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Abstract

In this paper, meant for combinatorialists, we give a proof of equipotence of
two families of partitions (’Primc conjecture’) which appeared in the early stage

of representation theory of affine Lie algebra A
(1)
1 (or Sl(2,C)∧). The result

was obtained already in 1983 and it lead to the very first character formulas
for the level 3 standard modules (this is mentioned in Ref[1]) on pages 2 and 77
respectively). We hope that the intricacy of handling the interlocking recursion rela-
tions may be of some interest to combinatorialists not working in Lie algebra theory.
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1.1 Introduction

For ν = 0, 1, 2 (mod 3) we introduce the following families of partitions:

Qν
s(n) := {(n0, n1, ..., ns) ∈ N

s+1|n = n0 + n1 + ...+ ns,

ni ≡ −i− ν (mod 3),

ni ≥ ni+1 − 2, ni > ni+2}

Qν(n) :=
⋃

s≥0

Qν
s (n)

(9)
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and denote by

qνs (n) := CardQν
s(n) (10)

qν(n) := CardQν(n) (11)

the numbers of partitions in these families of partitions.

The partitions from (9) we shall relate to the partitions appearing in the Gordon’s
generalization of the Rogers-Ramanujan identities:

Pk,i(n,m) := {(n1, ..., nm) ∈ N
m|n = n1 + ...+ nm,

nj ≥ nj+1, nj ≥ nj+k−1 + 2,

Card{j|nj = 1 < i}}

(12)

pk,i(n,m) := CardPk,i(n,m) (13)

Proposition 1 The family Qν
s(n) is nonempty if s (mod 3) is given by the following

table,

n (mod 3) \ ν 0 1 2

0 0 or 2 1 or 2 2
1 − − 0 or 1
2 1 0 −

(14)

Proof. For any given n, ν if α = (n0, ..., ns) ∈ Qν
s(n) 6= ∅, then

n ≡
s

∑

i=0

(−i− ν) (mod 3) = −
s(s+ 1)

2
− (s+ 1)ν (mod 3). (15)

The recursions for the number theoretic functions qνs (n) (defined by (23) ) are given by
the following proposition.

Proposition 2 For n ∈ N, s ∈ Z+, ν ∈ Z3 we have:

qνs (n) =











qν+2
s (n− 2s + 2) + qν+2

s−2 (n− 2s− 2), if s+ ν ≡ 0 (mod 3)

qν+1
s (n− s− 1), if s+ ν ≡ 1 (mod 3)

qν+1
s (n− s− 1) + qν+2

s−1 (n− s− 1), if s+ ν ≡ 2 (mod 3)

(16)
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with initial conditions

qνs (1) = δs,2 · δs,0 (17)

together with the convention qνs (0) = 1 if s = ν = 0 or s = −1, ν = 1; 0 otherwise. We
put

qνs (n) = 0 (18)

if (s ≤ 0 or n ≤ 0) and n 6= s, so that the right-hand side of (16) is well defined. With
the recursions above all functions qνs (n) are uniquely defined.
Proof. We distinguish three cases depending on (s + ν) (mod 3). s+ ν ≡ 0(mod3). If
s = 0, then α = (n0), n0 ≡ −ν(mod3), n0 > 0; so

qν0 (n) =











q20(n− 2), for ν = 0

q20(n− 1), for ν = 1

q00(n− 1), for ν = 2

.

If s > 0 and α = (n0, ..., ns) ∈ Qν
s(n), then ns−1 ≡ −(s − 1) − ν ≡ 1(mod3), ns =

−s − ν ≡ 0(mod3), hence ns−1 ≥ 1, ns ≥ 3. Then in the subcase a1) ns−1 ≥ 2 we
have ns−1 ≥ 4 because ns−1 ≡ 1(mod3). By letting α̂ := (n0 − 2, ..., ns − 2) we get all
partitions from Qν+2

s (n− 2s − 2).

In the subcase a 2) ns−1 = 1, from (9) it follows ns−1 ≥ ns − 2, hence ns = 3. So
Q2

1(4) = {(1, 3)} and q21(4) = 1, and for s ≥ 2 by letting

α̂ = (n0 − 2, ..., ns−2 − 2)

we obtain all partitions from Qν+2
s−2(n−2s−2, because ns−2 > ns(= 3), ns−3 ≥ ns−2−2(≥

1).

