) we have the following formulas:

$$\bar{q}_s^{\nu}(n) = \begin{cases} p_{3,3}(\frac{n}{3}, s+1), & \text{if } s+\nu \equiv 0 \pmod{3}, n \equiv 0 \pmod{3} \\ p_{3,2}(\frac{n+s+1}{3}, s+1), & \text{if } s+\nu \equiv 1 \pmod{3}, n \equiv 2s+2 \pmod{3} \\ p_{3,2}(\frac{n+2s+2}{3}, s+1), & \text{if } s+\nu \equiv 2 \pmod{3}, n \equiv s+1 \pmod{3} \end{cases}$$

Proof. 1.) Let $s + \nu \equiv 0 \pmod{3}$. Then each $\alpha = (n_0, n_1, ..., n_s) \in \bar{Q}_s^{\nu}(n)$ satisfies $n_i \equiv 0 \pmod{3}$, $n_i \geq n_{i+1}$, $n_i - n_{i+2} \geq 5$, $n_{s-1} > 2$. By defining $\alpha' = (m_0, ..., m_s)$, with $m_i = n_i/3$ we see that $m_i \geq m_{i+1}$, $m_i \in \mathbb{N}$, $m_i - m_{i+2} \geq 2$, $m_{s-1} > 1$. This implies that $\alpha' \in P_{3,3}(\frac{n}{3}, s + 1)$ and clearly $\alpha \mapsto \alpha'$ is a bijection.

2.) $s + \nu \equiv 1 \pmod{3}$. Then $n_i \equiv 2 \pmod{3}$, $n_i \geq n_{i+1}$, $n_i - n_{i+2} \geq 5$, $n_{s-1} > 2$ ($\implies n_{s-1} \geq 5$). By defining $\alpha' = (m_0, ..., m_s)$ where $m_i = (n_i + 1)/3$ we see that $m_i \geq m_{i+1}$, $m_i - m_{i+2} \geq 2$, $m_{s-1} > 1$ so α' belongs to $P_{3,2}(\frac{n+s+1}{3}, s+1)$ and again $\alpha \mapsto \alpha'$ is a bijection.

3.) $s + \nu \equiv 2 \pmod{3}$. Then $n_i \equiv 1 \pmod{3}$, $n_{s-1} > 2 \implies n_{s-1} \ge 4$. Let $\alpha' = (m_0, ..., m_s)$ where $m_i = (n_i + 2)/3$. Then $m_i \in \mathbb{N}$, $m_i - m_{i+2} \ge 2$, $m_{s-1} > 1$. So $\alpha' \in P_{3,2}(\frac{n+2s+2}{3}, s+1)$ and $\alpha \mapsto \alpha'$ is a bijection. The proof is finished.

By combining the Proposition 3 and Proposition 4 we obtain

Corollary 5 For any $n \in \mathbb{N}$ and $0 \le s \le n$, $\nu \in \{0,1,2\}$ we have

$$q_s^{\nu}(n) = \begin{cases} p_{3,3}(\frac{n+s(s+1)}{3}, s+1), & \text{if } s+\nu \equiv 0 \pmod{3} \\ p_{3,2}(\frac{n+(s+1)^2}{3}, s+1), & \text{if } s+\nu \equiv 1 \pmod{3} \\ p_{3,2}(\frac{n+(s+1)(s+2)}{3}, s+1), & \text{if } s+\nu \equiv 2 \pmod{3} \end{cases}$$

where $p_{3,i}(n,m)$ is the number of partitions $(n_1,...,n_m)$ of $n(=n_1+...+n_m)$ such that $n_j - n_{j+2} \ge 2$, $Card\{j|n_j = 1\} < i$. (cf. (12))

Remark 5 We have

- i) $p_{3,3}(n,m) \neq 0 \implies m^2 < 2n$
- *ii)* $p_{3,2}(n,m) \neq 0 \implies m(m+1) < 2n$

For i), if $(n_1, ..., n_m) \in P_{3,3}(n, m)$ then

$$n = n_1 + \dots + n_m \ge \begin{cases} (m + (m-1) + (m-1) + \dots + 3 + 3 + 1 + 1 = \frac{m^2 + 1}{2}, & \text{if } m \text{ odd} \\ ((m-1) + (m-1) + \dots + 3 + 3 + 1 + 1 = \frac{m^2}{2}, & \text{if } m \text{ even} \end{cases}$$

For ii), if
$$(n_1, ..., n_m) \in P_{3,2}(n, m)$$
 then

$$n = n_1 + \dots + n_m \ge m + (m-1) + \dots + 2 + 1 = m(m+1)/2.$$

Remark 6 We have

$$q_s^{\nu}(n) \neq 0 \implies \begin{cases} (s+2)^2 < 2n, & \text{if } s + \nu \equiv 0 \pmod{3} \\ (s+1)(s+4) \leq 2n, & \text{if } s + \nu \equiv 1 \pmod{3} \\ (s+1)(s+2) \leq 2n, & \text{if } s + \nu \equiv 2 \pmod{3}. \end{cases}$$

