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Preface

Writing a preface is always a pleasure to me. It usually means that a more
or less protracted and demanding process of writing or editing a volume is
coming to a satisfactory end. It is also an opportunity to acknowledge efforts
of all authors, referees, and other participants in the process, and to thank
them for their contributions. This is always a pleasure, and I am thanking
heartfully to all who made the present volume possible, either by contributing,
refereeing, helping in production or supporting it financially.

This preface, however, gives me two more reasons for a pleasure. The first
reason is that the present volume is the Proceedings of the second Croatian
Combinatorial Days. It means that what started as a modest gathering of
a small community and its guests and friends has acquired some momentum
and a life of its own. This is attested not only by wider attendance at the
second meeting, but also by more contributions to this volume. It is my hope
that both increasing tendencies will persist and help to strengthen both our
discrete mathematics and its ties to a wider community.

The other reason, and the most important one, is that this volume is
dedicated to Professor Darko Veljan on the occasion of his 70th birthday.
This is a small but a heartfelt sign of our appreciation for a colleague, a teacher
and a friend who played an important role in education and in professional
development of almost all Croatian mathematicians working in the area of
discrete mathematics and combinatorics. Thank you, Darko, and keep sharing
your knowledge with us!

Both the conference and the Proceedings were made possible by generous
help of our sponsors, the Faculty of Civil Engineering, the Croatian Academy
of Sciences and Arts and the Croatian Science Foundation (IP-2016-06-1142).

I hope you have enjoyed our last meeting. I also hope you will enjoy the
present volume. May we all (and many others) meet again at the third (already
traditional?) Croatian Combinatorial Days at the end of September 2020.

Zagreb, July 8, 2019 Tomislav Došlić

v
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Detecting communities in directed acyclic networks using

modified LPA algorithms

Suzana Antunović
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Abstract

Networks (or graphs) appear as dominant structures in different domains, in-
cluding sociology, biology, neuroscience and computing. In most cases, these
graphs are directed which changes the semantics of the edges that are no longer
symmetrical in the sense that the beginning vertex transfers some property or
value to the end vertex, but not vice versa. Detecting community structure
in complex networks is an interdisciplinary topic with many relevant areas of
application. In order to detect communities in directed acyclic networks, apart
from the direction of the edge, the requirement for topological ordering of the
vertices should be taken into account. In other words, if the vertices are topo-
logically order is such a way that x1 < x2 < ... < xn we are interested in
dividing the network into communities C1, C2, ..., Ck in such a way that:

if xi < xj , xi ∈ Ci, xj ∈ Cj then Ci < Cj or Ci = Cj

We present an algorithm derived from LPA algorithms which are commonly
used in network detection, mostly because of their quick computational time
and fairly good results. They were originally developed for undirected networks,
but have been modified for this purpose.

Keywords: community detection, directed acyclic network, label propagation
algorithm
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1 Introduction

In complex networks theory, community detection problem refers to grouping ver-
tices into communities according to their similarity, which usually considers either
topological features or other characteristics related to the vertices and edges of the
graph. Finding communities in directed networks is a challenging task with several
important applications in a wide range of domains. However, the problem has mainly
been considered and studied for the case of undirected networks. The problem of
community detection in directed networks is considered to be a more challenging
task as compared to the undirected case [9]. In order to detect communities in
directed acyclic networks, apart from the direction of the edge, the requirement
for topological ordering of the vertices should be taken into account. Topological
ordering of a directed graph is a linear ordering of its vertices such that for every
directed edge uv from vertex u to vertex v, u comes before v in the ordering. A
topological ordering is possible if and only if the graph has no directed cycles, that
is, if it is a directed acyclic graph [1].

Let G be a simple directed graph with no directed cycles and P (G) the set of
all bijections p : V (G) → {1, ..., n} such that p(u) < p(v) for every directed edge
uv ∈ E(G). There is at least one function p in the set P [5]. One of the possible
interpretations for this is that vertices represent educational units and for each unit
u, p(u) represents the order in which the lesson is learned. All vertices that point
to u can be thought of as prerequisites for learning lesson u and for all vertices v
such that there is a directed edge uv, lesson u is a prerequisite for learning and
understanding lesson v.

For vertex v ∈ V we define in–neighbor of v as vertex u ∈ V such that there is a
directed edge uv ∈ E. Analogly, we define out–neighbor of v as vertex u ∈ V such
that there is a directed edge vu ∈ E.

2 LPA algorithms

Label Propagation Algorithm uses only the network structure as input data and is
relatively fast so it is one of frequently used algorithms for community detection.
In practice, the algorithm proved to be very efficient. However, since it involves
random processes, in different executions, the algorithm provides different network
partitions [7]. The basic idea of the algorithm is that, in each step of the algorithm,
vertex x selects the community to which the largest number of its neighbors belong.
The propagation process is repeated iteratively until label changes are no longer
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possible. The most significant feature of LPA is its computer complexity (near the
linear time O(m)) [11]. The problem is that the LPA is not stable: the algorithm
is susceptible to the order in which the vertices update the labels in each iteration,
which is why the solution may be different in the various initiations of the algorithm
[7] . Sometimes LPA can end up with a trivial solution - all vertices are identified
in the same community [2]. Barber and Clark expanded the LPA by modifying the
update rule and proposed a new algorithm called LPAm [2]. Instead of choosing
the label that most often appears among his neighbors, vertex x selects a label
that will result in maximum modularity increase. Modularity is commonly used
measure for evaluating the quality of network division. It measures the actual ratio
of edges within the community reduced by the expected value in the null model,
where the division is the same, but the edges are placed uniformly and random
[8]. The implementation of LPAm brings a monotonous increase in modularity and
avoids the possibility of forming a trivial solution. Additionally, LPAm has the same
effective speed as LPA. However, the tendency is to get stuck at a low local maximum
of modularity [8]. Liu and Murata overlook this problem by joining communities
that maximize modularity the most. In this way, the local modularity maximum is
avoided. However, it is not certain that the new local maximum that we will get is
good enough (though better than the previous one). For this reason it is necessary
to repeat this process as long as it is no longer possible to increase modularity. The
proposed algorithm is called LPAm+.

3 OLPAm+ algorithm

The algorithm that we propose to detect communities in directed acyclic networks
is a heuristic algorithm based on label propagation and the maximization of the
modularity Qd, defined in Eq. (1), which is defined for directed networks.

The basic idea is similar to the idea of LPA algorithms. Vertices take one of
their neighbors’ labels, which maximally increases the modularity Qd, but does
not violate the requirement for partial arrangement of a set of the communities.
Each step selects the optimal solution found on the basis of currently available
information in the hope that the final solution will approach the global optimum.
This algorithmic paradigm is known as a ”greedy algorithm” [4] and is often used
in optimization problems.

Let us define modularity for directed networks. Let there be a directed network
with n vertices and m directed edges represented by adjacency matrix A. Let din(i)
and dout(i) be in–degree and out–degree of a vertex i ∈ V (G). Let vertex i belong
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to a community li. Modularity for directed networks is defined as [6]

Qd =
1

m

∑
1≤i,j≤n

[
Aij −

din(j)dout(i)

m

]
δ(li, lj) (1)

where δ(li, lj) is Kronecker’s delta.
The algorithm can be described as follows. Each vertex i ∈ V (G) is assigned

a unique numeric label li = p(i). The vertices are placed in random order and
the process of label propagation begins. For each vertex in that order, the change
in modularity caused by the change of label is calculated. From equation (1) it
follows that modularity increase can be caused by those pairs of vertices i, j ∈
V (G) for which Aij 6= 0 or Aji 6= 0 so specific vertex can update its label to one
of its neighbors’ labels (including in–neighbors and out–neighbors). When vertex
i changes the label, i.e. changes the community to which it belongs, it causes
modification of the modularity that can be calculated in the following way. Let i
change the existing label li to the new label lj . The change in modularity caused
by this change follows from equation (1) and is calculated as

∆Qd(ij) =
dji
m
−
[
dout(i)Sin(j) + din(i)Sout(j)

m2

]
(2)

where

• dji is the number of all neighbors of i with label lj

• Sin(j) is the total in–degree of vertices with label lj

• Sout(j) is the total out–degree of vertices with label lj

The label update process is asynchronous. If the vertex i changes the label at
iteration t, some of its neighbors j ∈ V (G) have already changed the label in the
current iteration and have the label lj(t) while some neighbors k ∈ V (G) still have
a label from the previous iteration lk(t−1). The vertex i makes a decision based on
the state it has found at iteration t, i.e. selects the label that causes the maximum
increase in modularity without disturbing the community order. If such label does
not exist, the vertex retains its label. To ensure that the vertices (and the resulting
communities) are in a valid order, vertex i can choose the largest among the labels
of its in–neighbors or the smallest among the labels of its out–neighbors. Otherwise,
the order will be disrupted.

4
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When every vertex in the order is considered exactly once, the vertices are put
in random order and the process is repeated. The algorithm stops when by changing
the label it is no longer possible to get a positive change in modularity. At the end
of the algorithm, we identify communities as groups of vertices that have the same
label. The described algorithm was called Orientation Respecting LPAm (OLPAm).
Pseudocode is available in the Algorithm 1.

As described in the last chapter, the LPAm algorithm is susceptible to the vertex
order that is random in each iteration and is inclined to stuck in the poor local
maximum modularity. The same goes for OLPAm. When this happens, we calculate
the change in modularity that is generated by joining community pairs and merging
the pair of communities resulting in the greatest increase in modularity and not
disturbing the community order. If we merge communities with labels li and lj , the
modularity change caused by merging can be calculated as

∆Qd(lilj) =
Eij

m
−
[
Sout(i)Sin(j) + Sin(i)Sout(j)

m2

]
(3)

where Eij is the number of edges between communities li and lj . The equation (3)
is derived from (2) by summing over all the vertices in the community li. From
equation (3) it is clear that it is sufficient to compute ∆Qd(lilj) for pairs of commu-
nities that are connected because only connected communities can make a positive
change in modularity. Although merging communities increases modularity, it is
not certain that the maximum is at the same time global, so again we call OLPAm
and repeat the process as far as it is possible for the communities to get increased
modularity without disturbing the community order.

In order to maintain a valid order of communities, consider the following. If
there is at least one vertex xi in the community Ai and at least one vertex xj in
the community Aj such that there exists an edge xixj ∈ E(G) we say that the
community Ai points to the community Aj . In the same way as with vertices, the
community labeled A can be merged with community labeled Ai that has the largest
label lmax among the community labels that point to A or with the community
Aj with the smallest label lmin among the community labels to which A points.
Otherwise, the condition from the beginning of the chapter will not be met. The
complete algorithm (OLPAm with merging communities) was called Orientation
Respecting LPAm+ (OLPAm+). Pseudocode can be found in the Algorithm 2.

As far as the OLPAm computational complexity is concerned, one step of la-
bel propagation in OLPAm has the complexity of O(n) since for each vertex we
calculate two values so the total complexity of the OLPAm algorithm is equal to
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O(rn) where r is the maximal number of steps label propagation needs to find the
maximal modularity value. Furthermore, a method of merging communities in OL-
PAm+ algorithm has the complexity of O(n). Namely, n is the maximal number
of communities obtained so for calculating all values ∆Qd(lilj), the time required
is O(n). Determining the maximal value of a string of n elements has the com-
plexity of O(n), which gives the total complexity of one merging of communities
O(n + n) = O(n). Let h the number of times the communities merge. The total
computational complexity of the algorithm is O(rn) + h [O(n) +O(rn))] = O(n).
The value of the h parameter can not be accurately estimated because it depends
on the quality of the solution obtained in the OLPAm algorithm. Even the value of
parameter r can not be fully predicted.

Table 1: Estimated values of r and h parameters in OL-
PAm+. Table shows the average number of steps r needed for the
OLPAm to converge and the average number of times h of merging
communities in OLPAm+.

Network n m r h

Number set Q 47 254 7.31 3.25
Elementary functions 84 502 6.09 2.64
Integral 223 656 11.02 5.51
Data processing 54 197 6.09 2.64
Primary production 28 93 7.11 1.23
Physics 31 49 4.77 1.99

When joining communities in the LPAm+ algorithm, we merged only those two
communities whose merger results in the largest increase in modularity without dis-
torting the order. Following the example of [8], we consider modifying the OLPAm+
algorithm. When OLPAm stops at the local maximum (further label propagation
does not increase modularity), we calculate the modularity changes caused by merg-
ing communities and joining those pairs of communities that maximize modularity
the most. The pseudo-code of this modified OLPAm+ algorithm is given in the
Algorithm 3.

6



3. OLPAM+ ALGORITHM 7

Algorithm 1 Orientation Respecting LPAm ( OLPAm)

Require: Edge list
Ensure: Community division, modularity
1: to each vertex i assign a unique numerical label li(0) = p(i)
2: set t = 1
3: repeat
4: put vertices in random order X
5: for each vertex i ∈ X do
6: among in–neighbors xi1 , xi2 , ..., , xik of vertex i with labels li1 , li2 , ..., lik find

the largest label lmax

7: among out–neighbors xik+1
, xik+2

, ..., , xin of vertex i with labels
lik+1

, lik+2
, ..., lin find the smallest label lmin

8: calculate ∆Qd(i,max) and ∆Qd(i,min)
9: if ∆Qd(i,max) > ∆Qd(i,min) and ∆Qd(i,max) > 0 then

10: set li(t) = lmax

11: else if ∆Qd(i,min) > ∆Qd(i,max) and ∆Qd(i,min) > 0 then
12: set li(t) = lmin

13: else if ∆Qd(i,min) = ∆Qd(i,max) > 0 then
14: uniformly at random pick lmax or lmin and set it for li
15: end if
16: set t = t+ 1
17: end for
18: if neither of vertices i ∈ X changes its label then
19: end algorithm
20: else
21: set t = t+ 1
22: end if
23: until neither vertex in the iteration changes its label
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Algorithm 2 Orientation Respecting LPAm+ ( OLPAm+)

1: assign to each vertex a unique numeric label
2: using OLPAm algorithm maximize modularity Qd

3: while there are communities Ai and Aj such that ∆Qd(lilj) > 0 do
4: for each community Ai do
5: calculate ∆Qd(lilmax) and ∆Qd(lilmin)
6: end for
7: find the maximal value of all ∆Qd(lilj) > 0
8: merge communities Ai and Aj such that ∆Qd(lilj) > 0 is maximal
9: maximize modularity Qd using OLPAm algorithm

10: end while

Algorithm 3 Modified OLPAm+ with multiple merging of communities

1: assign to each vertex a unique numeric label
2: using OLPAm algorithm maximize modularity Qd

3: while ∃ pair of communities (Ai, Aj) such that ∆Q(li, lj) > 0 do
4: for each pair of connected communities (Ai, Aj) where ∆Q(li, lj) > 0 do
5: if there is no community A labeled l such that ∆Q(l, li) > ∆Q(li, lj) and

∆Q(l, lj) > ∆Q(li, lj) then
6: merge communities Ai and Aj

7: end if
8: end for
9: maximize modularity Qd using OLPAm algorithm

10: end while

3.1 Experiments and results

The proposed algorithm is implemented in Microsoft Visual Studio 2015 program
tool. Since random processes are used to update the label, the results may vary in
each execution of the algorithm. For this reason, based on the example of [8], we
ran the algorithm 100 times for each of the networks described below.

3.1.1 Data sets

The OLPAm+ algorithm was originally developed for curriculum networks, directed
acyclic networks where vertices represent educational units and directed edge from

8
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vertex u to v means that unit u is necessary for learning and understanding unit
v. In order to better analyze the structure and community division, experts from
different fields in science and education (mathematics, physics, computer science
and biology) were asked to create a network for this purpose. The networks are
named by the key concept whose understanding is set as a learning objective for
that area. Some basic statistics of curriculum networks can be found in Tables 2
and 3.

”Number set Q” is a curriculum network with 47 vertices and 254 directed
edges. Vertex labeled 1 denotes the term natural number, vertex labeled 47 repre-
sents the term set of rational numbers.

”Elementary functions” is a network of terms needed for understanding the
term elementary functions. Network has 84 vertices and 502 directed edges. Vertex
labeled 1 is set, vertex labeled 82 is elementary function.

”Integral ” is a curriculum network of terms needed for passing the intro-
ductory course in mathematics. Network has 223 vertices and 655 directed edges.
Vertex labeled 1 is set, vertex labeled 223 is improper integral.

”Physics” is curriculum network of topics covered in 7th grade. Network has
31 vertices and 49 directed edges. Vertex labeled 1 represents the term length, vertex
labeled 31 is the strength of the lens.

”Data processing” is curriculum network of topics covered in the introductory
college course. Network has 54 vertices and 197 directed edges. Vertex labeled 1
represents the term data, vertex labeled 31 is data processing.

”Primary production” is a curriculum network of terms needed for under-
standing the process of primary production in oceans. Network has 28 vertices and
93 directed edges. Vertex labeled 1 is photosynthesis, vertex labeled 28 is primary
production.

9
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Table 2: Basic statistics for curriculum networks. Notation:
number of vertices n, number of directed edges m, largest in–degree
din, largest out–degree dout, average degree davg, average shortest
path length l for pairs of connected vertices, clustering coefficient C.
Measures used are defined in [10]

Network n m din dout davg l C

Number set Q 47 254 17 26 5.404 2.011 0.254
Elementary functions 84 502 27 51 5.976 2.132 0.255
Integral 223 655 15 28 2.941 3.899 0.084
Physics 31 49 4 8 1.581 1.575 0.049
Primary production 28 93 9 14 3.321 2.135 0.183
Data processing 54 197 12 22 3.648 1.744 0.338

Table 3: Other basic statistics for curriculum networks. No-
tation:
diameter diam, density D, maximal value of betweenness centrality
c, maximal value of hub centrality h, maximal value of authority
centrality a.

Network diam D c h a

Number set Q 5 0.117 117.940 0.1219 0.0461
Elementary functions 6 0.072 309.429 0.1125 0.0313
Integral 10 0.013 2041.796 0.0881 0.0489
Physics 4 0.053 12.000 0.2402 0.1066
Primary production 5 0.123 66.089 0.1764 0.0885
Data processing 5 0.069 79.000 0.1463 0.0682

10
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3.1.2 Results

In all following tables, n denotes the number of vertices and m denotes the number
of directed edges.

We have compared the results obtained with the OLPAm+ algorithm with com-
munity division proposed by the authors of each of the networks. For the proposed
division for each network, we calculated the modularity values of Qd. The results
can be found in Table 4. For each network, the algorithm gives higher values of
modularity or better division into communities.

Table 4: Comparation of results from OLPAm+ algorithm
with community division proposed by the creators of the
networks. Notation: Qmax is the maximal value of modularity ob-
tained, Nc is the number of communities which gives the value Qmax,
Qd is the value of modularity calculated for community division pro-
posed by the creators.

OLPAm+ Author

n m Qmax Nc Qd Nc

Number set Q 47 254 0.377 4 0.311 5
Elementary functions 84 502 0.354 4 0.239 6
Integral 223 655 0.468 7 0.455 10
Data processing 54 197 0.426 5 0.389 6
Primary production 28 93 0.293 3 0.237 3
Physics 31 49 0.476 6 0.238 6

Since we were not familiar with any algorithm that requires the arrangement of
a set of obtained communities, we compared the values obtained by the proposed
OLPAm+ algorithm with the values obtained with the LPAm+ algorithm [8] and
the Girvan - Newman algorithm [3] as follows. The LPAm+ algorithm was run 100
for each of the networks and the maximum value of the modularity Q was observed.
For the resulting community division, we calculated the modularity values for the
directed networks Qd in the formula (1). The same was done for division by the
Girvan–Newman algorithm. Although this is a disregard for the community order
requirement, we can compare how much that demand affects the value of modularity
and network division quality. The comparison of results is shown in Table 5.

11
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Table 5: Comparation of the results obtained from several
community detection algorithms Table shows results obtained
from running LPAm+ i OLPAm+ algorithms 100 times and Girvan–
Newman algorithm for each of the networks. Notation: Qmax is
the maximal value of modularity Qd obtained, Nc is the number of
communities which gives the value Qmax, OLPAm + (m) refers to
multiple merging of communities.

LPAm+ GN OLPAm+ OLPAm+ (m)

Qd Nc Qd Nc Qd Nc Qd Nc

Number set Q 0.376 4 0.367 4 0.377 4 0.377 4
El. functions 0.361 4 0.223 4 0.354 4 0.337 5
Integral 0.567 7 0.542 12 0.468 7 0.470 10
Data processing 0.477 4 0.438 4 0.426 5 0.426 5
Pr. production 0.297 3 0.099 5 0.293 3 0.293 3
Physics 0.457 7 0.377 8 0.476 6 0.467 5

It can be seen that OLPAm+ gives quite good results compared to the other two
algorithms mentioned, although, in part, is limited by the requirement for a valid
set of established communities.