By combining the two bijections from a1) and a2) we obtain the first relation in (16).

b) s + ν ≡ 1 (mod 3). For α = (n0, ..., ns) ∈ Qν
s(n), ns ≡ −s − ν ≡ 2 (mod 3),

ns−1 ≡ −s+ 1− ν ≡ 0 (mod 3).

So ns ≥ 2 and ns−1 ≥ 3 (if s > 0). Then the map α 7→ ᾱ = (n0 − 1, ..., ns − 1) is a
bijection onto Qν+1

s (n− s− 1).

c) s + ν ≡ 2 (mod 3). For α = (n0, ..., ns) ∈ Qν
s(n) we have ns ≡ 1 (mod 3) and

ns−1 ≡ 2 (mod 3) (if s > 0). Like in a) we have two subspaces:

c1) ns = 1. Then α 7→ ᾱ = (n0 − 1, ..., ns−1 − 1) is a bijection onto Qν+1
s−1(n− s− 1).
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c2) ns ≥ 4. Then ns−1 ≥ ns−2(≥ 2), so we get a bijection α 7→ ᾱ = (n0−1, ..., ns−1)
onto Qν+1

s (n − s − 1). In the case s = 0, we have ν ≡ 2 (mod 3) we need to check that

q20(n) = q00(n− 1). For n > 1 it is obvious, and for n = 1, q
(2)
0 (1) = 1 = q00(0) by (18).

The fact that (16) uniquely determines the functions qνs one can prove by induction
on n+ s.

Corollary 3 For n ∈ N, s ∈ Z+, ν ∈ Z3 (with the conventions from the Proposition 2)
we have

qνs+2(n) + qνs (n) = qν+1
s+2 (n+ 2s+ 6), if s+ ν ≡ 0 (mod 3)

qνs (n) = qν+2
s (n+ s+ 1), if s+ ν ≡ 2 (mod 3)

qνs+1(n) + qνs (n) = qν+2
s+1 (n+ s+ 2), if s+ ν ≡ 2 (mod 3)

(19)

Corollary 4 For the number theoretic functions qν(n), (ν = 0, 1, 2) defined in (11) we
have the following formulas:
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i) q0(3n) =
∑

s≥1

q13s−1(3n + 6s)

ii) q0(3n) =
∑

s≥0

q23s(3n + 3s+ 1) =
∑

s≥0

q03s(3n+ 6s + 2)

iii) q1(3n) =
∑

s≥1

q23s−1(3n + 6s+ 4)

iv) q1(3n) =
∑

s≥1

q03s−1(3n + 3s)

v) q2(3n + 1) =
∑

s≥1

q13s−2(3n + 3s) =
∑

s≥1

q03s−2(3n+ 6s− 1)

vi) q2(3n + 1) =
∑

s≥0

q03s(3n + 6s+ 3)

vii) q2(3n) =
∑

s≥0

q23s+2(3n) =
∑

s≥1

q03s−1(3n− 3s)

viii) q0(3n + 2) =
∑

s≥0

q03s+1(3n + 2) =
∑

s≥0

q13s+1(3n − 3s)

ix) q1(3n + 2) =
∑

s≥0

q13s(3n + 2) =
∑

s≥0

q23s(3n− 3s+ 1)

x) q0(3n + 1) = q1(3n + 1) = q2(3n + 2) = 0.

(20)

Proof. Follows easily by Corollary 3 with the help of Proposition 1.

1.2 Relation to Gordon partitions

In this subsection we shall relate partition families Qν
s (n) from (9) firstly to standard

partitions with additional difference conditions and secondly to Gordon partitions. For
n ∈ N, s ∈ Z+, ν ∈ Z3 we introduce the following families of partitions:

Q̄ν
s(n) := {(n0, n1, ..., ns) ∈ N

s+1|nj ≡ −s− ν(mod3),

n = n0 + ...+ ns, nj ≥ nj+1, nj − nj+2 ≥ 5, ns−1 > 2}

Q̄ν(n) :=
⋃

s≥0

Q̄ν
s(n)

(21)
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and denote by

q̄νs (n) := CardQ̄ν
s(n) (22)

q̄ν(n) := CardQ̄ν(n). (23)

Proposition 3 For any n ∈ N and 0 ≤ s ≤ n we have

qνs (n) = q̄νs (n+ s(s+ 1)) (24)

Proof. For α = (n0, ..., ns) ∈ Qν
s(n) let α

′ = (n
′

0, ..., s
′

s) be defined by

n
′

i = ni + 2(s − i).