1.3 Equipotence of the families $Q^{\nu}(n), \nu = 0, 1$ of partitions

Theorem 7 For $n \in 3\mathbb{N}$, $\nu = 0, 1$, the set of partitions

$$Q^{\nu}(n) := \{ (n_0, n_1, ..., n_s) \in \mathbb{N}^{s+1} \mid n_i \equiv -i - \nu \pmod{3}, s \ge 0,$$

$$n = n_0 + ... + n_s,$$

$$n_i > n_{i+2},$$

$$n_i \ge n_{i+1} - 2 \}$$

are equinumerous, i.e. $Card\ Q^0(n) = \ Card\ Q^1(n)$.

Proof. We have to prove that $\operatorname{Card}Q^0(n) = \operatorname{Card}Q^1(n)$ $(n \in 3\mathbb{N})$ or, by using the notation (11) that

$$q^{0}(n) = q^{1}(n), \ n \in 3\mathbb{N}$$
 (25)

By relations (20) i), iv) of Corollary 4 this is equivalent to

$$\sum_{s\equiv 2 \pmod{3}} q_s^1(n+2s+2) = \sum_{s\equiv 2 \pmod{3}} q_s^0(n+s+1), \quad n \in 3\mathbb{N}, \quad s \ge 0$$
 (26)

and, by Corollary 5. this is equivalent to

$$\sum_{s \equiv 0 \pmod{3}} p_{3,3} \left(\frac{n + s(s+1)}{3}, s \right) = \sum_{s \equiv \pmod{3}} p_{3,2} \left(\frac{n + s(s+2)}{3}, s \right), \tag{27}$$

with $n \in 3\mathbb{N}, s > 0$.

Now we employ the Theorem 1 of reference [2] in the special case k = 3, i = 2, 3, d = 0. In our notations (13) and by replacing q for q^3 special case reads as follows:

$$\sum_{n>0} \sum_{m>0} p_{3,i}(n,m) q^{3n} z^m = \sum_{n_1>0} \sum_{n_2>0} \frac{z^{N_1+N_2}}{(q^3)_{n_1}(q^3)_{n_2}} \begin{cases} q^{3(N_1^2+N_2^2)}, & \text{if } i=3\\ q^{3(N_1^2+N_2^2+N_2)}, & \text{if } i=2 \end{cases}$$
(28)

where $N_1 = n_1 + n_2$, $N_2 = n_2$ and $(q)_k = (1 - q)(1 - q^2)...(1 - q^k)$. From (28) it follows easily

$$p_{3,3}\left(\frac{n+s(s+1)}{3},s\right) = \left[q^{n+s(s+1)}\right] \sum_{n_1,n_2 \ge 0, N_1+N_2=s} \frac{q^{3(N_1^2+N_2^2)}}{(q^3)_{n_1}(q^3)_{n_2}}$$
(29)

$$= [q^n] \sum_{n_1, n_2 \ge 0, N_1 + N_2 = s} \frac{q^{3N_1^2 + 3N_2^2 - s(s+1)}}{(q^3)_{n_1}(q^3)_{n_2}}$$

$$= [q^n] \sum_{n_1, n_2 \ge 0, N_1 + N_2 = s} \frac{q^{2(N_1^2 - N_1 N_2 + N_2^2) - N_1 - N_2}}{(q^3)_{n_1}(q^3)_{n_2}}.$$

Similarly we get

$$p_{3,2}\left(\frac{n+s(s+2)}{3},s\right) = [q^n] \sum_{\substack{n_1,n_2 \ge 0, N_1 + N_2 = s}} \frac{q^{2(N_1^2 - N_1 N_2 + N_2^2) + N_2 - 2N_1}}{(q^3)_{n_1}(q^3)_{n_2}}.$$
 (30)

From $(25) \iff (26) \iff (27)$ and (29), (30) to prove (25) it is enough to prove the equality of generating functions

$$1 + \sum_{n \ge 1, n \equiv 0 \pmod{3}} q^0(n) x^n = \sum_{n_1, n_2 \ge 0, N_1 + N_2 \equiv 0 \pmod{3}} \frac{x^{2(N_1^2 - N_1 N_2 + N_2^2) - N_1 - N_2}}{(x^3)_{n_1} (x^3)_{n_2}}$$
(31)

and

$$1 + \sum_{n \ge 1, n \equiv 0 \pmod{3}} q^1(n)x^n = \sum_{n_1, n_2 \ge 0, N_1 + N_2 \equiv 0 \pmod{3}} \frac{x^{2(N_1^2 - N_1 N_2 + N_2^2) + N_2 - 2N_1}}{(x^3)_{n_1}(x^3)_{n_2}}$$
(32)

Observe now that for $(n_1, n_2 \in \mathbb{N}^2)$ we have

$$n_1 + 2n_2 \equiv 0 \pmod{3} \iff n_2 + 2n_1 \equiv 0 \pmod{3}$$
.