Conclusion

OLPAm+ is a greedy algorithm for detecting communities in directed acyclic net-
works under the following condition: if the vertices are topologically ordered in such
a way that x1 < x2 < ... < xn algorithm divides the network into communities
C1, C2, ..., Ck in such a way that:

if xi < xj , xi ∈ Ci, xj ∈ Cj then Ci < Cj or Ci = Cj

Algorithm has been tested on curriculum networks described in Section 3.1.1.
and given results were compared with other community detection algorithms. We
conclude that the OLPAm+ algorithm gives very good results in terms of modu-
larity for directed networks Qd defined in Eq. (1). It is also very efficient. The total
computational complexity of the algorithm is O(rn) + h [O(n) +O(rn)] = O(n).

12
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The value of the h and r parameters can not be accurately estimated because it de-
pends on the quality of the solution obtained in the OLPAm algorithm as explained
in Section 3.
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Abstract

In this paper we explain how the Minkowski asymmetry measure sharpens sev-
eral classic results. Especially, we were able to tighten the Brunn-Minkowski
and the Rogers-Shephard inequalities in terms of the Minkowski asymmetry
measure using some stability results on those inequalities.

Keywords: Brunn-Minkowski inequality, Rogers-Shephard inequality, Minkowski
asymmetry measure
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1 Introduction
Let vol(K) be the n-dimensional volume (or Lebesgue measure) of K. We will write
voln(K) whenever it is necessary to specify the dimension. Let Kn be the set of
all convex compact sets in Rn, Bn2 be the Euclidean ball of radius 1, K + L be the
Minkowski sum of convex bodies K and C, i.e. K + L = {a+ b|a ∈ K, b ∈ L}.
The Brunn-Minkowski inequality establishes that for any convex compact sets K,L
holds

vol(K + L)
1
n ≥ vol(K)

1
n + vol(L)

1
n .

Equality holds if and only if one of the three following cases are true (see [FiMaPr]):
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(i) in case for sets K and L with positive volume if and only if K is a homothet
of L,

(ii) in case when one of them has volume 0, namely vol(K) = 0 and vol(L) > 0,
then if and only if K is a singleton,

(iii) in case when both of them have volume 0, then if and only if K and L are
contained in parallel hyperplanes.

The Brunn-Minkowski inequality was proved in the 19th century by Brunn for
compact convex sets in low dimensions (n ≤ 3) (see [Bru]), and Minkowski for
general compact convex sets in Rn (see [Mi]). With the time the Brunn-Minkowski
inequality became the starting point of the Brunn-Minkowski theory and a powerful
tool for problems involving metric quantities such as volume, surface area and mean
width.

The Rogers-Shephard inequality (see [RoSh, Thm. 1]), which can be regarded
as a reverse inequality to the Brunn-Minkowski inequality, yields

vol(K + L) ≤
(

2n
n

)
vol(K)vol(L)

vol(K ∩ (−L)) .

Moreover, equality holds if and only if K = −L is an n-dimensional simplex.
The Minkowski asymmetry s(K) of a convex compact sets K is the smallest

rescalation of K which contains a translation of −K. It is known that 1 ≤ s(K) ≤ n
with s(K) = 1 if and only if K is centrally symmetric, while s(K) = n if and only
if K is an n-dimensional simplex (see [BrKo, Cor. 2.7]).
Computing the volume is always a computationally hard task. However, comput-
ing the Minkowski asymmetry measure may be a computationally easy task (see
[BrKo]). We wonder whether we could improve the Brunn-Minkowski and the
Rogers-Shephard inequalities for prescribed s(K) = s ∈ [1, n].

In order to start finding values of c(s) and C(s), we need to recall the proofs of
the Brunn-Minkowski and the Rogers-Shepard inequalities. Secondly, we will show
also the characterizations of their equality cases. Finally, we will show the ideas
in order to obtain some stability results, in sense of near-equalities, of the Brunn-
Minkowski and the Rogers-Shepard inequalities, which will help in providing bounds
for c(s) and C(s) from some particular values of s ∈ [0, 1].

The results presented in this paper are based on the master thesis (see [Di]).
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1.1 Minkowski asymmetry measure

For an n-dimensional convex and compact setK, its Minkowski asymmetry (measure)
s(K) (cf. Minkowski 1911) is the smallest ρ > 0 such that −K ⊂ x + ρK for some
x ∈ Rn, i.e.

s(K) := inf{λ > 0|K ⊂ x+ λ(−K) for some x ∈ Rn}.

Note that for Minkowski asymmetry s(K) holds that K ⊂ x+ s(K)(−K) for some
x ∈ Rn. Figure 1 shows two examples of computing the Minkowski asymmetry
measure.

Figure 1: K ⊂ x+ s(K)(−K) for some x ∈ Rn and 4 ⊂ y + 2(−4)
for some y ∈ Rn

1.2 The Brunn-Minkowski inequality

Figure 2 shows the Minkowski sum of two 0-centered triangles.

Figure 2: Minkowski sum of the regular triangles 4 and 5

We are now ready to state the Brunn-Minkowski inequality for compact sets,
which gives a lower bound for vol(K + L) in terms of vol(K) and vol(L).
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Theorem 1 (Brunn 1887, Minkowski 1896). For any compact sets K,L holds

vol(K + L)
1
n ≥ vol(K)

1
n + vol(L)

1
n . (1)

The Brunn-Minkowski inequality (1) implies a well-known fact from Analysis,
namely the Isoperimetric inequality.

Theorem 2 (Isoperimetric inequality). Let K be a convex set in Rn and P (K) its
surface area. Then

P (K) ≥ nvol(Bn2 )
1
n vol(K)

n−1
n .

The Isoperimetric inequality implies that among sets with a fixed surface area,
Euclidean balls maximize the volume.

Next let us state the Rogers-Shephard inequality, which gives us an upper bound
for vol(K + L) in terms of vol(K), vol(L) and vol(K ∩ (−L)). Note that it is in
general impossible to find an upper bound for vol(K + L) just in terms of vol(K)
and vol(L).

Theorem 3 (Rogers and Shephard, 1958). Let K, L be convex bodies. Then

vol(K + L)vol(K ∩ (−L)) ≤
(

2n
n

)
vol(K)vol(L). (2)

There exist also another version of the Rogers-Shephard inequality, namely with
projections and intersections.

Theorem 4 (Rogers and Shephard, 1958). Let K be a compact body, H an i-dim
subspace of Rn. Then

voli(PHK) max
x∈Rn

voln−i(K ∩ (x+H⊥)) ≤
(
n

i

)
voln(K). (3)

An application of the Rogers-Shepard inequality (3) can be the following. One
could approximate the volume vol(K) of a compact set K ∈ Rn (for instance a brain
tumor) by measuring the volume of the projection voli(PHK) and the volume of the
biggest section maxx∈Rn voln−i(K ∩ (x+H⊥)).

In order to see that (3) implies (2), we introduce the set M := {(z1, z2)T ∈
R2n|z2 ∈ K, z1 ∈ z2 + L}. Using the definition of the set M it can be easily seen
that PHM = K + L, M ∩H⊥ = K ∩ (−L) and vol2n(M) = voln(K)voln(L). And
therefore two versions of the Rogers-Shepard inequality (2) and (3) are equivalent.
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Choosing L = −K and combining the Rogers-Shephard and the Brunn-Minkowski
inequalities leads to

2n ≤ vol(K −K)
vol(K) ≤

(
2n
n

)
.

We aim to find constants c(s), C(s) with 2n ≤ c(s) ≤ C(s) ≤
(2n
n

)
, such that for

every convex body K such that s(K) = s ∈ [1, n] holds

c(s) ≤ vol(K −K)
vol(K) ≤ C(s) .

In order to do it we study the equality cases of the Brunn-Minkowski inequality
(1) and the Rogers-Shephard inequalities (2) and (3), their stability results and then
involve the Minkowski asymmetry measure in that inequalities.

1.3 Equality case of the Brunn-Minkowski inequality

The equality case of the Brunn-Minkowski inequality (1) is the following.

Theorem 5 (Klain, 2011, Kneser, Süss, 1932). Let K and L be convex compact sets
with positive volumes. Then

vol(K + L)
1
n = vol(K)

1
n + vol(L)

1
n

holds if and only if K and L are homothets.

Moreover, if exactly one of the sets is lower dimensional, namely vol(K) = 0, and
vol(L) > 0, then equality holds if and only ifK is a singleton; and if vol(K) = vol(L),
then equality holds if and only if K and L are contained in parallel hyperplanes.

1.4 Stability of the Brunn-Minkowski inequality

We consider the stability as a sharpening of the inequality at the near-quality case.
Let K M L be the symmetric difference of K and L, i.e. K M L = (K \L)∪ (L \K).
For the Brunn-Minkowski inequality (1) it holds that

Theorem 6 (Figalli, 2009). Let K and L be convex compact sets in Rn. Then

vol(K + L)
1
n ≥

(
vol(K)

1
n + vol(L)

1
n

)(
1 + A(K,L)2

c(n)σ(K,L)
1
n

)
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with A(K,L) := infx∈Rn

{
vol(KM(x+λL))

vol(K)

}
, λ =

(
vol(K)
vol(L)

) 1
n , σ(K,L) := max

{
vol(K)
vol(L) ,

vol(L)
vol(K)

}
and c(n) = 14n24n−1.

One can see that due to the stability result in case of near-equality of (1) we
have that K and L are almost homothets. Therefore vol(K M (x + λL)) ≈ 0 and
therefore A(K,L) ≈ 0.

1.5 Equality case of the Rogers-Shephard inequality

The equality case of the Rogers-Shephard inequality (3) can be stated as following.

Theorem 7 (Rogers and Shepard, 1958). Let K be a convex compact sets in Rn,
H an i-dim subspace of Rn and x ∈ Rn. Then

voli(PHK) max
x∈Rn

voln−i(K ∩ (x+H⊥)) =
(
n

i

)
voln(K)

if and only if
K ∩ (x+H⊥) =h K ∩H⊥ ∀x ∈ Rn

and
voln−i(K ∩ (x+H⊥)) = (1− ||x||K)n−ivoln−i(K ∩H⊥).

Next we present a more recent result that is the equality case of the Rogers-
Shephard inequality (2).

Theorem 8 (Alonso-Gutierrez, Jimenez, Villa, 2013). Let K and L be convex com-
pact sets in Rn. Then

voln(K + L)voln(K ∩ (−L)) =
(

2n
n

)
voln(K)voln(L)

if and only if K and L are simplices such that K = −L.

1.6 Stability of the Rogers-Shephard inequality

Let dBM (K,L) := min{ρ ≥ 1|K ⊂ A(L) ⊂ x+ρK for somex ∈ Rn} with A(L) being
any affine transformation of L be the Banach-Mazur distance of K with respect to
L and T be an n-simplex.
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Theorem 9 (Boroczsky, 2005). Let K be a convex compact sets in Rn. If

vol(K −K) = (1− ε)
(

2n
n

)
vol(K),

then
1 + 1

n
ε ≤ dBM (K,T ) ≤ 1 + n50n2

ε.

1.7 Results

Let us recall that the Brunn-Minkowski and Rogers-Shephard inequalities for convex
compact sets K and −K state that

2n ≤ vol(K −K)
vol(K) ≤

(
2n
n

)
.

Moreover, vol(K−K)
vol(K) = 2n if and only if K is symmetric and vol(K−K)

vol(K) =
(2n
n

)
if and

only if K is an n-dimensional simplex.
But at the same time we have that

1 ≤ s(K) ≤ n.

Moreover, s(K) = 1 if and only if K is symmetric and s(K) = n if and only if K is
an n-dimensional simplex.

Combining those facts enable us to involve the asymmetry measure into these
inequalities. We state some improvements on the Brunn-Minkowski and the Rogers-
Shephard inequalities by means of the Minkowski asymmetry measure (see [Di]).

Theorem 10. Let K be a convex compact set in Rn and s = s(K). Then

c(s) ≥ 2n
1 + 1

n 4n−1

(
(s− 1)nvoln−1(Bn−1

2 )
2n−1n2nvoln(Bn2 )

)2
n (4)

and
C(s) ≤ (1 + s)n. (5)

Moreover, if n− 1
4n < s < n, then

c(s) ≥
(

2n
n

)
(1− 4n2(n− s)) and C(s) ≤

(
2n
n

)(
1− n− s

n1+50n2

)
. (6)
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It is worth mentioning that (4) and (5) (resp. (6)) are specially good when
s(K) ≈ 1 (resp. s(K) ≈ n ).

Theorem 11. The diagram f(Kn), where f : Kn → [1, n] ×
[
2n,

(2n
n

)]
is given by

f(K) :=
(
s(K), vol(K−K)

vol(K)

)
, is simply connected, contains (1, 2n) and (n,

(2n
n

)
).

We now investigate f(K2).

Remark 1. Let T = conv({(0, 1)T , (±
√

3/2,−1/2)T }), let s ∈ [1, 2], and let

Ks := T ∩ (−sT ) and Cs := conv(T ∪ (−sT )).

Then s(Ks) = s(Cs) = s, vol(Ks) = 2s−(s−1)2

4 , vol(Ks − Ks) = (s+1)2

2 , vol(Cs) =
3
√

3
2 s, and vol(Cs − Cs) = 3

√
3s(1 + s).

We finally provide upper and lower bounds for the constants c(n), C(n) in the
planar case derived from the Theorem 10 and Remark 1.

Corollary 1. Let K ∈ K2 and let s = s(K). Then

4
(

1 + (s− 1)4

211π2

)2

≤ c(s) ≤ 2 (s+ 1)2

2s− (s− 1)2

and
2(s+ 1) ≤ C(s) ≤ (1 + s)2.

Moreover, if s > 8
7 , then

6(16s− 31) ≤ c(s) and C(s) ≤ 6
(

1− 2− s
2201

)
.
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Figure 3: The diagram in Theorem 11 and the bounds obtained in
Theorem 11 (dashed blue and red lines, respectively) and Corollary
1 (dashed black lines) in the case of n = 2; the light grey area is
obtained in Theorems 1 and 3.
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Kačićeva 26, 10000 Zagreb, Croatia

Mirjam Škegro
Erste & Steiermärkische Bank d.d.,
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Abstract

We consider sequential packings of families of circles in the plane whose curva-
tures are given as members of a sequence of non-negative real numbers. Each
such packing gives rise to a sequence of circle centers that might diverge to
infinity or remain bounded. We examine the behavior of the sequence of circle
centers as a function of the growth rate of the sequence of curvatures. In several
special cases we obtain explicit formulas for the coordinates of the limit, while
in other cases we obtain accurate estimates.

Keywords: packing of circles
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1 Introduction and motivation

Packings of geometric objects have been attracting attention of researchers and
engineers since the antiquity [1]. Probably the best known example is the celebrated
Kepler conjecture on sphere packings in space, centuries old, and solved only recently
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[2, 3]. Many other problems of efficient use of (not necessarily spatial) resources can
be successfully modeled by packings. Among the examples are accretion processes of
impenetrable particles subject to attractive forces. A toy model of one such process
is considered in this paper. We construct it by considering dynamic (sequential)
packing of circles in the plane subject to the following conditions.

In the beginning (at the time zero), we have two circles touching externally at the
origin of the plane coordinate system. Both their centers are on the y-axis, and
we allow that one of the circles has an infinitely large radius (hence the curvature
equal to zero). At each successive moment a circle arrives and settles in the plane
so that it touches externally two circles that immediately precede it. Out of the
two possible location for the circle center, we choose the one that is farther from
the origin. We are interested in the behavior of the sequence of centers of circles in
such packings. More precisely, we wish to decide whether the sequence of centers
diverges to infinity or converges to a limit, i.e., to a point at a finite distance from
the origin. In the latter case, we would like also to determine the coordinates of the
limit, or, at least, to give some estimate of its location.

It is clear that the behavior of the sequence of circle centers depends on the radii
of accreting circles. We assume that the inverse values of the radii (hence the
circle curvatures) are given as elements of a sequence (an)n>0 of non-negative real
numbers. Our goal is to determine how behavior of the sequence (Sn)n>0 of circle
centers depends on the sequence (an)n>0. In particular, we aim at finding the
necessary and sufficient conditions for convergence of (Sn)n>0 in terms of growth
properties of sequence of curvatures. In case of convergence, we will try to determine
the exact or approximate coordinates of the limit.

2 Definitions and preliminaries

Let I be an arbitrary index set. A family {Ki, i ∈ I} of sets in the plane is a
packing if intKi ∩ intKj 6= ∅, ∀i 6= j ∈ I.

In our case, I = N0 and each Ki is a circle of radius ri centered at Si. It is clear that
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Došlić, Škegro Directed packings of circles in the plane

the efficiency of packing will be the greatest if the circles touch each other (since
their interiors cannot overlap).

Let us take a sequence (an)n>0 of non-negative real numbers such that an > 0 for
all n > 1 and two circles, K0 and K1 so that they touch externally at the origin of
the plane coordinate system. We assume that the center of K0 is on the negative
part of the y-axis and the center of K1 is on the positive part of the y-axis. We
denote these centers by S0 and S1, respectively. The radii r0 and r1 of K0 and K1

are given as the reciprocal values of a0 and a1, respectively. Clearly, if a0 = 0, K0

becomes the x-axis; such a situation is shown in Fig. 1. Now take a circle K2 of

Figure 1: The case a0 = 0

radius r2 = 1
a2

and position it in the right half-plane so that it touches externally
both K0 and K1. Denote its center by S2. Now, for each n > 3 take a circle Kn

of radius rn = 1
an

and determine its center Sn so that Kn touches externally both
Kn−1 and Kn−2. In each step there will be two possible locations of Sn; we take the
one more distant from the origin. In the rest of this paper we will study how the
behavior of so constructed sequence (Sn)n>0 depends on properties of (an)n>0.

Let S((an)) denote the limit (if it exists) of the sequence of circle centers for a
given sequence (an), and let ρ((an)) denotes its distance from the origin. When
(Sn) diverges, we set ρ((an)) = ∞. Our problem can be now formulated in terms
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of ρ((an)): whether it is finite or infinite for a given (an), and, if finite, what is its
exact or approximate value.

We start by some simple results for the case of constant and of decreasing sequences
(an)n>0. In the case of constant sequence we can assume an = 1 for all n > 0. The
situation is shown in Fig. 2. It is a simple exercise to compute the coordinates
(pn, qn) of the sequence of centers Sn [4].

Figure 2: The packing for an = 1

pn = bn
2
c
√

3, qn = 3bn+ 1

2
c − n− 1.

It is clear from both the figure and from the explicit expression for the coordinates
of Sn that the sequence (Sn) diverges.

Another simple situation arises when the sequence (an)n>0 is decreasing. An exam-
ple of such a situation with a0 = 0, an = 1

n for n > 1, is shown in Fig. 3. It is clear
that the sequence (Sn) diverges. Hence, it makes sense to restrict our attention on
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Figure 3: A packing with an inadmissible sequence (an)

(at least weakly) increasing sequences that grow without bound. From now on we
consider only such sequences. We call them the admissible sequences.

By using induction on n and passing to the limit we can establish the following
property of admissible sequences.

Proposition 1 Let (an)n>0 and (bn)n>0 be two admissible sequences with an 6 bn
for all n ∈ N0. Then ρ((an)) > ρ((bn)).

We close this section by considering the case when the sequence of radii converges,
hence when

∑∞
n=0

1
an

= M <∞.

Proposition 2 If the series
∑ 1

an
is convergent, then the sequence (Sn) converges

to the limit S((an)) at a finite distance from the origin.
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Proof. Let us denote by dn the distance between Sn and the origin. It is clear that
the difference dn − dn−1 cannot exceed the sum of the radii of the corresponding
circles. Hence, dn − dn−1 6 1

an−1
+ 1

an
for all n > 2. The claim now follows by

summing over all n > 2.

Corollary 3 Let (an)n>0 be an admissible sequence and let an ∈ Ω(ns) for some
s > 1. Then ρ((an)) <∞.

The above result settles the case of sequences (an) growing faster than the sequence
of natural numbers. It leaves open the case when (an) is exactly the sequence of
natural numbers, as well as all admissible sequences of slower growth. Also, it
provides no information on the actual values of S((an)) and ρ((an)) for convergent
sequences (Sn).

3 Numerical experiments

In order to facilitate our investigation and to gather some information on behavior of
various sequences, we have designed a recursive algorithm for computing the coordi-
nates of centers Sn for a given sequence (an). It is based on the procedure for finding
intersections of two circles with given centers and radii. We have implemented the
algorithm in Matlab; the code is given in the Appendix.