We claim that α 7→ α
′

is a bijection of Qν
s(n) with Q̄ν

s(n). From
∑s

i=0 2(s− i) = s(s+1)
and n

′

i = ni + 2(s − i) ≥ ni+1 − 2 + 2(s − i) = n
′

i+1 it follows that α
′

is a partition of

n+ s(s+ 1). Since n
′

i ≡ −i− ν + 2(s − i) ≡ −s− ν (mod 3)),

n
′

i = ni + 2(s − i) > ni+2 + 2(s − i) = n
′

i+2 + 4

and
n

′

s−1 = ns−1 + 2 > 2.

then the partition α
′

belongs to Q̄ν
s(n+ s(s+ 1)).

Conversely for any partition β = (m0,m1, ...,ms) ∈ Q̄ν
s(n + s(s + 1)) let α =

(n0, ..., ns), where ni := mi − 2(s − i). Then ni ∈ N, because for i = s− 2j

ns−2j = ms−2j − 4j > ms−2j+2 − 4(j − 1) > ... > ms > 0

and for i = s− 2j − 1

ns−2j−1 = ms−2j−1 − 4j − 2 > ... > ms−1 − 2 > 0

where we have used the defining inequalities in Q̄ν
s(n) twice. Thus we have proved that

α 7→ α
′

is a bijection, hence the identity (24) follows.

Now we shall relate the partition families Q̄ν
s(n) to the Gordon’s partitions families

defined in (12).
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Proposition 4 In terms of the numbers pk,i(n,m) of Gordon partitions defined in (12)
we have the following formulas:

q̄νs (n) =











p3,3(
n
3 , s+ 1), if s+ ν ≡ 0 (mod 3), n ≡ 0 (mod 3)

p3,2(
n+s+1

3 , s + 1), if s+ ν ≡ 1 (mod 3), n ≡ 2s+ 2 (mod 3)

p3,2(
n+2s+2

3 , s+ 1), if s+ ν ≡ 2 (mod 3), n ≡ s+ 1 (mod 3)

Proof. 1.) Let s + ν ≡ 0 (mod 3). Then each α = (n0, n1, ..., ns) ∈ Q̄ν
s(n) satisfies

ni ≡ 0 (mod 3), ni ≥ ni+1, ni−ni+2 ≥ 5, ns−1 > 2. By defining α
′

= (m0, ...,ms), with
mi = ni/3 we see that mi ≥ mi+1, mi ∈ N, mi −mi+2 ≥ 2, ms−1 > 1. This implies that
α

′

∈ P3,3(
n
3 , s+ 1) and clearly α 7→ α

′

is a bijection.

2.) s + ν ≡ 1 (mod 3). Then ni ≡ 2 (mod 3), ni ≥ ni+1, ni − ni+2 ≥ 5, ns−1 >
2( =⇒ ns−1 ≥ 5). By defining α

′

= (m0, ...,ms) where mi = (ni + 1)/3 we see that
mi ≥ mi+1, mi − mi+2 ≥ 2, ms−1 > 1 so α

′

belongs to P3,2(
n+s+1

3 , s + 1) and again

α 7→ α
′

is a bijection.

3.) s + ν ≡ 2 (mod 3). Then ni ≡ 1 (mod 3), ns−1 > 2( =⇒ ns−1 ≥ 4). Let
α

′

= (m0, ...,ms) where mi = (ni + 2)/3. Then mi ∈ N, mi −mi+2 ≥ 2, ms−1 > 1. So
α

′

∈ P3,2(
n+2s+2

3 , s+ 1) and α 7→ α
′

is a bijection. The proof is finished.