By change of variables $(n_1, n_2) \rightarrow (n_2, n_1)$ in (32), the quantity $N_2 - 2N_1 = n_2 - 2(n_1 + n_2) = -2n_1 - n_2$ gets transformed to $-n_1 - 2n_2 = -N_1 - N_2$ and the R.H.S of (32) becomes the R.H.S of (31) so the R.H.S of (31) and (32) are equal. This proves the Theorem 7

Theorem 8 For the functions $q^{(0)}(n)$, $q^{(1)}(n)$, q(n) we have the following generating functions:

$$i) \ 1 + \sum_{n \equiv 0 \pmod{3}} q^{(0)}(n) x^n = \sum_{n_1, n_2 \ge 0, N_1 + N_2 \equiv 0 \pmod{3}} \frac{x^{2(N_1^2 - N_1 N_2 + N_2^2) - N_1 - N_2}}{(x^3)_{n_1} (x^3)_{n_2}}$$
(33)

$$ii) \sum_{n \equiv 0 \pmod{3}} q^{(1)}(n)x^n = \sum_{n_1, n_2 \ge 0, N_1 + N_2 \equiv 2 \pmod{3}} \frac{x^{2(N_1^2 - N_1 N_2 + N_2^2) - N_1 - N_2}}{(x^3)_{n_1}(x^3)_{n_2}}$$
(34)

$$iii) \sum_{n\equiv 1 \pmod{3}} q^{(2)}(n)x^n = \sum_{n_1, n_2 \ge 0, N_1 + N_2 \equiv 1 \pmod{3}} \frac{x^{2(N_1^2 - N_1 N_2 + N_2^2) - N_1 - N_2}}{(x^3)_{n_1}(x^3)_{n_2}}$$
(35)

Proof. The relation i) is obtained in (31). In order to prove relation ii) we use (20), iii) to get

$$q^{(1)}(n) = \sum_{s \in 3\mathbb{Z}_{+}+1} q_s^{(2)}(n+2s+2).$$

Furthermore, according to Corollary 5 we have

$$q^{(1)}(n) = \sum_{s \in 3\mathbb{Z}_{+}+1} p_{3,3} \left(\frac{n + (s+1)(s+2)}{3}, s+1 \right)$$

$$= \sum_{t \in 3\mathbb{Z}_{+}+2} [x^{n+t(t+1)}] \sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2} \equiv 2 \pmod{3}} \frac{x^{(3N_{1}^{2}+3N_{2}^{2})}}{(x^{3})_{n_{1}}(x^{3})_{n_{2}}}$$

$$= [x^{n}] \sum_{n_{1}, n_{2} \geq 0, N_{1}+N_{2} \equiv 2 \pmod{3}} \frac{x^{2(N_{1}^{2}-N_{1}N_{2}+N_{2}^{2})-N_{1}-N_{2}}}{(x^{3})_{n_{1}}(x^{3})_{n_{2}}}.$$

Now, by substitution into generating function for $q^{(1)}$ we obtain relation ii).

For the purpose to to prove relation iii) firstly we use relation vi) in Corollary 5 to get:

$$q^{(2)}(n) = \sum_{s \in 3\mathbb{Z}_{+}+1} q_{s}^{(0)}(n+2s+2), \quad n \equiv 1 \pmod{3}$$

$$= \sum_{s \in 3\mathbb{Z}_{+}} p_{3,3} \left(\frac{n+(s+1)(s+2)}{3}, s+1\right)$$

$$= \sum_{t \in 3\mathbb{Z}_{+}+1} [x^{n+t(t+1)}] \sum_{n_{1},n_{2} \geq 0, N_{1}+N_{2} \equiv t \pmod{3}} \frac{x^{(3N_{1}^{2}+3N_{2}^{2})}}{(x^{3})_{n_{1}}(x^{3})_{n_{2}}}$$

$$= [x^{n}] \sum_{n_{1},n_{2} \geq 0, N_{1}+N_{2} \equiv 1 \pmod{3}} \frac{x^{2(N_{1}^{2}-N_{1}N_{2}+N_{2}^{2})-N_{1}-N_{2}}}{(x^{3})_{n_{1}}(x^{3})_{n_{2}}}.$$

Once having this relation, the statement *iii*) follows directly.

Corollary 6 We let χ denote the generating function which is the sum of generating function of i), ii) and iii) in Theorem 8. Then, we have

$$\chi = \sum_{n_1, n_2 \ge 0} \frac{x^{2(N_1^2 - N_1 N_2 + N_2^2) - N_1 - N_2}}{(x^3)_{n_1} (x^3)_{n_2}}.$$
(36)

References

- [1] J. Lepowsky, M. Primc, Structure of the standard modules for the affine Lie Algebra A1(1), Contemporary Math. 46, Amer. Math. Soc., Providence, Rhode Island, 1985, 1-84.
- [2] G. E. Andrews, Multiple q-series identities, Houston J. Math, 7 (1981), 11-22.