3.1 Algorithm

We start from a given sequence (an)n>0, and the sequence of reciprocal values
(rn)n>0 = ( 1

an
)n>0. We take circles K0 and K1 centered at S0 = (0,− 1

a0
) and

S1 = (0, 1
a1

), respectively, touching externally at the origin. For n > 2 we solve the
system {

(x− pn−2)2 + (y − qn−2)2 = (rn−2 + rn)2

(x− pn−1)2 + (y − qn−1)2 = (rn−1 + rn)2.
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for pn and qn, the coordinates of Sn. The solutions represent two intersection of
circles centered at Sn−2 and Sn−1 with radii rn−2 + rn and rn−1 + rn, respectively,
and at each step we choose the one farther from the origin. The first step is shown
in Fig. 4. In case of a0 = 0, the first step is modified so as to acknowledge the fact

Figure 4: Start of the algorithm.

that one circle is actually a line, the x-axis. The modification is shown in Fig. 5.

For n > 2 (or n > 3 if a0 = 0) we define

kn−2 :=
pn−2 − pn−1
qn−1 − qn−2

ln−2 :=
r2n−2 − r2n−1 + (2rn−2 − 2rn−1)rn − p2n−2 + p2n−1 − q2n−2 + q2n−1

2qn−1 − 2qn−2
.

a,n−2 = 1 + k2n−2

bn−2 = 2kn−2ln−2 − 2pn−2 − 2qn−2kn

cn−2 = −r2n−2 − 2rn−2rn − r2n + p2n−2 − 2qn−2ln + q2n−2 + l2n.

After some tedious, but otherwise quite straightforward, algebraic manipulations,
we obtain a recursive formula for computing sequences (pn) and (qn) of center co-
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Figure 5: Start of the algorithm for a0 = 0.

ordinates.

pn =
−bn−2 +

√
b2n−2 − 4a,n−2cn−2

2a,n−2
,

qn = knpn + ln.

In the next subsection we show the results of the algorithm for two sequences with
convergent sequences of centers.

3.2 Examples

Our first example is representative for all geometric sequences qn for q > 1.

Example 4 an = 2n.

The values for the first ten iterations are shown in Table 1.
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n pn qn rn
0 0 −1 1

1 0 0.5 0.5

2 0.62361 0.083333 0.25

3 0.62361 0.458333 0.125

4 0.779512 0.354167 0.0625

5 0.779512 0.447917 0.03125

6 0.818488 0.421875 0.015625

7 0.818488 0.445312 0.007813

8 0.828231 0.438802 0.003906

9 0.828231 0.444661 0.001953

10 0.830667 0.443034 0.000977

... ... ... ...

We observe that p2k = p2k+1 for k > 0; the pattern will be rigorously established
later. By increasing the number of iterations and zooming the corresponding pictures
we can obtain approximate coordinates of S((2n)). The process is illustrated in
Figures 6 and 7.

Figure 6: an = 2n
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Figure 7: Zoom for an = 2n

Example 5 an = n2.

Here we omit the table and show only graphical representation (see Figure 8).

4 Exact approach

In this section we first introduce and study the mesh of triangles defined by the circle
centers. The mesh is shown in Fig. 9. It is fully enclosed between two piecewise
linear curves made of segments connecting the centers of successive even- and odd-
numbered circles in the packing. For a given admissible sequence (an), let us denote
by Tn the triangle with vertices Sn−1, Sn, Sn+1 for n > 1 if a0 6= 0 and for n > 2
if a0 = 0. Its sides have lengths 1

an
+ 1

an+1
, 1
an−1

+ 1
an+1

, and 1
an

+ 1
an−1

. By using
Heron’s formula we obtain the area of Tn as

Pn =

√
anan−1 + an−1an+1 + anan+1

an−1anan+1
.
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Figure 8: an = n2

Figure 9: Triangle mesh.
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Now we look at the sum of all triangle areas. If the series
∑∞

n=1 Pn diverges, then
the sequence Sn must also diverge, since an infinite area cannot be enclosed by a
circle of a finite radius. This immediately yields a lower bound for the growth rate
of sequences with convergent center sequences.

Proposition 6 Let (an) be an admissible sequence and an ∈ O(
√
n). Then

ρ((an)) =∞.

Proof. an ∈ O(
√
n) means that there is C > 0 such that an 6 C

√
n, ∀n. It is

easy to see that for the sequence bn = C
√
n the corresponding sequence Pn diverges.

Hence ρ((bn)) =∞, and then, by Proposition 1, also ρ((an)) =∞.

We notice that convergence of
∑∞

n=1 Pn does not imply the convergence of the
sequence of circle centers, as a finite area can be enclosed between two curves of
infinite length. Similarly, the divergence of the sum of distances between the centers
of successive circles does not imply the divergence of the sequence of centers, since
a curve of infinite length can be enclosed within a circle of a finite diameter. A nice
example is provided by the Koch curve.

4.1 an = n

In this subsection we consider and settle the case an = n. The mesh of triangles is
shown in Fig. 10. It is easy to see that both |S2S4|+|S4S6|+|S6S8|+... = 1

2+
∑∞

k=2
1
k

and |S1S3| + |S3S5| + |S5S7| + ... = 1 + 2 ·
∑∞

k=1
1

2k+1 diverge. It does not mean,
however, that the sequence of centers diverges. The divergence will follow only if we
show that the piecewise linear curves bounding our mesh do not vary wildly, i.e., that
they have certain monotonicity properties. In order to establish that monotonicity,
look at Fig. 11 and consider angles α1, α2, α3. We would like to establish a lower
bound on the sum of those angles α1 + α2 + α3. If that lower bound exceeds π, it
means that the slopes of successive segments are non-increasing and remain positive.
That will further imply that the piecewise linear curve is a graph of a function and
hence cannot achieve its infinite length over a finite segment.
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Figure 10: Triangle mesh for an = n

Figure 11: Angles at the center of an even-numbered circle for an = n

Consider the triangle S2n−2S2n−1S2n. By Heron’s formula, its area is given by

P2n−1 =

√
12n2 − 12n+ 2

2n(2n− 1)(2n− 2)
.
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From that, by formula P = ab sin γ
2 , we obtain

sinα1 =
4n
√

12n2 − 12n+ 2

16n2 − 12n+ 2
.

Consider now the function f(n) := 4n
√
12n2−12n+2

16n2−12n+2
. It tends toward

√
3
2 as n → ∞.

By taking derivative with respect to n it is easy to see that f is decreasing for n >
5+
√
13

4 . Hence, f(n) is approaching the value
√
3
2 from above for n > 5+

√
13

4 ≈ 2.15.

From there it follows sinα1 >
√
3
2 and hence α1 >

π
3 .

In a similar way, by considering the triangle S2n−1S2nS2n+1 with area

P2n =

√
12n2 − 1

2n(2n− 1)(2n+ 1)
,

we obtain

sinα2 =
4n
√

12n2 − 1

16n2 − 1
.

The function g(n) defined by g(n) := 4n
√
12n2−1

16n2−1 also approaches the value
√
3
2 as

n → ∞ remaining above this value. From there we have sinα2 >
√
3
2 and hence

α2 >
π
3 .

Finally, consider the triangle S2nS2n+1S2n+2. Its area is given by

P2n+1 =

√
12n2 + 12n+ 2

2n(2n+ 1)(2n+ 2)
,

from where it follows

sinα3 =
4n
√

12n2 + 12n+ 2

16n2 + 12n+ 2
.

Here, however, the function h(n) := 4n
√
12n2+12n+2

16n2+12n+2
approaches its limit

√
3
2 from

below. Hence, α3 <
π
3 , and we cannot conclude that the sum of three angles in the

center of an even-numbered circle exceeds π.

The situation can be saved, however, if we manage to show that a sum of α3 and
one of the remaining angles is at least 2π

3 . It will follow if we prove, for example,
arcsin f(n) + arcsinh(n) > 2π

3 . By starting from

arcsin f(n) + arcsinh(n) = π − arcsin [f(n)
√

1− h(n)2 + h(n)
√

1− f(n)2]
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and plugging in the expressions for f(n) and h(n) we obtain that f(n)
√

1− h(n)2 +

h(n)
√

1− f(n)2 remains below
√
3
2 and tends increasingly toward this value. As

this is the argument of the arcsin function on the right-hand side of the above
expression, it means that the value of this arcsin function is below π/3, and then
the whole right-hand side exceeds the value of 2π

3 , as desired.

Now we can establish the main result of this subsection.

Theorem 7 The sequence of circle centers for the packing with an = n diverges.

Proof. Consider the piecewise linear curve L = S2S4S6.... It is a graph of a
continuous function ϕ(x) defined on some interval starting at p2, the abscissa of S2.
The length of L is then given by

l(L) =

∫ M

p2

√
1 + ϕ′(x)2dx,

where the integral is taken over the domain of the function ϕ(x). Since the integrand
is bounded on the whole domain, it follows that the infinite length of L can be
achieved only if M =∞.

Corollary 8 Let (an) be an admissible sequence with an ∈ O(n). Then ρ((an)) =
∞.

Hence we have established divergence of circle centers for all packings with curva-
tures growing slower than the sequence of natural numbers. This, together with
Theorem 7 and Corollary 3, settles the problem of convergence. Now it remains to
look at convergent cases and see what we can say about their limits.

4.2 an = qn

We have observed in section 3 that the abscissas of centers in the packing of circles
whose curvatures are given by a geometric sequence appear in pairs. That means
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that the segments connecting the centers of circles whose indices have the opposite
parity are vertical. This is not accidental; it is a consequence of the fact that for a
geometric sequence of curvatures all triangles Tn are similar, as it is shown in Figure
12. The proof is straightforward and we omit it.

A direct consequence of similarity of all Tn is that the centers of all circles with

Figure 12: Triangle mesh for an = qn

indices of the same parity lie on a line. From there, it follows that the sum of all
lengths of segments connecting the center of even-numbered circles is actually the
distance between S0 and the limit. Since the same conclusion is valid for the sum
of distances between the centers of odd-numbered circles, the limit must lie on the
intersection of two circles with known centers and known radii. Hence, we have
exact and explicit expressions for the coordinates of the limit S((qn)). The proof is
straightforward and we omit it.

Theorem 9 Let (an) be a geometric sequence with quotient q > 1, an = qn. Then

S((qn)) =

(
2
√
q + q2 + q3

(q + 1)(q2 − 1)
,

2q

(q + 1)(q2 − 1)

)
and ρ((qn)) =

2
√
q

q2 − 1
.
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For our example an = 2n this yields S((2n)) =
(
2
√
14
9 , 49

)
and ρ((2n)) = 2

√
2

3 .

We have shown that a geometric sequence of curvatures forces similarity of triangles
Tn. It can be shown that also the opposite is valid, hence that all Tn are similar
if and only if the sequence of curvatures is geometric. It is unclear whether this
means that the geometric sequences are the only ones allowing exact solutions for
the limit.

5 Estimates for convergent sequences

We know from section 2 that the sequence of circle centers converges for all curvature
sequences (an) such that

∑ 1
an

converges. In this section we present a method to
estimate the position of the limit S((an)).

We start by finding the centers S1 and S2. Then we compute two sums. The first one
is the total length of all segments between the centers of successive odd-numbered
circles; the second one is the total length of all segments connecting the centers of
successive even-numbered circles. Since

∑ 1
an

converges, both sums must be finite.
Formally,

R1 =
∞∑
k=1

[
1

a2k−1
+

1

a2k+1

]
, R2 =

∞∑
k=1

[
1

a2k
+

1

a2k+2

]
.

In general case, R1 and R2 are lengths of piecewise linear curves connecting S1 and
S2, respectively, with S((an)). Hence they can serve as estimates of the distances
from S1 and S2, respectively, to S((an)). It means that S((an)) must be closer to
both S1 and S2 than the point S′ at the intersection of circles centered at S1 and
S2 with radii R1 and R2, respectively.

We illustrate the quality of those estimates on two examples.

Example 10 an = n2.
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It follows immediately from the well known expression
∑∞

n=1
1
n2 = π2

6 that the
expressions for sums of reciprocal values of squares of even and odd numbers are
given by

∞∑
n=0

1

(2n+ 1)2
=
π2

8
,

∞∑
n=1

1

(2n)2
=
π2

24
.

From there we readily obtain

R1 = 2 · π
2

8
− 1 ≈ 1.4674011, R2 = 2 · π

2

24
− 1

4
≈ 0.572467.

By finding intersections of the circle centered at (0, 1) of radius R1 with the circle
centered at (1, 14) of radius R2, we obtain two points. The one with both coordinates
positive, S′ = (1.4218, 0.6370), can serve as an estimate of S((n2)). We see from
Fig. 13 that the estimate is not very good. This is a consequence of the fact that the
piecewise linear curves connecting S1 and S2 to S((n2)) are quite far from straight
segments, leading thus to overestimates of the corresponding distances.

Figure 13: Estimate for an = n2

Example 11 Our last example is concerned with Fibonacci numbers, an = Fn.
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There are explicit expressions for sums of the reciprocal values of odd- and even-
indexed Fibonacci numbers. For example,

∞∑
n=0

1

F2n+1
=

1

4

√
5ϑ2

(
0,

3−
√

5

2

)2

≈ 1.824515,

∞∑
n=1

1

F2n
=

√
5
(

2ψ
(0)
φ−4(1)− 4ψ

(0)
φ−2(1) + ln 5

)
8 ln 1+

√
5

2

≈ 1.535371.

(Here ϑ and ψ denote the theta and digamma functions, respectively, and φ is the
golden ratio [5]. However, we are interested mostly in the approximate values.)
Starting from the above expressions we can derive the approximate values R1 =
2.64903 and R2 = 2.070742 for the radii of circles centered at (0, 1) and (2, 1),
respectively. Their intersection with coordinates S′ = (1.68235, 3.04623) yields a
pretty accurate estimate of the limit S((Fn)). We do not have an exact expression,
but the value of S20 = (1.67851, 3.04503) given by our algorithm is both close to S′

and closer to S1 and S2 than S′ is to either of them, consistent with the fact that
S′ is an overestimate. Figures 14 and 15 show the quality of the estimate. We can

Figure 14: Estimate for an = Fn

observe that the estimate for Fibonacci numbers is much better than for the squares
of natural numbers. The explanation is that the Fibonacci numbers asymptotically
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Figure 15: Zoom for an = Fn

behave as Fn ∼ φn for large n. Hence they behave almost like geometric sequences,
and for geometric sequences we have exact solutions.

6 Concluding remarks

In this paper we have analyzed behavior of directed packings of circles in the plane
when their curvatures are given by a non-decreasing sequence of non-negative real
numbers. We have established that the sequence of circle centers converges if and
only if the growth rate of the sequence of curvatures strictly exceeds the growth rate
of the sequence of natural numbers. For the case of geometric sequences an = qn,
q > 1, we obtained exact coordinates of the limit S((qn)), while in some other
convergent cases we obtained good quality upper bounds on its distance from the
origin.

It would be interesting to investigate if some other classes of sequences also allow
explicit expressions for coordinates of their limits. Another interesting thing to do
would be to consider three- (and maybe even higher-) dimensional analogues. We
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believe that at least in the three-dimensional case it should be possible to obtain
some exact results.
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Appendix

m=20; % number of circles

n=1:1:m;

a=n.^2; %a_{n} % setting the sequence

p(1)=0;

q(1)=1/a(1);

q(2)=1/a(2);

r(1)=abs(q(1));

r(2)=abs(q(2));

r=abs(1./a(n)); %r_{n}

p(2)=p(1)+sqrt((r(1)+q(1))*(2*r(2)+r(1)-q(1))); % if a_{0} = 0

%p(2)=1; % if a_{0} <> 0

for i=3:1:m

k(i)=(p(i-2)-p(i-1))./(q(i-1)-q(i-2)); %kn

l(i)=(r(i-2).^2-r(i-1).^2+2*r(i-2)*r(i)-2*r(i-1)*r(i)-p(i-2).^2+p(i-1).^2-q(i-2).^2+

q(i-1).^2)./(2*q(i-1)-2*q(i-2)); %ln

c(i)=-r(i-2).^2-2*r(i-2)*r(i)-r(i).^2+p(i-2).^2-2*q(i-2)*l(i)+q(i-2).^2+l(i).^2; %cn

a1(i)=1+k(i).^2; %a’n

b(i)=2*k(i)*l(i)-2*p(i-2)-2*q(i-2)*k(i); %bn

p(i)=(-b(i)+sqrt(b(i).^2-4*a1(i)*c(i)))./(2*a1(i)); %pn

q(i)=k(i)*p(i)+l(i); %qn

end

p=p’;

q=q’;

r=r’;

for k=1:1:(m-2)

area(k)=sqrt(r(k)*r(k+1)*r(k+2)*(r(k)+r(k+1)+r(k+2)));

end

area=area’;

name=’coordinates.xlsx’;

xlswrite(name,p,’coordinates’,’B2’)

xlswrite(name,q,’coordinates’,’C2’)

xlswrite(name,r,’coordinates’,’D2’)

xlswrite(name,area,’coordinates’,’E2’)
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Some results on Wiener index of a graph: an overview

Martin Knor∗, Snježana Majstorović†, Riste Škrekovski‡

Abstract

The Wiener index W (G) of a connected graph G is defined as the sum of dis-
tances between all pairs of vertices in G. In 1991, Šoltés [9] posed the problem
of finding all graphs G such that equality W (G) = W (G − v) holds for all
vertices v in G. The only known graph with this property is the cycle C11.
Our main object of study is the relaxed version of this problem: find graphs
for which Wiener index does not change when a particular vertex v is removed.
This overview contains results which were obtained and published during the
past two years concerning relaxed Šoltés’s problem.

Keywords: Wiener index, transmission, Cartesian product, induced subgraph

MSC: 05C12, 05C90

1 Introduction

Average distance is one of the three most robust measures of network topology, along
with its clustering coefficient and its degree distribution. Nowadays it has been
frequently used in sociometry and the theory of social networks [4]. Wiener index,
defined as the sum of distances between all (unordered) pairs of vertices in a graph,
besides its crucial role in the calculation of average distance, is the most famous
topological index in mathematical chemistry. It is named after Wiener [10], who
introduced it in 1947 for the purpose of determining boiling points of alkanes. Since
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then Wiener index has become one of the most frequently used topological indices
in chemistry, since molecules are usually modeled by undirected graphs. Other
applications of this graph invariant can be found in crystallography, communication
theory and facility location. Wiener index has also been studied in pure mathematics
under various names: the gross status, the distance of a graph, the transmission of a
graph etc. It seems that the first mathematical paper on Wiener index was published
in 1976 [3]. Since then, a lot of mathematicians have studied this quantity very
extensively. A great deal of knowledge on Wiener index is accumulated in survey
papers [2,5,11]. Nowadays it has been frequently used in sociometry and the theory
of social networks [4].

Throughout this paper all graphs will be finite, simple and undirected.
The Wiener index W (G) of a connected graph G is defined as the sum of dis-

tances between all (unordered) pairs of vertices in G:

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑
v∈V (G)

tG(v), (1)

where the distance dG(u, v) between vertices u and v is defined as the number
of edges on a shortest path connecting these vertices in G, and the distance, or
transmission, tG(v) of a vertex v ∈ V (G) is the sum of distances between v and all
other vertices of G.

In 1991, Šoltés [9] posed the following problem:

Problem 1. Find all such graphs G that the equality W (G) = W (G− v) holds for
all their vertices v.

Till now, only one such graph is known: it is a cycle with 11 vertices.
Motivated by Šoltés’s problem, in [6] we constructed an infinite family of uni-

cyclic graphs which preserve Wiener index after removal of a particular vertex. In
fact, we proved that there are infinitely many unicyclic graphs with this property
even when we fix the length of the cycle. Then we showed that for every graph G
there are infinitely many graphs H such that G is an induced subgraph of H and
W (H) = W (H − v) for some vertex v ∈ V (H) \ V (G). Our research is further
extended to graphs in which vertex v is of arbitrary degree, see [7]. For k ≥ 3 we
showed that there are infinitely many graphs G with a vertex v of degree k for which
W (G) = W (G − v). Moreover, we proved the existence of such graphs when the
degree is n− 1 or n− 2. Finally, we showed that dense graphs cannot be a solution
of Problem 1.
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Our contribution shows that the class of graphs, for which Wiener index does not
change when a particular vertex is removed, is rich. This gives hope that Šoltes’s
problem may have another solution besides C11.

2 Preliminaries

Let G be a connected graph. By dG(v) we denote the degree of vertex v. A pendent
vertex is a vertex of degree one and a pendent edge is an edge incident with a pendent
vertex. For a given vertex v of a graph G, the eccentricity of v, denoted by ecc(v)
is defined to be the greatest distance from v to any other vertex in G. A diameter
diam(G) of a graph G is the value of the greatest eccentricity in G.
By Kn we denote an n-vertex complete graph and by Sn an n-vertex star. For more
definitions and terminologies in graph theory, see [1]. For Wiener index of the path
Pn and cycle Cn we have very simple formulae. Wiener index of path Pn is

W (Pn) =

(
n+ 1

3

)
, (2)

and Wiener index of a cycle Cn is

W (Cn) =


n3

8
if n is even

n(n2 − 1)

8
if n is odd.