By combining the Proposition 3 and Proposition 4 we obtain

Corollary 5 For any n ∈ N and 0 ≤ s ≤ n, ν ∈ {0, 1, 2} we have

qνs (n) =











p3,3(
n+s(s+1)

3 , s+ 1), if s+ ν ≡ 0 (mod 3)

p3,2(
n+(s+1)2

3 , s+ 1), if s+ ν ≡ 1 (mod 3)

p3,2(
n+(s+1)(s+2)

3 , s+ 1), if s+ ν ≡ 2 (mod 3)

where p3,i(n,m) is the number of partitions (n1, ..., nm) of n(= n1 + ... + nm) such that
nj − nj+2 ≥ 2, Card{j|nj = 1} < i. (cf. (12) )

Remark 5 We have

i) p3,3(n,m) 6= 0 =⇒ m2 ≤ 2n

ii) p3,2(n,m) 6= 0 =⇒ m(m+ 1) ≤ 2n
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For i), if (n1, ..., nm) ∈ P3,3(n,m) then

n = n1 + ...+ nm ≥

{

(m+ (m− 1) + (m− 1) + ...+ 3 + 3 + 1 + 1 = m2+1
2 , if m odd

((m− 1) + (m− 1) + ...+ 3 + 3 + 1 + 1 = m2

2 , if m even

For ii), if (n1, ..., nm) ∈ P3,2(n,m) then

n = n1 + ...+ nm ≥ m+ (m− 1) + ...+ 2 + 1 = m(m+ 1)/2.

Remark 6 We have

qνs (n) 6= 0 =⇒











(s+ 2)2 < 2n, if s+ ν ≡ 0 (mod 3)

(s+ 1)(s + 4) ≤ 2n, if s+ ν ≡ 1 (mod 3)

(s+ 1)(s + 2) ≤ 2n, if s+ ν ≡ 2 (mod 3).

1.3 Equipotence of the families Qν(n), ν = 0, 1 of partitions

Theorem 7 For n ∈ 3N, ν = 0, 1, the set of partitions

Qν(n) := {(n0, n1, ..., ns) ∈ N
s+1 | ni ≡ −i− ν (mod 3), s ≥ 0,

n = n0 + ...+ ns,

ni > ni+2,

ni ≥ ni+1 − 2}

are equinumerous, i.e. Card Q0(n) = Card Q1(n).

Proof. We have to prove that CardQ0(n) = CardQ1(n) (n ∈ 3N) or, by using the
notation (11) that

q0(n) = q1(n), n ∈ 3N (25)

By relations (20) i), iv) of Corollary 4 this is equivalent to

∑

s≡2 (mod 3)

q1s(n+ 2s+ 2) =
∑

s≡2 (mod 3)

q0s(n + s+ 1), n ∈ 3N, s ≥ 0 (26)
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and, by Corollary 5. this is equivalent to

∑

s≡0 (mod 3)

p3,3

(

n+ s(s+ 1)

3
, s

)

=
∑

s≡ (mod 3)

p3,2(
n+ s(s+ 2)

3
, s), (27)

with n ∈ 3N, s > 0.

Now we employ the Theorem 1 of reference [2] in the special case k = 3, i = 2, 3, d = 0.
In our notations (13) and by replacing q for q3 special case reads as follows:

∑

n≥0

∑

m≥0

p3,i(n,m)q3nzm =
∑

n1≥0

∑

n2≥0

zN1+N2

(q3)n1
(q3)n2

{

q3(N
2
1
+N2

2
), if i = 3

q3(N
2
1+N2

2+N2), if i = 2
(28)

where N1 = n1 + n2, N2 = n2 and (q)k = (1 − q)(1 − q2)...(1 − qk). From (28) it
follows easily

p3,3

(

n+ s(s+ 1)

3
, s

)

= [qn+s(s+1)]
∑

n1,n2≥0,N1+N2=s

q3(N
2
1
+N2

2
)

(q3)n1
(q3)n2

(29)

= [qn]
∑

n1,n2≥0,N1+N2=s

q3N
2
1+3N2

2−s(s+1)

(q3)n1
(q3)n2

= [qn]
∑

n1,n2≥0,N1+N2=s

q2(N
2
1−N1N2+N2

2 )−N1−N2

(q3)n1
(q3)n2

.