(3)

Proposition 2. Let G be a connected graph and v ∈ V (G) be a pendent vertex. Let
uv be the corresponding pendent edge in G and G′ = G− v. Then

W (G) = W (G′) + tG′(u) + n(G′),

where n(G′) is the number of vertices in a graph G′.

The next statement was proved in [8].

Theorem 3. Let Gu and Gv be two graphs with nu and nv vertices, respectively,
and let u ∈ V (Gu), v ∈ V (Gv).

(a) If G arises from Gu and Gv by connecting u and v by an edge, then

W (G) = W (Gu) +W (Gv) + nutGv(v) + nvtGu(u) + nunv.

(b) If G arises from Gu and Gv by identifying u and v, then

W (G) = W (Gu) +W (Gv) + (nu − 1)tGv(v) + (nv − 1)tGu(u).
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3 Results for unicyclic graphs

Theorem 4. [6] Let c ≥ 5. There exists infinitely many unicyclic graphs G with a
cycle of length c for which equality W (G) = W (G− v) holds for some v ∈ V (G).

Proof. Our construction of unicyclic graphs G for which W (G) = W (G− v) goes in
the following way. Let Cc be a cycle of length c. We denote its vertices consecutively
by v0, v1, . . . , vc−1. We add to Cc a pendent vertex, to obtain a new graph, then we
add another pendent vertex (which may be connected to previously added vertex)
and so on, until we get a unicyclic graph G with W (G) = W (G − v0). Then we
continue with adding pendent vertices to create infinitely many graphs G with the
property W (G) = W (G − v0). Since G − v0 has to be connected, we cannot add
pendent vertices to v0.

Most of our graphs are obtained from Cc by adding a path to vc−1 and a tree to v1,
that is, usually the vertices v2, v3, . . . , vc−2 will all have degree 2 in G. By studying
the case when c ∈ {3, 4}, we conclude that there is no unicyclic graph G with a
cycle of length c satisfying W (G) = W (G− v) for some v ∈ V (G). Justification for
this conclusion lies in the fact that W (G) = W (G − v) if and only if the following
equality holds

tG(v) =
∑

{u1,u2}⊆(V (G)\{v})

[dG−v(u1, u2)− dG(u1, u2)] . (4)

If c = 3, 4, then removal of any vertex of degree two from Cc will not increase
distance between any pair of vertices in G− v.

Additionally, we showed that a unicyclic graph G on n vertices for which W (G) =
W (G− v) exists if and only if n ≥ 9.

4 Induced subgraphs

By using cycles of certain length, we showed that any graph (even a disconnected
one) can be an induced subgraph of some graph H for which W (H) = W (H − v).
For this result we needed the following two lemmas.

Lemma 5. [6] Let Cc be a cycle of even length, c = 2a, such that a is a square.
Moreover, let Gm be a graph with a vertex u for which tGm(u) = a

3 [a2− 6a+ 2]. Let
H be obtained from Gm and Cc by identifying u with vi, where i = a −

√
a. Then

W (H)−W (H − v0) = 0.
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Lemma 6. [6] Let Cc be a cycle of odd length, c = 2a+1, such that 4a+1 is a square.
Moreover, let Gm be a graph with a vertex u for which tGm(u) = a

6 [2a2−9a−5]. Let H
be obtained from Gm and Cc by identifying u with vi, where i = 1

2(2a+1−
√

4a+ 1).
Then W (H)−W (H − v0) = 0.

Now using Lemmas 5 and 6 we obtain the following result in which G does not
need to be connected.

As a main tool we used Theorem 3b in which one graph contains G as an induced
subgraph and the other one is a cycle.

Theorem 7. [6] Let G be an arbitrary graph. Then there are infinitely many
connected graphs H, containing G as an induced subgraph, and such that W (H) =
W (H − v0) for some vertex v0 ∈ V (H)− V (G).

5 Vertex of a fixed degree

Our first observation is that if a vertex v has degree 1 in G, then W (G) > W (G−v).
Since case dG(v) = 2 was already studied through unicyclic graphs, we focus on v
such that dG(v) ≥ 3. Our main result is the following theorem.

Theorem 8. [7] For every k ≥ 3 there exist infinitely many graphs G with vertex
v such that dG(v) = k and W (G) = W (G− v).

Proof. In each case we show the existence of a graph G1 with a vertex v such that
dG1(v) = k and W (G1) = W (G1 − v). Then we construct an infinite class of
graphs by attaching to G1 a new graph G2 according to Theorem 3, and by taking
into a consideration necessary and sufficient condition given by (4) under which the
resulting graph H satisfies W (H) = W (H − v).

If we consider graphs with n ≥ 7 vertices, then we can study the case when a
degree of v is close to n, that is d(v) = n − 1 or d(v) = n − 2. In this case we can
show the existence of at least one graph G such that W (G) = W (G − v). This is
stated in the following theorem.

Theorem 9. [7] Let n ≥ 7. There exists an n-vertex graph G with vertex v so that
dG(v) = n− 2 and W (G) = W (G− v).

Proof. Let d(v) = n− 2. Cases n = 7, 8, 9, 10 are considered separately, see [7]. For
n ≥ 11 we take two stars S3 and Sn−4 and connect their central vertices with an
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edge. We add edges between one pendent vertex of S3 and n− 10 pendent vertices
of Sn−4 and denote the resulting graph by G0. We take a new vertex v and connect
it with all vertices of G0 except the central vertex of S3. In the resulting graph
G we have dG(v) = n − 2, tG(v) = n and diam(G) = 2. From (4) it follows that
W (G) = W (G0).

Let us now consider the case d(v) = n − 1. Let H be a graph having n − 1
vertices and m edges and let G be obtained from H by adding a new vertex v and
connecting it by an edge to all vertices of H. Then diam(G) = 2 and we have

W (G) = tG(v) +
∑

{u,w}⊆V (H)

dG(u,w)

= n− 1 + 2

(
n− 1

2

)
−m

= (n− 1)2 −m.

Since H = G− v, we conclude that W (G) = W (H) if and only if

W (H) = (n− 1)2 −m. (5)

By a computer we checked that for n− 1 ≤ 5 there are no graphs on n− 1 vertices
satisfying (5). Hence we assume that n − 1 ≥ 6. By using (5), for each n − 1 ≥ 6
we managed to construct a graph H on n− 1 vertices satisfying W (G) = W (H).

5.1 Graphs with large minimum degree

At last, we prove that dense graphs cannot be particular solutions of Problem 1. By
dense graphs we mean those n-vertex graphs in which the minimum degree δ(G) is
at least n/2. Our result relies on the observation that for n ≥ 3 and δ(G) ≥ n/2,
we have diam(G) ≤ 2.

6 Concluding remarks

The quest for graphs other than C11 which are solutions of Šoltes’s problem has
been completely unsuccessful so far. However, by studying a relaxed version of the
problem or by focusing on some particular classes of graph, one could get a better
insight into the original problem and find one more solution of it, or show that such
graphs do not exist.
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One can consider regular graphs. Note that asking for a graph to be vertex-
transitive will be a as well a solution of the Šoltés’s problem.

We can pose the following problems.

Problem 10. Are there k-regular connected graphs G other than C11 for which the
equality W (G) = W (G− v) holds for at least one vertex v ∈ V (G)?

We know that there are no such graphs for k ≥ n/2.
One can go further and study graphs G for which equation W (G) = W (G− S)

holds for a subset S of the vertex set V (G) consisting of at least 2 vertices.

Problem 11. Find connected graphs G for which

W (G) = W (G− S)

for any S ⊂ V (G), with |S| ≥ 2.

Our results show the existence of an infinite class of graphs G for which W (G) =
W (G−v) for a particular vertex v. It is natural to formulate the following conjecture.

Problem 12. For a given r, find (infinitely many) graphs G for which

W (G) = W (G− v1) = W (G− v2) = · · · = W (G− vr)

for any distinct vertices v1, . . . , vr ∈ V (G).

Acknowledgements. The authors acknowledge partial support by Slovak research
grants VEGA 1/0026/16, VEGA 1/0142/17 and APVV–15–0220, National Schol-
arschip Programme of the Slovak Republic SAIA and Slovenian research agency
ARRS, program no. P1–0383.

References

[1] R. Diestel, Graph Theory: Electronic Edition 2000 Springer Verlag - New York
(1997, 2000).

[2] A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory
and application, Acta Appl. Math. 66 (2001) 211–249.

[3] R. C. Entringer, D. E. Jackson and D. A. Snyder, Distance in graphs, Czechoslo-
vak Math. J. 26 (1976) 283–296.

55
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[9] L’. Šoltés, Transmission in graphs: A bound and vertex removing, Math. Slo-
vaca 41 (1991) 11–16.

[10] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem.
Soc. 69 (1947) 17–20.

[11] K. Xu, M. Liu, K. C. Das, I. Gutman and B. Furtula, A survey on graphs
extremal with respect to distance-based topological indices, MATCH Commun.
Math. Comput. Chem. 71 (2014) 461–508.

56



Krenn, Gu, Soltész Perfect Matchings Inspired by Quantum Physics

QUESTIONS ON THE STRUCTURE OF PERFECT

MATCHINGS INSPIRED BY QUANTUM PHYSICS
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Abstract. We state a number of related questions on the structure
of perfect matchings. Those questions are inspired by and directly
connected to Quantum Physics. In particular, they concern the con-
structability of general quantum states using modern photonic technol-
ogy. For that we introduce a new concept, denoted as inherited vertex
coloring. It is a vertex coloring for every perfect matching. The colors are
inherited from the color of the incident edge for each perfect matching.
First, we formulate the concepts and questions in pure graph-theoretical
language, and finally we explain the physical context of every mathemat-
ical object that we use. Importantly, every progress towards answering
these questions can directly be translated into new understanding in
quantum physics.

Keywords: perfect matching, inherited vertex coloring, constructable
quantum states
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1. Motivation

A bridge between quantum physics and graph theory has been uncovered
recently [1, 2, 3]. It allows to translate questions from quantum physics –
in particular about photonic quantum physical experiments – into a purely
graph theoretical language. The question can then be analysed using tools
from graph theory and the results can be translated back and interpreted
in terms of quantum physics. The purpose of this manuscript is to collect
and formulate a large class of questions that concern the generation of pure
quantum states with photons with modern technology. This will hopefully
allow and motivate experts in the field to think about these issues.
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More concrete, the problems that we present here are concerned with the
design of quantum experiments for producing high-dimensional and multi-
partite entangled quantum states using state-of-the-art photonic technology
[4]. We start by asking for the generation of Greenberger-Horne-Zeilinger
(GHZ) states [5], and their high-dimensional generalizations [6, 7, 8, 9], and
further generalize the questions to cover arbitrary pure quantum states.

The paper is organized as follows. In Section 2, we rigorously define the
graph theoretic questions that turn out to be relevant in quantum physics.
In Section 3 we discuss the correspondence between the all mathematical
objects used in Section 2 and quantum experiments.

2. Concepts and Questions

The type of quantum experiments, that we are interested in, correspond to
so-called bi-colored graphs, that are defined as follows.

Definition 2.1 (Edge bi-colored weighted graph). Let C “ tc1, . . . , cdu
be the set of d ě 2 distinct colors. An edge bi-colored weighted graph
G=(V(G),E(G)), on n vertices with d ě 2 colors is an undirected, loopless
graph where there is a fixed ordering of the vertices v1, . . . , vn P V pGq and
to each edge e P EpGq a complex weight we and an ordered pair of (not
necessarily different) colors from C is associated. We say that an edge is
monochromatic if two associated colors are not different, otherwise the edge
is bi-chromatic. Moreover, if e is an edge incident to the vertices vi, vj P V pGq
with i ă j and the associated ordered pair of colors to e is pc1peq, c2peqq then
we say that e is colored c1 at at the endpoint vi and c2 at the endpoint vj .

For simplicity, for the rest of the manuscript we abbreviate edge bi-colored
weighted graph by bi-colored graph.

The unusual property of bi-colored graphs (compared to other edge-colorings
in graph theory) is that edges are allowed to have different colors at different
endpoints. The next definition will establish a connection between perfect
matchings and vertex colorings of a bi-colored graph.

Definition 2.2 (Inherited Vertex Coloring). Let G be a bi-colored graph
and let PM denote a perfect matching in G. We associate a coloring of the
vertices of G with PM in the natural way: for every vertex vi there is a
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single edge epviq P PM that is incident to vi, let the color of vi be the color
of epviq at vi. We call this coloring the inherited vertex coloring (IVC) of
the perfect matching PM and denote it by c. When all vertices in IVC are
colored with only one color, we call c a monochromatic coloring.

Now we are ready to define how constructive and destructive interference
during an experiment is governed by perfect matchings of a bi-colored graph.

Definition 2.3 (Weight of Vertex Coloring). Let G be a bi-colored graph.
Let M be the set of perfect matchings of G which have the coloring c as
their inherited vertex coloring. We define the weight of c as

wpcq :“
ÿ

PMPM

ź

ePPM

we.

Moreover, if wpcq=1 we say that the coloring gets unit weight, and if wpcq=0
we say that the coloring cancels out.

An example for a bi-colored graph where some colorings of the vertices get
unit weight and some other colorings cancel out can be seen in Figure 1.

Question 1: monochromatic graph

For which values of n and d are there bi-colored graphs on n vertices
and d different colors with the property that all the d monochromatic
colorings have unit weight, and every other coloring cancels out? We
call such a graph monochromatic.

The only known values of n and d, for which the answer for Question 1 is
affirmative, are d “ 2 and n arbitrary even, and d “ 3 ,n “ 4. For d “ 2
and n even an alternately colored (all edges are monochromatic) even cycle
Cn suffices with all edge weights being one. For d “ 3, n “ 4 a suitable
bi-colored graph can be constructed as follows. Decompose the edges of the
complete graph K4 into three disjoint perfect matchings, and let the edges of
these matchings be monochromatic, and colored with different color, finally
assign weight we “1 to each edge. It is easy to check that the resulting
graph satisfies the conditions of Question 1, see Figure 2. Observe that in
all known cases we can use weight 1 for each edge. It was shown by Ilya
Bogdanov that no other examples are possible with the restriction that all
edge weights are positive [10]. The graph in Figure 1 is not monochromatic.
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Figure 1. Example for inherited vertex coloring and coloring weight. A
bi-chromatic weighted edge with one double edge between vertex 4 and 6 is
shown on the top left, the edge weights Eij are shown below. On the right
top, its eight perfect matchings are shown, and wpPMiq denotes the product
of the edge weights of the perfect matching PMi. The perfect matching 4 and
5 have the same inherited vertex coloring. As wpcq “ wpPM4q `wpPM5q “

0, we say this coloring cancels out. There are six remaining IVCs with
nonzero weights.

In quantum experiments, one can use additional heralding photons in order
to produce a certain state. This concept can be formulated in the following
way.

Figure 2. A bi-coloring and weight assignment of the edges of K4 that
demonstrated that the answer to Question 1 is affirmative for d “ 3, n “ 4.
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Definition 2.4 (k-monochromatic colorings). A coloring c is called k-mono-
chromatic, if the first k ď |V | vertices have the same color, and all other
vertices are colored (without loss of generality) red.

Question 2: k-monochromatic Graph

For which values of n, d and k are there bi-colored graphs on n
vertices and d different colors with the property that all the d k-
monochromatic colorings have unit weight, and every other coloring
cancels out? We call such a graph k-monochromatic.

The only known example of a k-monochromatic graph with k ą 4 and d ě 3
is shown in Figure 3. There are three 6-monochromatic colorings, where
each has wpcq “ 1. All other colorings are non-6-monochromatic, and have
a weight of wpcq “ 0. We call this graph Erhard graph1. Note that increas-
ing the number n while keeping k constant can be done straight forwardly.
However, increasing k or d seems to be very difficult.

Since it is possible that for large values of n and d, there are no monochro-
matic graphs, we introduce a measure of monochromaticness on bi-colored
graphs as follows.

Definition 2.5 (monochromatic Fidelity). Let N be

N “
ÿ

c

|wpcq|2 ,

let Cmono be the set of all monochromatic IVC of G, and d be the number
of different colors of G. The monochromatic fidelity is defined as

Fmono :“
1

d

1

N

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

cPCmono

wpcq

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

As an example, we can calculate the monochromatic fidelity of the graph in
Figure 1. It has d=3 monochromatic inherited vertex colorings and N “ 6.
Then we find that Fmono “ 3

6 “ 0.5. Furthermore, all monochromatic graphs
reach the maximum of Fmono “ 1.

1It is named after Manuel Erhard, who discovered the quantum mechanical technique
which has inspired the construction of this graph.
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Figure 3. The Erhard graph is 6 ´monochromatic. It is the only known
example for k ą 4 and d ě 3 satisfying Question 2.

Question 3: approximative monochromatic graph

For every value of n and d, which bi-colored graphs G with n vertices
and d different colors maximizes the monochromatic fidelity Fmono?
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Even if one has access to n´k heralding particles, it is possible that there are
no k-monochromatic graphs with d different colors, therefore we can define
a fidelity as follows.

Definition 2.6 (k-monochromatic Fidelity). Let N be

N “
ÿ

c

|wpcq|2 ,

let Ck´mono be the set of all k-monochromatic IVC of G, and d be the number
of different colors of G. The k-monochromatic fidelity is defined as

F k´mono :“
1

d

1

N

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

cPCk´mono

wpcq

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

For k-monochromatic states, the fidelity is F k´mono “ 1. Naturally, we can
ask what graph is closest to monochromatic.

Question 4: approximative k-monochromatic graph

For every value of n, d and k, which bi-colored graphs G with n
vertices and d different colors minimizes the k-monochromatic fidelity
F k´mono?

Until now, we considered only monochromatic colorings, as they correspond
to an important class of quantum states. However, in general we are in-
terested in the total capability of photonic quantum experiments to create
quantum states. For that, we generalize our questions such that we cover
every pure quantum state.

Question 5: general inherited vertex colorings

Let Cp “ tCiu
t
i“1 be a set of (prescribed) different colorings of n

vertices and Wp “ twiu
t
i“1 be the set of (prescribed) weights. For

every Cp and Wp, is there a bi-colored graph G on the same n vertices
as the colorings in Cp so that for each i, wpCiq “ wi, and every coloring
not in Cp cancels out?
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A particularly interesting special case of this question is the case where Cp
is restricted to contain only d “ 2 colors. As an example, we consider the
set of colorings Cp “ ppg, r, r, rq, pr, g, r, rq, pr, r, g, rq, pr, r, r, gqq and weights
Wp “ p1, 1, 2, iq. Is there a graph which is affirmative to Question 5 with
these colorings and weights? We answer this question affirmatively, and
show the solution in Figure 4.

Figure 4. This multi-edge graph answers the Question 5 for a given Cp and
Wp.

Again, it might be the case that not every set of coloring and weight can
be constructed, thus we define a fidelity that gives us a notion of distance
between the target and the graph.

Definition 2.7 (general fidelity). Let Cp “ tCiu
t
i“1 be a set of (prescribed)

different colorings (with up to d different colors), and Wp “ twiu
t
i“1 be the

set of (prescribed) weights, let G be a bi-colored graph. Let N1 and N2 be

N1 “

t
ÿ

i“1

|wi|
2 , N2 “

ÿ

@c

|wpcq|2 .

The general fidelity is defined as

F general :“
1

N1N2

ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

i“1

wi ¨ wpCiq

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Now a natural and most general question can be stated as follows.
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Question 6: approximative general graph

For every Cp and Wp, which bi-colored graphs G with n vertices min-

imizes the general fidelity F general?

Question 6 contains Question 1-5 as special cases. Thus its resolution would
resolve the question about the power of modern photonic quantum entan-
glement sources.

3. Quantum Mechanical Formulation

All of the concepts, questions and partial results in this paper can directly
be translated into the language of quantum mechanics [1, 2, 3].

Undirected Graphs correspond to quantum optical experiments, us-
ing probabilistic photon-pair sources and linear optics.

Vertices correspond to single photon detectors in the output of some
photon path.

Edges correspond to photon pairs that emerge from two photon paths.

Edge weights correspond to the amplitude of the corresponding pho-
ton pair.

Edge colors correspond to the mode number of the two photons in the
path defined by the vertices at the endpoint of the edge. They can
be bi-colored, as the two photons can have different mode numbers.
A monochromatic edge corresponds to a photon pair with the same
mode number.

Perfect matchings correspond to a multi-photon event where each
single photon detector detects a photon. The coherent sum of all
perfect matchings leads to the quantum state (conditioning on the
click of each detector). Not every perfect matching necessarily leads
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to an unique term in the quantum state. Different perfect matchings
can lead to the same inherited vertex colorings, thus coherently sum
up and constructively or destructively interfere.

Inherited vertex colorings corresponds to multi-photonic terms with
different mode numbers in the quantum state. Terms with different
IVCs are orthogonal.

Weights of vertex colorings wpcq correspond to the amplitude of
terms with mode numbers described by the inherited vertex color-
ings. More than one perfect matching can lead to the same inher-
ited vertex colorings. As these terms can have opposite weights, it
could be that the weight of an inherited vertex coloring is zero even
though there are several perfect matchings leading to that coloring
with nonzero weights.

Monochromatic vertex colorings lead to terms where every pho-
ton carries the same mode number. A graph with only monochro-
matic vertex colorings (with d different colors) corresponds to d-
dimensional Greenberger-Horne-Zeilinger state. These states are of
significant importance in quantum physics.

Question 1 asks which high-dimensional Greenberger-Horne-Zeilinger
states can be created if general amplitudes wi P C can be used, but
without trigger photons.

Monochromatic Graph corresponds to a high-dimensional multi-
-photonic Greenberger-Horne-Zeilinger state.

Bogdanov’s Lemma states that Greenberger-Horne-Zeilinger states
can be created only with d “ 3 dimensions with n “ 4 photons,
or d “ 2 dimensions for arbitrary even number of n photons, if all
amplitudes are real valued (i.e. no destructive interference happens)
and no additional trigger photons are used [10].
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Figure 2 corresponds to a 4-photon 3-dimensional Greenberger-Horne-
Zeilinger state.

k-monochromatic colorings correspond to quantum states where the
first k photons have the same mode number, and the remaining
pn´ kq photons have mode number zero (we can define red to be an
arbitrary mode number). The pn ´ kq red vertices can be used as
trigger photons that herald an k-photon state where every photon
has the same mode number.

Question 2 asks which high-dimensional Greenberger-Horne-Zeilinger
states can be created if general amplitudes wi P C can be used, and
(n´ k) trigger photons can be used.

Erhard graph is the only known example which corresponds to a
quantum state that goes beyond Bogdanov’s limit – it can pro-
duce a 6-photon 3-dimensional entangled GHZ state. Four herald-
ing photons and complex weights are used to cancel out all non-
monochromatic colorings. It is created using two copies of the graph
in Figure 2, which are merged using a quantum technique discovered
by Manuel Erhard.

Monochromatic fidelity stands for a quantum fidelity to a high-
dimensional n-particle GHZ state.

Question 3 asks for every d-dimensional and n-particle state, what is
the state that comes closest to the GHZ state, allowing only linear
optics and probabilistic pair sources.

k-monochromatic fidelity stands for a quantum fidelity to a high-
dimensional k-particle GHZ state, using (n´ k) trigger photons.

Question 4 asks for every d-dimensional and k-particle state with (n´
k) triggers, what is the state that comes closest to the GHZ state,
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allowing only linear optics, probabilistic pair sources and heralding
photons.

Question 5 asks in general, which high-dimensional multipartite pure
quantum states can be created using these techniques?

Figure 4 is an example to produce a 4-particle W state.

General fidelity corresponds to a fidelity between a prescribed quan-
tum state, and a quantum state that originates from a bi-colored
graph.

Question 6 asks for an arbitrary pure quantum state, with which fi-
delity can it maximally be created?

4. Conclusion

Every progress in any of these purely graph theoretical questions can be
immediately translated to new understandings in quantum physics. Apart
from the intrinsic beauty of answering purely mathematical questions, we
hope that the link to natural science gives additional motivation for having
a deeper look on the questions raised above.
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Abstract

Lindström – Gessel – Viennot theorem connects linear algebra and combina-
torics with graph theory. We will present proof of LGV theorem and its appli-
cation on Cauchy – Binnet and generalized Cauchy – Binnet formula as well as
calculation of binomial determinants and some other specific determinants.
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graph, path, Cauchy – Binnet formula
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1 Introduction

Linear algebra and combinatorics are one of the oldest mathematical disciplines
which even today significantly influenced further development of other disciplines and
computer science. Although if we think about modern mathematics as a collection of
many overlapping disciplines whose subjects may look far distant from each other,
mathematics was always strongly integrated science with unexpected, mysterious
and beautiful links among diverse subjects. Here we present one such deep result
which connects determinants and graphs.

On the website of KAIST Math Problem of the Week (Weekly Math Challenges
in KAIST) in December 2016 the following problem was posted.

DOI: https://doi.org/10.5592/CO/CCD.2018.06
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Problem 1 (Koon and Yun Bum). Let Sn = (aij)ij be an n× n matrix such that

aij =

(
2(i+ j − 1)

i+ j − 1

)
.

Find detSn.

The solution of this problem was given by Koon and Yun Bum in 2017. Using the
properties of linear algebra and binomial coefficients they reduced matrix an upper
triangular matrix which determinant is Sn = 2n. We sketch his solution:
Proof: Let Ln be the lower triangular matrix with entries given by

Ln :=

{ (
2i−1
i+j−1

)
if i ≥ j

0 otherwise

and let Un := LTn . Note that

(LnUn)ij =
2i−1∑
k=1

(
2i− 1

k

)(
2j − 1

k + j − i

)
for i ≥ j.

Observe the following identity(
2(i+ j − 1)

i+ j − 1

)
=

2i−1∑
k=0

(
2i− 1

k

)(
2j − 1

k + j − i

)
.

As

2(LnUn)ij =

2i−1∑
k=0

(
2i− 1

k

)(
2j − 1

k + j − i

)
,

so 2(LnUn)ij = aij , where Sn = (aij). Hence, Sn = (2Ln)Un,

detSn = (det 2Ln) detUn = 2n detLn detUn = 2n.

In this paper we will view this matrix as the matrix of path systems of some
graph. We will say something about its determinant based on the Lindström –
Gessel – Viennot theorem.
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Theorem 1.1 (LGV theorem). Let G be a directed acyclic graph, with a weight
function ω : E → R, A = {A1, A2, . . . , An} and B = {B1, B2, . . . , Bn} be two (not
necessarily disjoint) sets of vertices. Let M be the path matrix from A to B, and let
V D be the set of all vertex disjoint path systems of A to B. Then

detM =
∑
P∈V D

sign(P)ω(P).

In Section 2, we will define basic terms and properties related to directed weighted
acyclic graphs. In Section 3, the proof of LGV theorem and its application in Cauchy-
Binnet’s and generalized Cauchy - Binnet’s formula will be provided. Thus, we will
show how to apply LGV theorem to a binomial determinant. In the last section the
solution of Problem 1 will be provided using LGV theorem for n = 2.

2 Weighted graphs and directed paths in graphs

In this section we review basics of graphs and explain path systems in a graph in
order to state Lindström – Gessel – Viennot theorem.

Definition 2.1. Graph G is pair of sets G = (V,E), where V is a set of vertices,
and E is a set of edges, formed by pairs of vertices.

(a) Graph G (b) Directed graph
G

Figure 1: Example of graphs
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For example in Figure 1(a) we have a graph G = (V,E) with the finite set of vertices
V = {v1, . . . , v6}, and finite set of edges E = {e1, e2, . . . , e7}. If we give a directions
to edges (Figure 1(b)) then we we call a graph directed.

Definition 2.2. A walk is a sequence v0, e1, v1, . . ., vk of graph vertices vi and
graph edges ei such that for 1 ≤ i ≤ k, the edge ei has endpoints vi−1 and vi. The
length of a walk is its number of edges.

Definition 2.3. A path in G is a walk with with all distinct vertices in sequence.

Definition 2.4. A trail is a walk v0, e1, v1, . . ., vk with no repeated edge. The length
of a trail is its number of edges.

A u, v trail is a trail with first vertex u and last vertex v, where u and v are
known as the endpoints. A walk of trail is closed if the first vertex is equal to last
vertex and is the only vertex that is repeated.

Definition 2.5. A cycle of a graph G is a subset of the edge set of G that forms a
path such that the first node of the path corresponds to the last.

Definition 2.6. A directed acyclic graph is a graph with directed edges containing
no cycles.

Throughout the paper we consider only simple graphs (no loops and no multiple
edges). Let us suppose that for each edge e of graph G it is associated a real number
w(e) called its weight. Then graph G together with these weights is called a weighted
graph. If their edges are directed, the graph is called directed acyclic graph G. For
us, paths of directed weighted acyclic graph G will be the most interesting.

Definition 2.7. A path system P is given by a permutation σ ∈ Sn and n paths
P1 : A1 → Bσ(1), P2 : A2 → Bσ(2), . . ., Pn : An → Bσ(n). Weight of a path system P
is given by

ω(P) =
n∏
i=1

ω(Pi)

where w(P ) is the weight of path P and sign(P) = sign(σ). Weight of a path P is
defined by the product of the edges in the path

ω(P ) =
∏
e∈P

ω(e).

For a trivial path P (from a vertex v to itself), we define ω(P ) = 1.
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For two vertices A and B of G we define weight from A to B, with

ω(A,B) =
∑

P :A→B
ω(P ). (1)

Example 2.1. We now illustrate the weights of paths from v1 to v6 in the following
weighted graph G:

Figure 2: Directed weighted acyclic graph G

There are three such paths P1 : e2e4e6, path P2 : e1e3e5e6 and path P3 : e1e3e7.
Determine now the weight for all possible paths which we noticed and then we
obtain that their weights are

ω(P1) = ω(e2)ω(e4)ω(e6) = 2 · 1 · 3 = 6,

ω(P2) = ω(e1)ω(e3)ω(e5)ω(e6) = 1 · 2 · 4 · 3 = 24,

ω(P3) = ω(e1)ω(e3)ω(e7) = 1 · 2 · 5 = 10.

Now we deduce that

ω(v1, v6) = ω(P1) + ω(P2) + ω(P3) = 6 + 24 + 10 = 40.

Let A = {A1, A2, . . . , An} ⊂ V and B = {B1, B2, . . . , Bn} ⊂ V be a two subsets
of V having the same cardinality n.

Definition 2.8. Vertex - disjoint path system P : A → B is a collection of all paths
where in every collection there are no two paths Pi, Pj ∈ P with a common vertex.
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Definition 2.9. The matrix of paths M = [mi,j ]
n
i,j=1 from A to B is defined by

mi,j =
∑

P :Ai→Bj

ω(P ) = ω(Ai, Bj).

3 Lindström – Gessel – Viennot theorem

Lindström - Gessel - Viennot Lemma (LGV theorem) or the nonintersecting paths
theorem gives some characterization of determinant of the matrix of paths in terms of
special path systems. The proof of this theorem was presented by Bernt Lindström
(1973) in the context of matroid theory [4], but all beauty of this theorem was
revealed by Ira Gessel and Gerard Viennot in their paper Binomial Determinants,
Paths, and Hook Length Formulae ([2]). In this paper it is described how to apply
the theorem to the combinatorics problems. However, we must mention that similar
idea appeared earlier in the work of Karlin and McGregor (1959) in a probabilistic
framework ("Slater determinant") in quantum mechanics ([3]). Now we will give the
proof of LGV theorem.

Proof of LGV theorem: Determinant of n× n matrix is defined as

det(M) =
∑
σ∈Sn

(
sign(σ)

n∏
i=1

miσ(i)

)
.

Consider σ ∈ Sn, where σ is a permutation of set {1, 2, . . . , n}

sign(σ)
n∏
i=1

mi,σ(i) = sign(σ)m1σ(1)m2σ(2) · · ·mnσ(n),

where miσ(i) is the sum of weights of collection path system from Ai to Biσ(i). Now
apply the definition of weight from some vertex to some other vertex within the
graph to get that

sign(σ)m1σ(1)m2σ(2) · · ·mnσ(n)

= sign(σ)

 ∑
P1:A1→Bσ(1)

ω(P1)

 · · ·
 ∑
Pn:An→Bσ(n)

ω(Pn)


=

∑
P:P1:A1→Bσ(1),...,Pn:An→Bσ(n)

sign(P)ω (P) .
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If we make the sum over all σ, we get

detM =
∑
P

(sign(Pσ))ω(Pσ),

where P = (P1, P2, . . . , Pn) is collection of all path systems which run from A to B
and

Pσ = {P : P system of paths A to B given with σ}.

From the sum over all path systems P from A to B we obtain

detM =
∑
P

sign(P)ω(P). (2)

Let ND be collection of all path systems which have at least two common vertices.
Then we can show the right side of equality (2) as

∑
P

sign(P)ω(P) =
∑
P∈V D

sign(P)ω(P) +
∑
P∈ND

sign(P)ω(P).

The goal is to show that we have∑
P∈ND

(signP)ω(P) = 0.

For a path system R = (R1, R2, . . . , Rn) ∈ ND, define

• i to be the smallest index such that Ri intersected with some Rj ,

• X to be the first vertex at which Ri intersects some other path R,

• j to be the smallest index of all the paths in R that intersects Ri u X (equiv-
alently the smallest index of all paths such that X ∈ Pi ∩ Pj , (j > i),

• LiX to be part of path Ri from Ai to X, and RiX part of path Ri from X to
Bσ(i), so it is ω(Ri) = ω(LiX) · ω(RiX),

• LjX to be part of path Rj from Aj to X, and RjX part of the path Rj from
X to Bσ(j), so it is ω(Rj) = ω(LjX) · ω(RjX).
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Ai X

Bσ(i)
Aj

Bσ(j)
Rj

Ri

Now, we define an involution ϕ on ND by setting

ϕ : ND → ND ϕ(R) = T = (T1, T2, T3, . . . , Tn),

where Tk = Rk when k 6= i, j, and Ti and Tj are defined as

• Ti is the path from Ai using the edges LiX to X, after that we use the edges
from RjX to Bσ(j), so that ω(Ti) = ω(LiX) · ω(RjX),

• Tj is the path from Aj using the edges LjX to X, after that we use the edges
from RiX to Bσ(i), so that ω(Tj) = ω(LjX) · ω(RiX).

R
′
i

R
′
j

Ai X

Bσ(i)
Aj

Bσ(j)

T = (R
′
1, R

′
2, . . . , R

′
n) T have σ′ ∈ Sn where is σ′

= σ ◦ (i, j)

sign σ
′

= sign σ sign(i, j)
sign σ

′
= −sign σ

From which we obtained

sign R = −sign T
−sign R = sign T
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Both path systems T and R are contained from the same set of the edges, so

ω(T ) =

n∏
i=1

ω(Ti) = ω(T1)ω(T2) · · ·ω(Tn)

=

 ∏
k∈{1,2,...,n}\{i,j}

ω(Tk)

ω(Ti)ω(Tj)

=

 ∏
k∈{1,2,...,n}\{i,j}

ω(Rk)

ω(Ti)ω(Tj).

Based on above obtained paths Ti and Tj it follows that

ω(Ti)ω(Tj) = (ω(LiX) · ω(RjX))(ω(LjX) · ω(RiX))
= (ω(LiX) · ω(RiX)) · (ω(LjX) · ω(RjX))
= ω(Ri)ω(Rj).

Thus, ω(T ) = ω(R). From definition ϕ is an involution so it follows that ϕ = ϕ−1,
i.e. ϕ is bijection. Thus we found 1− 1 correspondence for matching pairs of system
paths (R, ϕ(R)) in ND where every pair of system paths is

ω(R) = ω(ϕ(R))
sign(R) = −sign(ϕ(R)).

It follows that ∑
P∈ND

sign(P)ω(P) = 0.

The Theorem is proved.

Apart from the connection with linear algebra, it offers a nice connection be-
tween graph theory and combinatorics, which will be illustrated on the theorem and
examples.

Proposition 3.1. For m,n ∈ N

detM =


(
m
0

) (
m
1

)
. . .

(
m
n−1
)(

m+1
0

) (
m+1
1

)
. . .

(
m+1
n−1
)

...
...

. . .
...(

m+n−1
0

) (
m+n−1

1

)
. . .

(
m+n−1
n−1

)
 = 1.
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Proof: This Proposition we will prove using the LGV theorem. The idea consists
of creating the directed weighted acyclic graph which weights of paths is equal to
the appropriate binomial coeficient in determinant. On the other words

(
m
0

) (
m
1

)
. . .

(
m
n−1
)(

m+1
0

) (
m+1
1

)
. . .

(
m+1
n−1
)

...
...

. . .
...(

m+n−1
0

) (
m+n−1

1

)
. . .

(
m+n−1
n−1

)
 =


ω(A1, B1) ω(A1, B2) . . . ω(A1, Bn)
ω(A2, B1) ω(A2, B2) . . . ω(A2, Bn)

...
...

. . .
...

ω(An, B1) ω(An, B2) . . . ω(An, Bn)

 .
That graph we can construct in the following way (Figure 3). The edges of matrix
M are directed on the right (horizontally) and upwards (vertically).

Figure 3: Directed weighted acyclic graph of determinant M

Consider now all disjoint path system in graph constructed graph. If we observe the
path from A1 to B1, we notice that we have only one such path. In case we start
from A2 upwards, paths would be intersected. Thus, one option is to go right so
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that the path from A2 to B2 is determined by only one possible path. The analogy
applies to all other paths in the graph, which means that only one disjoint paths
system exists.

detM = #number of disjoint path systems = 1.

Theorem 3.1 (Chauchy - Binnet’s formula). For every two n × n square matrices
M1 and M2

det(M1M2) = det(M1) det(M2).

Proof: Let us take the following sets of vertices

A = {A1, A2, . . . , An},
B = {B1, B2, . . . , Bn},
C = {C1, C2, . . . , Cn}.

Now we construct directed graph with vertices A, B and C, where the edges are
directed from A to B and from B to C with weights ω(Ai, Bj) = m1[i, j] and
ω(Bj , Ck) = m2[j, k]. If M =M1M2, then

m[i, j] =

k∑
k=1

m1[i, j]m2[j, k].

Consider random system of paths P in which verices are disjoint from A to C. P
must go through B. Every system of paths from A to C is divided in two parts Q
and R, where Q is the system of disjoint paths from A to B, and R is the system of
disjoint paths from B to C. W is the set of all disjoint paths systems from A to B,
and Z is set of all disjoint path systems from B to C. Now consider

det(M1) det(M2) =
∑
Q∈W

sign(Q)ω(Q)
∑
R∈Z

sign(R)ω(R)

=
∑

P∈W×Z
sign(R)sign(Q)ω(R)ω(Q),
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where W × Z is set of ordered pairs (Q,R) suitable disjoint paths Pi : Ai →
Bσ(Q(i)) → Cσ(R(σ(Q(i)))), and σQ ◦ σR = σ. Then weight of random disjoint path
system P is

ω(P) = ω(Q)(R), (3)

and

sign(σ) = sign(σQ ◦ σR) = sign(σQ)sign(σR), (4)

from which it follows

signP = sign(Q)sign(R) (5)

If we now apply LGV theorem, we get

det(M1) det(M2) =
∑

P∈W×Z
sign(R)sign(Q)ω(R)ω(Q)

=
∑
P

sign(P)ω(P) = det(M1M2).

Theorem 3.2 (Generalized Cauchy - Binet’s formula). Let M1 be a n × r matrix
and let M2 be a r × n matrix where n ≤ r. Then we have

det(M1M2) =
∑

X⊂{1,2,...,r},|X|=n

det(M1[X]) det(M2[X]),

where M1[X] is square submatrix formed by columns matrix limited to columns in-
dexed as X and M2[X] is matrix limited on rows indexed as X.

Proof: Construct directed graph G = {A ∪ B ∪ C,E}, where is

A = {A1, A2, . . . , An},
B = {B1, B2, . . . , Bn},
C = {C1, C2, . . . , Cn},
E = {(Ai, Bj) : i ∈ {1, n}, j ∈ {1, r}} ∪ {(Bj , Ck) : j ∈ {1, r}, k ∈ {1, n}}.

Define weights of edges with

ω(Ai, Bj) = m1[i, j],

ω(Bi, Cj) = m2[j, k].
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If M =M1M2, then

m[i, j] =
r∑

k=1

m1[i, k]m2[j, k].

Fix some arbitrary X ⊂ {1, 2, . . . , r}. Let PAX be set of all disjoint paths from A
to B[X ], where is B[X ] subset of B limited with indexes of X, and PXB the set of
all disjoint path systems from B[X ] to C. Consider now

det(M1) · det(M2) =
∑

Q∈PAX

sign(Q)ω(Q)
∑

R∈PXB

sign(R)ω(R)

=
∑

P∈PAX×PXB

sign(P)ω(P),

where PAX × PXB contains set of all disjoint path systems from A to C which go
through all vertices B[X]. Now, in principle, we get∑

X⊂{1,2,...,r},|X|=n

det(M1[X]) det(M2[X]).