Similarly we get

p3,2

(

n+ s(s+ 2)

3
, s

)

= [qn]
∑

n1,n2≥0,N1+N2=s

q2(N
2
1
−N1N2+N2

2
)+N2−2N1

(q3)n1
(q3)n2

. (30)

From (25) ⇐⇒ (26) ⇐⇒ (27) and (29) , (30) to prove (25) it is enough to prove the
equality of generating functions
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1 +
∑

n≥1,n≡0 (mod 3)

q0(n)xn =
∑

n1,n2≥0,N1+N2≡0 (mod 3)

x2(N
2
1−N1N2+N2

2 )−N1−N2

(x3)n1
(x3)n2

(31)

and

1 +
∑

n≥1,n≡0 (mod 3)

q1(n)xn =
∑

n1,n2≥0,N1+N2≡0 (mod 3)

x2(N
2
1
−N1N2+N2

2
)+N2−2N1

(x3)n1
(x3)n2

(32)

Observe now that for (n1, n2 ∈ N
2) we have

n1 + 2n2 ≡ 0 (mod 3) ⇐⇒ n2 + 2n1 ≡ 0 (mod 3).

By change of variables (n1, n2) → (n2, n1) in (32), the quantity N2 − 2N1 = n2 −
2(n1 + n2) = −2n1 − n2 gets transformed to −n1 − 2n2 = −N1 −N2 and the R.H.S of
(32) becomes the R.H.S of (31) so the R.H.S of (31) and (32) are equal. This proves the
Theorem 7

Theorem 8 For the functions q(0)(n), q(1)(n), q(n) we have the following generating
functions:

i) 1 +
∑

n≡0 (mod 3)

q(0)(n)xn =
∑

n1,n2≥0,N1+N2≡0 (mod 3)

x2(N
2
1−N1N2+N2

2 )−N1−N2

(x3)n1
(x3)n2

(33)

ii)
∑

n≡0 (mod 3)

q(1)(n)xn =
∑

n1,n2≥0,N1+N2≡2 (mod 3)

x2(N
2
1
−N1N2+N2

2
)−N1−N2

(x3)n1
(x3)n2

(34)

iii)
∑

n≡1 (mod 3)

q(2)(n)xn =
∑

n1,n2≥0,N1+N2≡1 (mod 3)

x2(N
2
1
−N1N2+N2

2
)−N1−N2

(x3)n1
(x3)n2

(35)
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Proof. The relation i) is obtained in (31). In order to prove relation ii) we use (20),
iii) to get

q(1)(n) =
∑

s∈3Z++1

q(2)s (n+ 2s + 2).

Furthermore, according to Corollary 5 we have

q(1)(n) =
∑

s∈3Z++1

p3,3

(

n+ (s+ 1)(s + 2)

3
, s+ 1

)

=
∑

t∈3Z++2

[xn+t(t+1)]
∑

n1,n2≥0,N1+N2≡2 (mod 3)

x(3N
2
1
+3N2

2
)

(x3)n1
(x3)n2

= [xn]
∑

n1,n2≥0,N1+N2≡2 (mod 3)

x2(N
2
1
−N1N2+N2

2
)−N1−N2

(x3)n1
(x3)n2

.

Now, by substitution into generating function for q(1) we obtain relation ii).

For the purpose to to prove relation iii) firstly we use relation vi) in Corollary 5 to
get:

q(2)(n) =
∑

s∈3Z++1

q(0)s (n+ 2s + 2), n ≡ 1 (mod 3)

=
∑

s∈3Z+

p3,3

(

n+ (s+ 1)(s + 2)

3
, s + 1

)

=
∑

t∈3Z++1

[xn+t(t+1)]
∑

n1,n2≥0,N1+N2≡t (mod 3)

x(3N
2
1
+3N2

2
)

(x3)n1
(x3)n2

= [xn]
∑

n1,n2≥0,N1+N2≡1 (mod 3)

x2(N
2
1
−N1N2+N2

2
)−N1−N2

(x3)n1
(x3)n2

.

Once having this relation, the statement iii) follows directly.

Corollary 6 We let χ denote the generating function which is the sum of generating
function of i), ii) and iii) in Theorem 8. Then, we have

χ =
∑

n1,n2≥0

x2(N
2
1
−N1N2+N2

2
)−N1−N2

(x3)n1
(x3)n2

. (36)
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