This sum also gives us a sum over all system paths from A to C. Furthermore, we
have ∑

X⊂{1,...,r},|X|=n

det(M1[X]) det(M2[X])

=
∑

X⊂{1,...,r},|X|=n

 ∑
P∈PAX×PXB

sign(P)ω(P)


=

∑
P

sign(P)ω(P) = det(M1 ·M2).

4 LGV and Problem 1

We calculate matrix using LGV theorem in the case n = 2. (21) (
4
2

)
(
4
2

) (
6
3

)
 =

 2 6

6 20


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The Idea is same as like in the Proposition 3.1. We want to create the directed
weighted acyclic graph in which weights of paths are equal to the value in our matrix,
i.e.

 ω(A1, B1) ω(A1, B2)

ω(A2, B1) ω(A2, B2)

 =

 2 6

6 20


So consider our case of matrix S2 and create a directed weighted graph of matrix
S2. First, we will consider the possible paths from A1 to B2 (Figure 4).

(a) Path P1 (b) Path P2

Figure 4: Paths from A1 to B1

Check now the weight of path from A1 to B1. Path P1 and P2 in our graph have
a weight one, using (2) we get that the weight of path form A1 to B1 is 2. Now,
consider all possible paths from A1 to B2 (Figure 5).
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(a) Path P3 (b) Path P4

(c) Path P5 (d) Path P6

(e) Path P4 (f) Path P8

Figure 5: Paths from A1 to B2

Every paths Pi, i = 1, . . . , 6 have a weight one. Using the (2) we obtain that the
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weight of path from A1 to B2 is equal to 6. Analogously we will obtained the weight
of paths from A2 to B1. Now, we will consider the possible paths from A2 to B2

(Figure 6).
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(a) Path P15 (b) Path P16 (c) Path P17 (d) Path P18

(e) Path P19 (f) Path P20 (g) Path P21 (h) Path P22

(i) Path P23 (j) Path P24 (k) Path P25 (l) Path P26

(m) Path P27 (n) Path P28 (o) Path P29 (p) Path P30

(q) Path P31 (r) Path P32 (s) Path P33 (t) Path P34

Figure 6: Paths from A2 to B2
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Using (2) we obtained ω(A2, B2) = 20. If we now consider disjoint path systems
in the graph and their signs we conclude that detS2 = 4 (Figure 7).

Figure 7: Disjoint system of paths

In the case of Sn, we use the same idea and create the graph of matrix Sn in the
following way (Figure 8). It’s known that in rectangular dimensions of m × n we
have a (m+n)!

m!n! different nonintersecting paths.
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Figure 8: Directed weighted acyclic graph of matrix sn

From Koon and Yun Bum’s solution we know that the difference between the number
of non-intersecting paths with positive sign and the number of non-intersecting paths
with negative sign is 2n. However, in general the number of all non-intersecting path
systems is large, even for n = 3 so deducing the result directly from the LGV theorem
requires this result, which seems non-trivial.

Problem 2. Find a combinatorial argument that the difference between the number
of non-intersecting paths with positive sign and the number of non-intersecting paths
with negative sign from {A1, . . . , An} and {B1, . . . , Bn} in the graph on the Figure 8
is 2n.

5 Conclusion

We illustrated some possibilities of applying LGV theorem. This theorem can be
implemented many problems in combinatorics and some other mathematicians area,
for example we can LGV theorem apply on: Dyck paths, Motzkin numbers, Hankel
determinants, Catalan numbers, rhombus tilings and many others problems.
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Abstract

This paper addresses divisibility properties of some families of sequences arising
from partial sums of a strong divisibility sequence. In particular, we demon-
strate periodicity of greatest common divisor within 1-fibonacci numbers. We
also present congruences within this sequence modulo a prime number p where
p ≡ ±1 (mod 5) and p ≡ ±2 (mod 5).
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1 Introduction

A divisibility sequence is an integer sequence (dn)n≥0 with the property that an
index n being a multiple of index m imply the term dn is a multiple of dm,

m | n =⇒ dm | dn (1)

for all natural numbers m,n. If for the sequence (dn)n≥0 we have

gcd(dm, dn) = dgcd(m,n), (2)

DOI: https://doi.org/10.5592/CO/CCD.2018.07
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then such sequence is called strong divisibility sequence. It is immediately seen that
a strong divisibility sequence is also divisibility sequence.

An important class of these sequences are elliptic divisibility sequences (EDS).
An elliptic divisibility sequence is a sequence of integers (Wn)n≥0 satisfying the
recursive relation

Wn+mWn−mW
2
1 = Wn+1Wn−1W

2
m −Wm+1Wm−1W

2
n (3)

and such that Wn divides Wm whenever n divides m. It is known that if the initial
conditions for (3) satisfies

i) W1 = 1,

ii) W2,W3,W4/W2 ∈ Z \ 0

then Wn is an integer for every n. As a further basic property of EDS we have
that if the sequence (Wn)n≥0 is a solution of (3) then we have

W2n+1 = Wn+2W
3
n −Wn−1W

3
n+1, n ≥ 1

W2nW2 = Wn(Wn+2W
2
n−1 −Wn−2W

2
n+1, n ≥ 2.

An example of such sequences of numbers is the sequence

1, 1, 1,−1,−2,−3,−1, 7, 11, 20,−19,−87,−191,−197, 1018, . . .

(the sequence A050512 in the OEIS). As another example let as mention the sequence
(Gn)n≥0 consisting of every second Fibonacci numbers is a EDS, Gn = F2m. We let
(hn)h≥0 denote the sequence defined by hn = (n/3) where n ∈ N and (a/p) denote
the Legendre symbol, for the prime number p.

Among notable representatives of divisibility sequences we have Mersenne num-
bers defined by the explicit formula

Mn = 2n − 1, n ≥ 0,

as well as the Fibonacci numbers,

Fn =
1√
5

[(
1 +
√

5

2

)n

−
(

1−
√

5

2

)n]
.

Both of these sequences appears in various number theoretical and combinatorial
context. In addition to certain families of Dyck paths, the n-th Mersenne number
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appears as the number of nonempty subsets of a set with n elements, as a q-binomial
coefficient, a rank of matroids, etc. (the sequence A000225 in the OEIS). Recall that
Fibonacci numbers appears as the solutions of the Diophantine equation

x2 − 5y2 = 4(−1)n, (4)

i.e. we have the Fibonacci sequence (Fn)n≥0 and the Lucas sequence (Ln)n≥0 as
the solutions (x, y) = (Ln, Fn) of (4), where the Lucas numbers are defined by the
same recurrence relation as the Fibonacci numbers but with the initial conditions
L0 = 2, L1 = 1. One can also use the Diophantine equation (4) as a definition of
these two sequences of numbers.

This work aim at finding divisibility properties of some families of generalized
divisibility sequences. We were curious to establish how the properties (1) and (2)
are inherited within such sequences.

2 Previous results and motivation

A complete characterization of divisibility sequences arising from linear recurrences
is done by Bézivin, Pethő, and van der Poorten [2]. Recent development is done by
Ingram [11], Silverman [18] and Gezer and Bizim [6]. There are further generaliza-
tions and extensions of this notion. A natural generalization of divisibility sequences
is through divisibility of ideals in a ring. One can find more on this in a work of
Silverman [17]. Results on matrix divisibility sequences (a sequence of matrices with
properties analogue to (1)) are found by Cornelissen and Reynolds [4] as well as
Górnisiewicz [10]. Among other classes of divisibility sequences, let mention a class
of sequences defined as

dn(α) = max{d ∈ Z : αn ≡ 1 (mod d)},

where α is an algebraic integer. Moreover, such sequences also satisfy property (2)
i.e. they are strong divisibility sequences, which is proved by Silverman [16].

Among many remarkable properties of the Fibonacci sequence (Fn)n≥0, Fn+2 =
Fn+1 + Fn, F0 = 0, F1 = 1 we have that when m divide n, then Fm divide Fn,

m | n =⇒ Fm | Fn. (5)

There is also identity
Fm+n = Fm+1Fn + FmFn−1
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and as a consequence of these two facts one can derive that the greatest common
divisor of the Fibonacci numbers Fm and Fn is again Fibonacci number, that one
whose index is gcd(m,n),

gcd(Fm, Fn) = Fgcd(m,n). (6)

Details on proof of this one can find in [1]. Among further divisibility properties of
Fibonacci numbers is a well known fact that

Fp ≡
(p

5

)
(mod p) (7)

Fp±1 ≡
1±

(
p
5

)
2

(mod p) (8)

where p is an odd prime.
In what follows we present divisibility properties of the sequences arising from

partial sums of a family of strong divisibility sequence. In particular, the hyper-

fibonacci sequence of the rth generation (F
(r)
n )n≥0, is defined by the recurrence

relation

F (r)
n =

n∑
k=0

F
(r−1)
k , F (0)

n = Fn, F
(r)
0 = 0, F

(r)
1 = 1, (9)

where r ∈ N and Fn is the nth term of the Fibonacci sequence (Fn)n≥0. These
sequences are introduced by Dil and Mező, in a study of a symmetric algorithm for
hyperharmonic, Fibonacci and some other integer sequences [8]. Several number
theoretical, combinatorial and algebraical properties of hyperfibonacci sequences

is already known [3, 13, 14, 20]. An alternative definition of (F
(r)
n )n≥0 is by the

recurrence relation

F
(r)
n+2 = F

(r)
n+1 + F (r)

n +

(
n+ r

r − 1

)
, n ≥ 0 (10)

where initial values are F
(r)
0 = 0, F

(r)
1 = 1. The proof of this one can find in [5].

For r = 1 this relation gives the sequence of numbers

0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, . . . ,

for r = 2 we have the sequence

0, 1, 3, 7, 14, 26, 46, 79, 133, 221, 364, 596, 972, . . .
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etc. When r = 1, relation (10) reduces to

F
(1)
n+2 = F

(1)
n+1 + F (1)

n + 1. (11)

We shall present divisibility properties of hypefibonacci numbers of the first gen-

eration (F
(1)
n )n≥0. Throughout the paper, the hyperfibonacci sequence of the 1st

generation we shall also call hyperfibonacci sequence, in short.

3 The main result

Every two consecutive Fibonacci numbers are relatively prime. In Lemma 1 we
generalize this property on the case of hyperfibonacci numbers.

Lemma 1. Every three consecutive hyperfibonacci numbers F
(1)
n , F

(1)
n+1, F

(1)
n+2, n ≥ 0

are relatively prime,

gcd
(
F (1)
n , F

(1)
n+1, F

(1)
n+2

)
= 1. (12)

Proof. Using basic properties of the gcd function and the recurrence relation (11)
we obtain

gcd
(
F (1)
n , F

(1)
n+1, F

(1)
n+2

)
= gcd

(
F (1)
n , gcd

(
F

(1)
n+1, F

(1)
n+1 + F (1)

n + 1
))

= gcd
(

gcd
(
F (1)
n , F (1)

n + 1
)
, F

(1)
n+1

)
= gcd

(
1, F (1)

n , F
(1)
n+1

)
= 1.

In a similar fashion one can prove that every four consecutive hyperfibonacci
numbers of the 2-nd generation are relatively prime. Furthermore, for r ≥ 3 one
can use the obvious equality for binomial coefficients(

n+ q

p

)
−
(
n+ q − 1

p

)
=

(
n+ q − 1

p− 1

)
(13)
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when applying Euclid algorithm. In particular, for r = 3 we have

gcd
(
F (3)
n , F

(3)
n+1, . . . , F

(3)
n+4

)
= gcd

(
F (3)
n , . . . , F

(3)
n+3, F

(3)
n+3 + F

(3)
n+2 +

(
n+ 5

2

))
= gcd

(
F (3)
n , . . . , F

(3)
n+3,

(
n+ 5

2

))
= gcd

(
F (3)
n , . . . , F

(3)
n+2 + F

(3)
n+1 +

(
n+ 4

2

)
,

(
n+ 5

2

))
= gcd

(
F (3)
n , F

(3)
n+1, F

(3)
n+2,

(
n+ 4

2

)
,

(
n+ 5

2

))
= gcd

(
F (3)
n , F

(3)
n+1,

(
n+ 3

2

)
,

(
n+ 4

2

)
,

(
n+ 5

2

))
= gcd

(
F (3)
n , F

(3)
n+1,

(
n+ 3

2

)
, n+ 4, 1

)
= 1.

We formalize these arguments in the proof of the following Theorem 1.

Theorem 1. For n ≥ 0, every (r + 2)-tuple of consecutive hyperfibonacci numbers
of r-th generation are relatively prime,

gcd
(
F (r)
n , F

(r)
n+1, . . . , F

(r)
n+r+1

)
= 1. (14)

Proof. When applying basic properties of the gcd function we use relations (11) and
(13) to get

gcd(F (r)
n , F

(r)
n+1, . . . , F

(r)
n+r+1)

= gcd

(
F (r)
n , F

(r)
n+1,

(
n+ r

r − 1

)
,

(
n+ r + 1

r − 1

)
, . . . ,

(
n+ 2r − 1

r − 1

))
= gcd

(
F (r)
n , F

(r)
n+1,

(
n+ r

r − 1

)
,

(
n+ r

r − 2

)
, . . . ,

(
n+ 2r − 2

r − 2

))
= gcd

(
F (r)
n , F

(r)
n+1,

(
n+ r

r − 1

)
,

(
n+ r

r − 2

)
, . . . , n+ r, n+ r + 1

)
= gcd

(
F (r)
n , F

(r)
n+1,

(
n+ r

r − 1

)
,

(
n+ r

r − 2

)
, . . . , n+ r, 1

)
= 1.
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In addition, we have that the greatest common divisor of some pairs of hyperfi-
bonacci numbers is a Fibonacci number, as stated in Theorem 2.

Theorem 2. For m,n ∈ N the greatest common divisor of the (4m − 3)-th and
(4m− 1)-st hyperfibonacci numbers is equal to F2m,

gcd
(
F

(1)
4m−3, F

(1)
4m−1

)
= F2m. (15)

Proof. Using the fact that the gcd of two numbers does not change if the largest
number is replaced by its difference with the smaller one and applying the recurrence
relation (11) we obtain

gcd
(
F

(1)
4m−3, F

(1)
4m−1

)
= gcd

(
F

(1)
4m−3, F

(1)
4m−2 + 1

)
= gcd

(
F

(1)
4m−5 − 1, F

(1)
4m−4 + 2

)
.

When we continue to diminish the larger number this way, resulting number is
always represented as a sum of a hyperfibonacci number and an integer, F4m−q +aq
and Fm−q+1 + aq−1. According to the initial terms a3 = 0 and a2 = 1, the absolute
value of the n-th number in sequence of these integers differentiate from the n-th
Fibonacci number for 1. More precisely, we have

gcd
(
F

(1)
4m−3, F

(1)
4m−1

)
= gcd

(
F

(1)
4m−q + (−1)q(Fq−2 + 1), F

(1)
4m−q+1 + (−1)q+1(Fq−3 + 1)

)
where 3 ≤ q ≤ 4m. Now, according to this fact we obtain

gcd
(
F

(1)
4m−3, F

(1)
4m−1

)
= gcd

(
F

(1)
4m−3 − (F1 − 1), F

(1)
4m−2 + (F0 + 1)

)
= gcd

(
F

(1)
4m−4 + (F2 + 1), F

(1)
4m−3 − (F1 − 1)

)
= gcd

(
F

(1)
2m−2 + (F2m + 1), F

(1)
2m−1 − (F2m−1 − 1)

)
= gcd

(
2F2m, F2m+1 − F2m−1

)
= gcd

(
2F2m, F2m

)
= F2m,

which completes the proof.

For an alternative proof of Theorem 2 we have the following. By the product
expansion formula we have

Fm+n = FmLn + (−1)n+1Fm−n
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and from it we get

F4m = F2mL2m and F4m−1 = F2mL2m−1 + (−1)2m F1 = F2mL2m−1 + 1

We now have:

gcd
(
F

(1)
4m−3, F

(1)
4m−1

)
= gcd (F4m−1 − 1, F4m+1 − 1) = gcd (F4m−1 − 1, F4m) =

= gcd (F2mL2m−1, F2mL2m) = F2m gcd (L2m−1, L2m) = F2m

As an example, let consider the case when m = 3. According to Theorem 2 the

greatest common divisor of numbers F
(1)
9 (= 88) and F

(1)
11 (= 232) is equal to

gcd
(
F

(1)
9 − (F1 − 1), F

(1)
10 + (F0 + 1)

)
= gcd

(
F

(1)
8 + (F2 + 1), F

(1)
9 − (F1 − 1)

)
= gcd

(
F

(1)
7 − (F3 − 1), F

(1)
8 + (F2 + 1)

)
= gcd

(
F

(1)
4 + (F6 + 1), F

(1)
5 − (F5 − 1)

)
= gcd

(
2F6, F6

)
= F6.

Indeed, gcd(88, 232) = 8 which is the 6-th number in the Fibonacci sequence.
When applying (6) we have an obvious consequence of Theorem 2, stated in

Corollary 1.

Corollary 1. The greatest common divisor of the 4-tuple of hyperfibonacci numbers

F
(1)
4m−1, F

(1)
4m−3, F

(1)
4n−1, F

(1)
4n−3, m,n ∈ N is equal to the gcd(2m, 2n)-th Fibonacci

number,

gcd
(
F

(1)
4m−1, F

(1)
4m−3, F

(1)
4n−1, F

(1)
4n−3

)
= Fgcd(2m,2n).

In Corollary 2 we list further periodicity in relatively prime pairs and the greatest
common divisor, for hyperfibonacci numbers.

Corollary 2. For the hyperfibonacci sequence
(
F

(1)
n

)
n≥0

we have

i) gcd
(
F

(1)
6n+4, F

(1)
6n+5

)
= 1,
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ii) gcd
(
F

(1)
6n+2, F

(1)
6n+3

)
= 2,

iii) gcd
(
F

(1)
6n+6, F

(1)
6n+7

)
= 1.

Proof. i) We employ recurrence relation (11) to get

gcd
(
F

(1)
6n+4, F

(1)
6n+5

)
= gcd

(
F

(1)
6n+3 + 1, F

(1)
6n+4

)
= gcd

(
F

(1)
6n+2, F

(1)
6n+3 + 1

)
= gcd

(
F

(1)
6n+1 + 2, F

(1)
6n+2

)
= gcd

(
F

(1)
6n − 1, F

(1)
6n+1 + 2

)
= gcd

(
F

(1)
6n−1 + (F4 + 1), F

(1)
6n − (F3 − 1)

)
= gcd

(
F

(1)
6n−2 − (F5 − 1), F

(1)
6n+5 + (F4 + 1)

)
When iteratively applying relation (11) and the basic properties of the gcd function
we obtain

gcd
(
F

(1)
6n+4, F

(1)
6n+5

)
= gcd

(
F

(1)
3n+1 − (F3n+2 − 1), F

(1)
3n+2 + (F3n+1 + 1)

)
. (16)

From the fact that the sum of the first n numbers in Fibonacci sequence (Fn)n≥0 is
equal to Fn+2 − 1, we immediately have

F (1)
n = Fn+2 − 1. (17)

We substitute (17) into r.h.s. of relation (16) to get

gcd
(
F

(1)
6n+4, F

(1)
6n+5

)
= gcd

(
F3n+1, F3n+4

)
. (18)

Having in mind that

gcd(3n+ 1, 3n+ 4) = gcd(3n+ 1, 3)

= 1

we finally have

gcd
(
F

(1)
6n+4, F

(1)
6n+5

)
= gcd

(
F3n+1, F3n+4

)
= Fgcd(3n+1,3n+4) = F1

= 1.
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Proof. ii) Once having equality

gcd
(
F

(1)
6n+2, F

(1)
6n+3

)
= gcd

(
F3n+3, F3n

)
we get

gcd(3n+ 3, 3n) = (3n, 3)

= 3

and finally

gcd
(
F

(1)
6n+2, F

(1)
6n+3

)
= gcd

(
F3n+3, F3n

)
= F3 = 2.

iii) Having in mind that

gcd(3n+ 2, 3n+ 5) = gcd(3n+ 2, 3)

= gcd(2, 3) = 1

we obtain

gcd
(
F

(1)
6n+6, F

(1)
6n+7

)
= gcd

(
F3n+5, F3n+2

)
= Fgcd (3n+5,3n+2)

= F1 = 1.

which completes the proof.

We consider the alternative way of calculating gcd(F
(1)
n , F

(1)
n+1). The gcd(F

(1)
n , F

(1)
n+1)

can be written as

gcd(F (1)
n , F

(1)
n+1) =

gcd(Fn+2 − 1, Fn+3 − 1) = gcd(Fn+2 − F−1, Fn+3 + F−2) =

gcd(Fn+2 − F−1, Fn+1 + F0) = gcd(Fn − F1, Fn+1 + F0) =

gcd(Fn − F1, Fn−1 + F2) = gcd(Fn−2 − F3, Fn−1 + F2) =

gcd(Fn−2 − F3, Fn−3 + F4) = gcd(Fn−4 − F5, Fn−3 + F4) = ... =

gcd (Fn−2k − F2k+1, Fn−2k+1 + F2k)

Now it follows:
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(a) n = 4m, k = m, gcd(F
(1)
4m , F

(1)
4m+1) = gcd (F2m − F2m+1, F2m+1 + F2m) =

gcd (−F2m−1, F2m+2) = gcd (F2m−1, F2m+2) = Fgcd(2m−1,2m+2) = Fgcd(m+1,3) =
Fgcd(n+1,3)

(b) n = 4m+1, k = m, gcd(F
(1)
4m+1, F

(1)
4m+2) = gcd (F2m+1 − F2m+1, F2m+2 + F2m) =

gcd (0, L2m+1) = Ln+1
2

(c) n = 4m+2, k = m, gcd(F
(1)
4m+2, F

(1)
4m+3) = gcd (F2m+2 − F2m+1, F2m+3 + F2m) =

gcd (F2m, F2m+3 + F2m) = gcd (F2m, F2m+3) = Fgcd(2m,2m+3) = Fgcd(m,3) = Fgcd(n,3)

(d) n = 4m+3, k = m+1, gcd(F
(1)
4m+3, F

(1)
4m+4) = gcd (F2m+1 − F2m+3, F2m+2 + F2m+2) =

gcd (−F2m+2, 2F2m+2) = F2m+2 = Fn+1
2

4 Congruences for F
(1)
p−1, F

(1)
p−2 and F

(1)
p−3

Once having relation (17), we immediately obtain congruences for F
(1)
p−2, by substi-

tution into (7). We present these congruences in the following Theorem 3, where we
also give more detailed proof.

Theorem 3. Let p be an odd prime. Then for the hyperfibonacci sequence we have

F
(1)
p−2 ≡

(p
5

)
− 1 (mod p). (19)

Proof. When applying the binomial theorem to the Binet’s formula we get

F
(1)
p−2 =

1√
5

[(
1 +
√

5

2

)p

−

(
1−
√

5

2

)p]
− 1

=
1

2p
√

5

p∑
k=0

(
p

k

)(
(
√

5)k − (−
√

5)k
)
− 1

=
1

2p−1

p∑
k=0, 2- k

(
p

k

)
5

k−1
2 − 1

Having in mind an obvious fact that p |
(
p
k

)
, k = 1, 2, . . . , p− 1 we obtain

1 + 2p−1F
(1)
p−2 ≡ 5

p−1
2 (mod p)

and furthermore from the Euler’s criterion

1 + 2p−1F
(1)
p−2 ≡

(5

p

)
(mod p).
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In the similar fashion one can prove Theorem 4. Both congruences in Theorem
4 also follows by substitution of (17) into (8).

Theorem 4. Let p be an odd prime. Then for the hyperfibonacci sequence we have

F
(1)
p−3 ≡

−1−
(
p
5

)
2

(mod p) (20)

and

F
(1)
p−1 ≡

−1 +
(
p
5

)
2

(mod p). (21)

According to the quadratic reciprocity theorem we get equality(5

p

)
=
(p

5

)
which gives (p

5

)
=

{
1 if p ≡ ±1 (mod 5)

−1 if p ≡ ±2 (mod 5).

when we employ basic properties of the Legendre symbol. Now we have immediate
consequences of Theorems 3 and 4. Corollary 3 follows from the congruence (20)
while Corollary 4 follows from congruences (19) and (21).

Corollary 3. Let p be a prime such that p ≡ ±2 (mod 5). Then p | F (1)
p−3.

Corollary 4. Let p be a prime such that p ≡ ±1 (mod 5). Then p | F (1)
p−2 and

p | F (1)
p−1.

5 Concluding remarks and open questions

We believe that results obtained in this paper can be extended to other families
of strong divisibility sequences. It would be of interest to find periodicity of gcd
for other generation of hyperfibonacci numbers and possibly to give statements in
full generality. There are also a few other generalization of recursive sequences of
numbers ([9, 12, 15]) and it is of interest to see an extension of property (2) within
these sequences. Some further generalizations and extensions of these sequences
would be of interest as well.
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Abstract

We will present two equivalent solutions of the Bodlaender sequence g : N −→ Z
first introduced recursively by him et al. and used by them to determine the
edge ranking number of the complete graphs. These solutions rely on the bi-
nary representation of m ∈ N either in the form m = 2a0 + · · · + 2al with the
strictly decreasing integer sequence a0 > a1 > · · · > al ≥ 0, l ≥ 0, or using
the binary expansion of m =

∑n
k=0 bk2k, where n ∈ N0 and b0, . . . , bn ∈ {0, 1}.

In addition, we will determine sharp bounds of the solution and we will give
some properties of related sequences such as a(m) := 1

3

(
m2 + g(m)

)
, m ∈ N,

d(m) := g(m + 1) + 1, m ∈ N0, and the sequence of the partial sums of
g(m), m ∈ N.

Keywords: sequences, divide-and-conquer recurrences, edge ranking number of
a graph

MSC: Primary 11B37; Secondary 05C15.

1 Introduction

In order to determine the edge ranking number of complete graphs Hans L. Bod-
laender et al. introduced in [1, Chapter 7] the following sequence defined recursively
for any m ∈ N by the rules

g(1) = −1

g(2m) = g(m)

g(2m+ 1) = g(m+ 1) +m

 (1.1)

DOI: https://doi.org/10.5592/CO/CCD.2018.08



Parisse On the Bodlaender Sequence

with the first few values

(−1,−1, 0,−1, 2, 0, 2,−1, 6, 2, 5, 0, 8, 2, 6,−1, 14, 6, 11, 2, 15, 5, 11, 0, 20, . . .).

(This sequence is not available in the On-Line Encyclopedia of Integer Sequences
(OEIS R©)[8].)

We briefly recall the definition of the edge ranking number of a graph G (for more
details we refer to [1, Definition 2] or [7, p.1067].) Let G = (V,E) be a (simple) graph
and t a positive integer. An edge-t-ranking is an edge coloring c′ : E −→ {1, 2, . . . , t}
such that for any two edges of the same color, every path between them contains an
intermediate edge with a larger color value. The edge ranking number denoted by
χ′r(G) is the smallest value of t such that the graph G has an edge-t-ranking.

Remark 1.1 In [4, p.1068] and [7, Corollary 4.9] the authors called it Bodlaender
function g, but since (1.1) is defined only for all m ∈ N, it is more appropriate to
denote it Bodlaender sequence.

Note that for m − 1 instead of m we obtain from (1.1) g
(
2(m − 1) + 1

)
=

g(2m− 1) = g(m) +m− 1 and therefore g(2m− 1)− g(2m) = m− 1 for all m ∈ N.
The recurrence relation (1.1) is a special case of the general recurrence relation

defined for all m ∈ N

f(1) = ζ

f(2m) = αf(m) + g(m)

f(2m+ 1) = γf(m) + δf(m+ 1) + h(m)

 (1.2)

with the parameters α, γ, δ, ζ ∈ Z and the integer functions g, h : N −→ Z. In our
case it is α = 1, γ = 0, δ = 1, ζ = −1 and g(m) = 0, h(m) = m for all m ∈ N.

Eq.(1.2) can also be written for all m ∈ N2 := {2, 3, 4, . . .} as follows

f(m) = a(m)f
(
bm/2c

)
+ b(m)f

(
dm/2e

)
+ c(m), f(1) = ζ (1.3)

with

a(m) :=
α+ γ

2
+ (−1)m

α− γ
2

, b(m) :=
1− (−1)m

2
δ

and

c(m) :=
g(m) + h(m)

2
+ (−1)m

g(m)− h(m)

2
.

Recurrence relations of this form are called (binary) divide-and-conquer recur-
rences and appear often in computer science, because algorithms based on the tech-
nique of divide et impera (divide and conquer) often reduce a problem of size m to
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the solution of two problems of approximately equal sizes bm/2c and dm/2e, where
m = bm/2c + dm/2e,m ∈ N0. The solutions of the two subproblems are then used
to solve the original problem.

A prominent example is given by the problem to sort m records, m > 1. One
method is called mergesort [3, p.79] and consists in dividing the m records into
two approximately equal parts, one of size bm/2c and the other of size dm/2e.
After each part has been sorted separately by the same method, the records are
merged into their final order by doing at most m − 1 further comparisons. The
total number of comparisons performed is at most f(m), where f(1) = 0 and
f(m) = f

(
bm/2c

)
+ f

(
dm/2e

)
+ m − 1, m > 1. This is a special case of (1.3)

with a(m) = b(m) = 1, c(m) = m− 1 and ζ = 0.
Another well-known example is given by Stern’s diatomic sequence (this is the

sequence A002487 in the OEIS [8]), defined by s(1) = 1, s(2m) = s(m) and
s(2m + 1) = s(m) + s(m + 1) for all m ∈ N, that is α = γ = δ = ζ = 1 and
g(m) = h(m) = 0 for all m ∈ N. Note that the value s(0) has to be 0, since from
the recurrence relation for odd indices for m = 0 we get s(1) = s(0) + s(1), that is
s(0) = 0.

Adding 1 and starting with the index 0 we get from g(m) the sequence d(m) :=
g(m+ 1) + 1,m ∈ N0, satisfying for all m ≥ 1 the recurrence relation

d(0) = g(1) + 1 = −1 + 1 = 0, d(1) = g(2) + 1 = 0

d(2m) = g(2m+ 1) + 1 = g(m+ 1) +m+ 1 = d(m) +m

d(2m+ 1) = g(2m+ 1 + 1) + 1 = g(m+ 1) + 1 = d(m)

 (1.4)

This is the sequence A233931 in the OEIS [8] with the first few values

(0, 0, 1, 0, 3, 1, 3, 0, 7, 3, 6, 1, 9, 3, 7, 0, 15, 7, 12, 3, 16, 6, 12, 1, 21, 9, 16, 3, . . .)

and a special case of (1.2) with α = 1, γ = 1, δ = 0, ζ = 0, g(m) = m and h(m) = 0.
In this paper we shall determine the solution of (1.1) by writing m ∈ N either in

the form m = 2a0 + · · ·+ 2al with the strictly decreasing integer sequence a0 > a1 >
· · · > al ≥ 0, l ≥ 0, or using the binary expansion of m = (bn . . . b0)2 :=

∑n
k=0 bk2

k,
where n ∈ N0 and b0, . . . , bn ∈ {0, 1}. Moreover, we shall also give sharp lower and
upper bounds for g(m).

Finally, we shall explore some properties of the sequence a(m) := 1
3

(
m2 +

g(m)
)
, m ∈ N, giving the edge ranking number of complete graphs and investi-

gate the sequence of the partial sums of g(m), m ∈ N, and the sequence d(m) :=
g(m+ 1) + 1, m ∈ N0.
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2 Preliminaries

We start with a lemma which gives the values of the Bodlaender sequence for some
special numbers.

Lemma 2.1 Let a, b, c ∈ N0, then

g(2a) = −1, a ≥ 0 (2.1)

g(2a − 1) = 2a−1 − 2, a ≥ 1 (2.2)

g(2a + 1) = 2a − 2, a ≥ 0 (2.3)

g(2a + 2b) = 2a−b − 2, a > b ≥ 0 (2.4)

g(3 · 2a) = 0, a ≥ 0 (2.5)

g(2a + 2b − 1) = 2a−1 + 2b−1 + 2a−b − 3, a > b ≥ 1 (2.6)

g(2a + 2b + 1) = 2a + 2b − 2a−b−1 − 3, a > b ≥ 0 (2.7)

g(2a + 2b + 2c) = 2a−c + 2b−c + 2a−b−1 − 3, a > b > c ≥ 0 (2.8)

Proof. a) By repeated use of (1.1) we have g(2a) = g(1) = −1.
b) By (1.1) and Eq.(2.1) we have g(2a − 1) = g

(
2 · (2a−1 − 1) + 1

)
= g(2a−1 − 1 +

1) + 2a−1 − 1 = −1 + 2a−1 − 1 = 2a−1 − 2.
c) Let f(a) := g(2a + 1), a ≥ 0, then by (1.1) the sequence

(
f(a)

)
a∈N0

satisfies the
recurrence relation

f(a+ 1) = g(2a+1 + 1) = g(2 · 2a + 1) = g(2a + 1) + 2a = f(a) + 2a, a ≥ 0,

with f(0) = g(2) = −1. The solution of this linear first-order recurrence relation
can be obtained by backward substitution. After a substitutions it follows f(a) =
f(a − 1) + 2a−1 = f(a − 2) + 2a−2 + 2a−1 = · · · = f(0) + 20 + 21 + · · · + 2a−1 =
−1 + (2a − 1) = 2a − 2 and this proves the formula (2.3).
d) By (1.1) we have g(2a + 2b) = g

(
2b(2a−b + 1)

)
= g(2a−b + 1) = 2a−b − 2, where

the last equation follows from (2.3).
e) By Eq.(2.4) we have g(3 · 2a) = g(2a+1 + 2a) = 2a+1−a − 2 = 0.
f) By (1.1) and Eq.(2.4) we have g(2a + 2b − 1) = g

(
2 · (2a−1 + 2b−1 − 1) + 1) =

g(2a−1 + 2b−1 − 1 + 1) + 2a−1 + 2b−1 − 1 = 2a−b − 2 + 2a−1 + 2b−1 − 1 and this is
exactly formula (2.6).
g) By (1.1) we have g(2a + 2b + 1) = g

(
2 · (2a−1 + 2b−1) + 1

)
= g(2a−1 + 2b−1 +

1) + 2a−1 + 2b−1. Let f(a, b) := g(2a + 2b + 1), then the above equation means that
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f(a, b) satisfies the recurrence relation

f(a, b) = f(a− 1, b− 1) + 2a−1 + 2b−1,

which can be solved by backward substitution. After b substitutions we obtain
f(a, b) = f(a− b, 0) + 2a−b + 20 + 2a−b+1 + 21 + · · ·+ 2a−1 + 2b−1. The first term is
by (1.1) and (2.3) equal to f(a − b, 0) = g(2a−b + 20 + 1) = g

(
2 · (2a−b−1 + 1)

)
=

g(2a−b−1 + 1) = 2a−b−1 − 2. The other term is the sum of three geometric series,
namely (1 + 2 + · · · + 2b−1) + (1 + 2 + · · · + 2a−1) − (1 + 2 + · · · + 2a−b−1) =
(2b − 1) + (2a−b − 1)− (2a−b − 1) = 2a + 2b − 2a−b − 1. Summing up the two terms
it follows 2a−b−1 − 2 + 2a + 2b − 2a−b − 1 = 2a + 2b − 2a−b−1 − 3, as asserted.
h) By (1.1) and Eq.(2.7) we have g(2a + 2b + 2c) = g

(
2c · (2a−c + 2b−c + 1)

)
=

g(2a−c + 2b−c + 1) = 2a−c + 2b−c + 2a−b−1 − 3. 2

The next lemma shows that it is sufficient to consider only the case al = 0, that
is m is an odd number.

Lemma 2.2 Let m = 2a0 + · · · + 2al , where a0 > a1 > · · · > al ≥ 0, l ≥ 0, is a
strictly decreasing integer sequence, then
for al 6= 0 :

g(m) = g(2−alm) (2.9)

and for al = 0 :

g(m) = g
(
2−al−1(m− 1) + 1

)
+ (1− 2−al−1)(m− 1) (2.10)

Proof. a) Let al 6= 0, then by (1.1)

g(m) = g(2a0 + · · ·+ 2al) = g
(
2al(2a0−al + · · ·+ 2al−1−al + 1)

)
= g(2a0−al + · · ·+ 2al−1−al + 1) = g

(
2−al(m− 2al) + 1

)
= g(2−alm)

b) Now let al = 0, then by (1.1) and since
∑l−1

k=0 2ak = m− 1 we obtain

g(m) = g(2a0 + · · ·+ 2al−1 + 1) = g
(
2 · (2a0−1 + · · ·+ 2al−1−1) + 1

)
= g(2a0−1 + · · ·+ 2al−1−1 + 1) + 2a0−1 + · · ·+ 2al−1−1

= g
(
2 · (2a0−2 + · · ·+ 2al−1−2) + 1

)
+

1

2
(m− 1)

= g(2a0−2 + · · ·+ 2al−1−2 + 1) +
1

4
(m− 1) +

1

2
(m− 1)
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Repeating this procedure al−1 times and noting that
∑al−1

k=1 2−k =
∑al−1

k=0 2−k −
1 = 2 ·

(
1− 2−al−1−1

)
− 1 = 1− 2−al−1 we obtain

g(m) = g(2a0−al−1 + · · ·+ 2al−1−al−1 + 1) + (m− 1)

al−1∑
k=1

2−k

= g
(
2−al−1(m− 1) + 1

)
+ (1− 2−al−1)(m− 1)

and this proves Eq.(2.10). 2

Note that in Eq.(2.10) the argument of g on the left-hand side has l+1 summands,
whereas on the right-hand side it has only l summands.

3 Main Result

We can now prove our main result.

Theorem 3.1 Let m = 2a0 + · · · + 2al , where a0 > a1 > · · · > al ≥ 0, l ≥ 0, is a
strictly decreasing integer sequence, then

g(m) = 2−al(m− 2al)− (l + 1)−
l∑

k=1

2al−k

( k−1∑
j=1

2−al−j−1
)

(3.1)

In particular, for al = 0

g(m) = m− 1− (l + 1)−
l∑

k=1

2al−k

( k−1∑
j=1

2−al−j−1
)

(3.2)

Proof. It is sufficient to prove Eq.(3.2), since for al 6= 0 we have g(2a0 + · · ·+ 2al) =
g(m) = g(2−alm) = g(2a0−al + · · · + 2al−1−al + 1) by Eq.(2.9). We obtain Eq.(3.1)
by simply writing ak − al instead of ak, k = 0, 1, . . . , l in Eq.(3.2) and noting that
m − 1 = 2a0−al + · · · + 2al−1−al and al−k − al − (al−j − al) − 1 = al−k − al−j − 1.
Thus the double sum and the term l + 1 in (3.1) do not change. For the first term
we obtain 2a0−al + · · ·+ 2al−1−al = 2−al(2a0 + · · ·+ 2al−1 + 2al − 2al) = 2−al(m− 2al)
thus obtaining Eq.(3.1).
We now prove the case al = 0.
By (2.10) we have

g
( l−1∑
k=0

2ak + 1
)

= g
( l−2∑
k=0

2ak−al−1−1 + 1
)

+ (1− 2−al−1)

l∑
k=1

2al−k (3.3)
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where the argument of g on the left-hand side consists of l+1 terms and that on the
right-hand side of l terms. Setting βk := ak−al−1−1 for any k = 0, 1, . . . , l−2, and
applying again Eq.(2.10) to the first term in the above equation (3.3), we obtain

g
( l−2∑
k=0

2βk + 1
)

= g
( l−3∑
k=0

2βk−βl−2−1 + 1
)

+ (1− 2−βl−2)
l∑

k=2

2βl−k

or, in terms of ak, noting that for k = 0, 1, . . . , l − 3 we have
βk − βl−2 − 1 = ak − al−1 − 1− (al−2 − al−1 − 1)− 1 = ak − al−2 − 1

g
( l−2∑
k=0

2ak−al−1−1 + 1
)

= g
( l−3∑
k=0

2ak−al−2−1 + 1
)

+
(
1− 2−(al−2−al−1−1)

) l∑
k=2

2al−k−al−1−1

or, substituting this equation into (3.3)

g
( l−1∑
k=0

2ak + 1
)

= g
( l−3∑
k=0

2ak−al−2−1 + 1
)

+ (1− 2−al−1)
l∑

k=1

2al−k

+
(
1− 2−(al−2−al−1−1)

) l∑
k=2

2al−k−al−1−1

Note that the argument of g on the right-hand side has now l − 1 terms.
Repeating this procedure l − 1 times we finally obtain

g(2a0 + · · ·+ 2al−1 + 1) = g
(
2a0−a1−1 + 1

)
+ (1− 2−al−1)

l∑
k=1

2al−k

+
(
1− 2−(al−2−al−1−1)

) l∑
k=2

2al−k−al−1−1

+ · · ·+
(
1− 2−(a1−a2−1)

) l∑
k=l−1

2al−k−a2−1
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Hence, by Eq.(2.3) and since g
(
2a0−a1−1 + 1

)
= 2a0−a1−1 − 2 =

(
1 − 2−(a0−a1−1)

)
·

2a0−a1−1 − 1 =
(
1− 2−(a0−a1−1)

)∑l
k=l 2

al−k−a1−1 − 1 it follows

g(2a0 + · · ·+ 2al−1 + 1) = −1 + (1− 2−al−1)
l∑

k=1

2al−k

+
(
1− 2−(al−2−al−1−1)

) l∑
k=2

2al−k−al−1−1

+ · · ·+
(
1− 2−(a1−a2−1)

) l∑
k=l−1

2al−k−a2−1

+
(
1− 2−(a0−a1−1)

) l∑
k=l

2al−k−a1−1

A further simplification of the right-hand side of this equation leads to

g
( l−1∑
k=0

2ak + 1
)

= −1 +
l∑

k=1

2al−k − 1−
l∑

k=2

2al−k−al−1

+
l∑

k=2

2al−k−al−1−1 − 1−
l∑

k=3

2al−k−al−2

+ · · ·+
l∑

k=l−1
2al−k−a2−1 − 1− 2a0−a1 + 2a0−a1−1 − 1

=

l∑
k=1

2al−k −
l∑

k=2

2al−k−al−1−1 −
l∑

k=3

2al−k−al−2

− · · · −
l∑

k=l

2al−k−a1−1 −
l∑

k=1

1− 1
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and finally

g
( l−1∑
k=0

2ak + 1
)

= 2al−1 + 2al−2
(
1− 2−al−1−1

)
+ 2al−3

(
1−

2∑
j=1

2−al−j−1
)

+ · · ·+ 2a0
(
1−

l−1∑
j=1

2−al−j−1
)
− (l + 1)

=
l∑

k=1

{
2al−k

(
1−

k−1∑
j=1

2−al−j−1
)
− 1
}
− 1

and this is Eq.(3.2), since m− 1 =
∑l

k=1 2al−k and
∑l

k=1 1 = l. 2

Remark 3.2 Note that s2(m) := l+ 1 is the number of nonzero digits of the binary
expansion of m and m−(l+1) is the exponent of the highest power of 2 which divides
m! according to a theorem of Legendre [6, pp.10-12] (for the special case p = 2).

For example, let m = 13 = 23 + 22 + 20, that is l = 2, a0 = 3, a1 = 2, a2 = 0, then
by (3.2) we have g(13) = 13− 1− (2 + 1)− 2a0−a1−1 = 9− 23−2−1 = 8.
A consequence of Theorem 3.1 is the

Proposition 3.3 For all m ∈ N we have

− 1 ≤ g(m) ≤ m− 1 (3.4)

and, therefore, for all m ∈ N0

0 ≤ d(m) ≤ m+ 1 (3.5)

Proof. Let m = 2a0 + · · · + 2al , where a0 > a1 > · · · > al ≥ 0, l ≥ 0, is a strictly
decreasing integer sequence, then l + 1 and the double sum in (3.1) are always ≥ 0
and therefore g(m) ≤ 2−al(m−2al) = 2−alm−1 ≤ m−1, since 2al ≥ 1. This proves
the upper bound.

In order to prove that −1 is a lower bound we note first that by Eq.(2.1) this
value is attained for m = 2n, n ≥ 0, and secondly by Eq.(2.9) it is sufficient to
consider only odd numbers m, that is al = 0. As shown in the proof of Theorem 3.1
the formula (3.2) can be written as

g(m) =
l∑

k=1

{
2al−k

(
1−

k−1∑
j=1

2−al−j−1
)
− 1
}
− 1,
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therefore we have to prove that 2al−k
(
1−
∑k−1

j=1 2−al−j−1
)
−1 = 2al−k−1−

∑k−1
j=1 2al−k−al−j−1 ≥

0. This can be proved as follows: By definition al−j ≥ j for any j = 0, 1, . . . , l or

−al−j ≤ −j and, therefore,
∑k−1

j=1 2−al−j ≤
∑k−1

j=1 2−j = 1 − 2−(k−1). It follows

1 − 1
2

∑k−1
j=1 2−al−j ≥ 1 − 1

2 ·
(
1 − 1

2k−1

)
= 1

2 + 1
2k
≥ 1

2k
and, multiplying both sides

by 2al−k and adding to both sides −1, we obtain 2al−k
(
1 −

∑k−1
j=1 2−al−j−1

)
− 1 ≥

2al−k−k − 1 ≥ 0, since al−k − k ≥ 0 for any k = 1, . . . , l. This proves Eq.(3.4).
Finally, the double inequality (3.5) follows immediately from the definition of the
sequence

(
d(m)

)
m∈N0

. 2

By means of h(m) := g(m+ 1),m ∈ N0, h(0) = g(1) = −1, we can give another
representation of the solution (3.1) which will lead to an improvement of Proposition
3.3.

Proposition 3.4 The sequence
(
h(m)

)
m∈N0

satisfies for all m ≥ 1 the recurrence
relation

h(0) = −1
(
h(1) = −1

)
h(2m) = h(m) +m

h(2m+ 1) = h(m)

 (3.6)

Proof. By (1.1) it follows h(0) = g(1) = −1 and h(1) = g(2) = −1. Further

h(2m) = g(2m+ 1) = g(m+ 1) +m = h(m) +m

h(2m+ 1) = g(2m+ 2) = g(m+ 1) = h(m)

and this proves the proposition. 2

Note that (3.6) is a special case of (1.2) with α = 1, γ = 1, δ = 0, ζ = −1, g(m) =
m and h(m) = 0.

Using the binary expansion of m = (bn . . . b0)2, where b0, . . . , bn ∈ {0, 1}, we can
derive an alternative solution of (1.1).

Theorem 3.5 Let m = (bn . . . b0)2 ∈ N0, then the sequence
(
h(m)

)
m∈N0

satisfies
the recurrence relation

h
(
(bn . . . b0)2

)
= h

(
(bn . . . b1)2

)
+ (1− b0) · (bn . . . b1)2 (3.7)

with the solution

g
(
(bn . . . b0)2 + 1

)
= h

(
(bn . . . b0)2

)
= −1 +

n−1∑
k=0

(1− bk)(bn . . . bk+1)2 (3.8)
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and, therefore, for all m ∈ N0

d
(
(bn . . . b0)2

)
= g
(
(bn . . . b0)2 + 1

)
+ 1 =

n−1∑
k=0

(1− bk)(bn . . . bk+1)2 (3.9)

Proof. Let m = (bn . . . b0)2 ∈ N0, then

h
(
(bn . . . b0)2

)
= b0h

(
(bn . . . b1)2

)
+ (1− b0)

(
h
(
(bn . . . b1)2) + (bn . . . b1

)
2

)
= h

(
(bn . . . b1)2

)
+ (1− b0) · (bn . . . b1)2

since for b0 = 0, that is m is even, we have m/2 = (bn . . . b1)2 and by (3.6) h(m) =
h(m/2)+m/2 = h

(
(bn . . . b1)2

)
+(bn . . . b1)2 and for b0 = 1, that is m is odd, we have

(m− 1)/2 = (bn . . . b1)2 and by (3.6) h(m) = h
(
(m− 1)/2

)
+m/2 = h

(
(bn . . . b1)2

)
.

This proves Eq.(3.7).
Repeating this procedure n− 1 times we finally obtain h

(
(bn . . . b0)2

)
= h(bn) +∑n−1

k=0(1 − bk)(bn . . . bk+1)2 and this proves Eq.(3.8), since bn = 1 and h(1) = −1.
Finally, by definition it follows Eq.(3.9). 2

For example, let m = 10 = (1010)2, that is n = 3, b0 = 0, b1 = 1, b2 = 0 and
b3 = 1. Then

g(11) = −1 +
2∑

k=0

(1− bk)(b3 . . . bk+1)2

= −1 + (1− b0)(b3b2b1)2 + (1− b1)(b3b2)2 + (1− b2)(b3)2
= −1 + (101)2 + 0 · (10)2 + 1 = −1 + 5 + 0 + 1 = 5.

From Eq.(3.8) one can deduce that h attains its greatest value at m = 2n =
(10 . . . 0)2. In this case we have bk = 0 for all k = 0, 1, . . . , n−1. Hence 1−bk = 1 for
all k = 0, 1, . . . , n−1. Therefore g(2n+1) = h(2n) = −1+

∑n−1
k=0(bn . . . bk+1)2 = −1+∑n−1

k=0 2n−1−k = −1+2n−1 = 2n−2 (see also Eq.(2.3)). Hence, 2n+1−(2n−2) = 3,
that is for all m ≥ 2 we have m− g(m) ≥ 3.

Similarly, h attains its smallest value at m = 2n−1 = (11 . . . 1)2. In this case we
have bk = 1 for all k = 0, 1, . . . , n− 1 and hence 1− bk = 0 for all k = 0, 1, . . . , n− 1.
Therefore g

(
(1 . . . 1)2 + 1

)
= g(2n) = −1 (see also Eq.(2.1)). Hence, g(m) ≥ −1 for

all m ≥ 1.

Thus, we have shown the desired improvement of Proposition 3.3.
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Proposition 3.6 For all m ∈ N2 we have

− 1 ≤ g(m) ≤ m− 3, (3.10)

where both bounds are sharp, since for m = 2n, n ≥ 0, it is g(m) = −1 and for
m = 2n + 1, n ≥ 0, it is g(m) = m− 3.
Therefore, for all m ∈ N we have

0 ≤ d(m) ≤ m− 1 (3.11)

4 Some Consequences

In [1, Theorem 25] Bodlaender et al. showed that the edge ranking number of the
complete graphs on p vertices, p ∈ N, is given by χ′r(Kp) = a(p), where a(p) :=
1
3

(
p2 + g(p)

)
, and in [7, Theorem 7, Corollary 8] Lin, Juan and Wang showed that

the edge ranking number of the Sierpiński graphs is given by χ′r(S
n
p ) = nχ′r(Kp) =

n
3

(
p2 + g(p)

)
, n, p ∈ N2. (For a definition of the Sierpiński graphs we refer the

reader to the seminal paper of Klavžar and Milutinovič [5] and to the survey paper
on Sierpiński-type graphs by Hinz, Klavžar and Zemljič [4].)

Proposition 4.1 The sequence a(m) := 1
3

(
m2 + g(m)

)
, m ∈ N, satisfies for all

m ∈ N the recurrence relation

a(1) = 0

a(2m) = a(m) +m2

a(2m+ 1) = a(m+ 1) +m(m+ 1)

 (4.1)

In particular,
3|(m2 + g(m)). (4.2)

Note that (4.1) is a special case of (1.2) with α = 1, γ = 0, δ = 1, ζ = 0, g(m) =
m2 and h(m) = m(m+ 1).
Proof. By definition a(1) = 1

3(12 + g(1)) = 1
3(1−1) = 0 and by (1.1) it follows that

a(2m) =
4m2 + g(2m)

3
=
m2 + g(m) + 3m2

3
= a(m) +m2

a(2m+ 1) =
(2m+ 1)2 + g(2m+ 1)

3
=

4m2 + 4m+ 1 + g(m+ 1) +m

3

=
(m+ 1)2 + g(m+ 1) + 3m2 + 3m

3
= a(m+ 1) +m(m+ 1)
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This proves (4.1) and shows that a(m) ∈ N0, thus proving (4.2). 2

Note that for m − 1 instead of m in Eq.(4.1) we obtain a
(
2(m − 1) + 1

)
=

a(2m−1) = a(m)+(m−1)m and therefore a(2m)−a(2m−1) = m2−m(m−1) = m
for all m ∈ N.

The first few values of (a(m))m∈N (not available in the OEIS [8]) are

(0, 1, 3, 5, 9, 12, 17, 21, 29, 34, 42, 48, 59, 66, 77, 85, 101, 110, 124, 134, . . .).

The next lemma gives the values of this sequence for some special numbers.

Lemma 4.2 Let n ∈ N0, then

a(2n) =
4n − 1

3
(4.3)

a(2n − 1) =
4n − 1

3
− 2n−1, n ≥ 1 (4.4)

a(2n + 1) =
4n − 1

3
+ 2n (4.5)

Proof. By definition and using Eqs.(2.1), (2.2) and (2.3), we have a(2n) = 1
3

(
4n +

g(2n)
)

= 1
3(4n − 1), a(2n − 1) = 1

3

(
(2n − 1)2 + g(2n − 1)

)
= 1

3(4n − 1) − 2n−1 =
a(2n)−2n−1 and a(2n+1) = 1

3

(
(2n+1)2+g(2n+1)

)
= 1

3(4n−1)+2n = a(2n)+2n. 2

We notice that (4.3) is the sequence A002450, (4.5) is the sequence A079319,
whereas the sequence (4.4) is not available in the OEIS [8].

Note that for m = 2n, n ≥ 0, we have a(m) = 1
3(m2−1) and for m = 2n+1, n ≥

0, we have a(m) = 1
3(m2 +m− 3). By Proposition 3.6 we obtain in this way

Corollary 4.3 For all m ∈ N2 we have

m2 − 1

3
≤ a(m) ≤ m2 +m− 3

3
, (4.6)

where both bounds are sharp.

To conclude we mention some properties of the sequence of the partial sums of
g(m).
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Proposition 4.4 Let t(m) :=
∑m

k=1 g(k), m ∈ N, then

t(1) = −1

t(2m) = 2t(m) +

(
m

2

)
t(2m+ 1) = t(m) + t(m+ 1) +

(
m+ 1

2

)


(4.7)

Note that (4.7) is a special case of (1.2) with α = 2, γ = 1, δ = 1, ζ = −1, g(m) =
(
n
2

)
and h(m) =

(
m+1
2

)
.

Proof. It is t(1) = g(1) = −1 and by definition we have

t(2m) =
2m∑
k=1

g(k) =
m∑
k=1

g(2k) +
m−1∑
k=1

g(2k + 1) + g(1)

=

m∑
k=1

g(k) +

m−1∑
k=1

(
g(k + 1) + k

)
+ g(1)

= t(m) +
m−1∑
k=1

g(k + 1) +
m−1∑
k=1

k + g(1)

= t(m) + t(m)− g(1) +

(
m

2

)
+ g(1) = 2t(m) +

(
m

2

)
Similarly,

t(2m+ 1) =
2m+1∑
k=1

g(k) =
m∑
k=1

g(2k) +
m∑
k=1

g(2k + 1) + g(1)

=
m∑
k=1

g(k) +
m∑
k=1

g(k + 1) +
m∑
k=1

k + g(1)

= t(m) + t(m+ 1)− g(1) +

(
m+ 1

2

)
+ g(1)

= 2t(m) +

(
m+ 1

2

)
and this proves (4.7). 2
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The first few values of
(
t(m)

)
m∈N (not available in the OEIS [8]) are

(−1,−2,−2,−3,−1,−1, 1, 0, 6, 8, 13, 13, 21, 23, 29, 28, 42, 48, 59, 61, 76, . . .).

The next lemma gives the values of this sequence for some special numbers.

Lemma 4.5 Let n ∈ N0, then

t(2n) =
4n − 5 · 2n − n · 2n

4
(4.8)

t(2n − 1) =
4n − 5 · 2n − n · 2n

4
+ 1, n ≥ 1 (4.9)

t(2n + 1) =
4n − 5 · 2n − n · 2n

4
+ 2n − 2, (4.10)

Proof. a) Let f(n) := t(2n), n ≥ 0, then by (4.7) the sequence
(
f(n)

)
n∈N0

satisfies
the recurrence relation

f(n+ 1) = t(2n+1) = t(2 · 2n) = 2t(2n) +

(
2n

2

)
= 2f(n) + 2n−1(2n − 1), n ≥ 0,

with f(0) = t(1) = −1. The solution of this linear first-order recurrence relation can
be obtained again by backward substitution. After n substitutions it follows

f(n) = 2f(n− 1) + 2n−2(2n−1 − 1)

= 2
(
2f(n− 2) + 2n−3(2n−2 − 1)

)
+ 2n−2(2n−1 − 1)

= 22f(n− 2) + 2 · 2n−3(2n−2 − 1) + 2n−2(2n−1 − 1)

= · · · · · · · · · · · ·

= 2nf(0) +

n−1∑
k=0

2k · 2n−2−k · (2n−1−k − 1)

= −2n + 2n−2(2n − 1− n) =
4n − 5 · 2n − n · 2n

4

and this proves (4.8).
b) By definition and using Eqs.(4.8) and (2.1) we get t(2n − 1) =

∑2n−1
k=1 g(k) =∑2n

k=1 g(k)− g(2n) = t(2n)− (−1) = 1
4(4n− 5 · 2n− n · 2n) + 1 and this proves (4.9).

c) By definition and using Eqs.(4.8) and (2.3) we get t(2n + 1) =
∑2n+1

k=1 g(k) =∑2n

k=1 g(k) + g(2n + 1) = t(2n) + 2n − 2 = 1
4(4n − 5 · 2n − n · 2n) + 2n − 2 and this
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proves (4.10). 2

Note that for m = 2n, n ≥ 0, that is n = log2(m), we obtain from (4.8) the
sequence t(m) := m

4 (m− 5− log2(m)), m ∈ N. Numerical results suggest that t(m)
is a lower bound of t(m), that is t(m) ≤ t(m), m ∈ N.

An upper bound t(m) for t(m) could be obtained from (3.10) as follows: It is
g(k) ≤ k−3 for all k ∈ N2 and, therefore, t(m) = g(1)+

∑m
k=2 g(k) ≤ −1+

∑m
k=2(k−

3) = −1+
∑m

k=2 k−3
∑m

k=2 1 = −1+
(
m+1
2

)
−1−3(m−1) = 1

2(m2−5m+2) =: t(m).
Since 1

2(12 − 5 · 1 + 2) = −1 = t(1) we obtain

t(m) ≤ t(m) ≤ t(m), m ∈ N.

We notice that t(m+ 4) = A034856(m), m ∈ N.

Remark 4.6 All the sequences encountered so far, namely g(m), d(m) := g(m +
1) + 1, h(m) := g(m + 1), a(m) := 1

3

(
m2 + g(m)

)
and t(m) :=

∑m
k=1 g(k) are of

divide-and-conquer type, that is their ordinary generating functions defined as the
power series G(s) :=

∑∞
m=1 g(m)sm, D(s) :=

∑∞
m=0 d(m)sm, H(s) :=

∑∞
m=0 h(m)sm,

A(s) :=
∑∞

m=1 a(m)sm and T (s) :=
∑∞

m=1 t(m)sm satisfy a functional equation
known as Mahlerian equation (cf.[2])

a0(s)F (s) + a1(s)F (s2) + · · ·+ an(s)F (s2
n
) = f(s) (4.11)

in which n ∈ N, f(s) is a formal series and a0(s), a1(s), . . . , an(s) are polynomials
not all zero. If f(s) = 0, then the solution of (4.11) is said to be a Mahlerian series.

Indeed, applying standard generating function techniques to the recurrence rela-
tions from Eqs.(1.1), (1.4), (3.6), (4.1) and (4.7) we have the functional equations

G(s) =
(

1 +
1

s

)
G(s2) +

s3

(1− s2)2

D(s) = (1 + s)D(s2) +
s2

(1− s2)2

H(s) = (1 + s)H(s2) +
s2

(1− s2)2

A(s) =
(

1 +
1

s

)
A(s2) +

s2

(1 + s)(1− s)3

T (s) = s
(

1 +
1

s

)2
T (s2) +

s3

(1− s)(1− s2)2

(4.12)
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and the relations

D(s) = G(s)
s + 1

1−s , H(s) = G(s)
s , A(s) = 1

3

(
G(s) + t(1+s)

(1−s)3

)
, T (s) = G(s)

1−s .
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Abstract

This paper examines the types of directed networks with one source and one
sink. The problem of resilient network design is studied with respect to such
networks. The upper and the lower bound of the capacity are given for each
edge in the network, while the cost of each edge is given as the function of edge
capacity. Said problem of network design consists of selecting a subset of edges
in the given network, which induces an optimal subnetwork to be resilient after
disruptive event. The restoration behaviour of each edge in a network N after
the disruptive event is described by using a non-linear function that enables the
modelling of three components affecting resilience: the remaining capacity of
the edge after the disruption, the degree to which capability can be recovered
and the recovery speed. Three different models for designing a resilient net-
work are proposed and then formulated as problems of non-linear optimisation.
A simple genetic algorithm using stochastic ranking, which can be used to ap-
proach all three proposed network design problems, is proposed. One numerical
example is used to illustrate the proposed procedure and the effectiveness of
the proposed algorithm.
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1 Introduction

For the proper functioning of everyday life, we often rely on the regular functioning
of many networks supporting our daily routine; from infrastructure networks, to
traffic networks or information networks. Since disruptive events may occur which
affect the functioning of those networks, there is an ever-increasing demand for
ensuring their regular functioning by minimising the adverse effects of disruptive
events. One possible solution is by increasing system redundancy, which is often
the focus of reliability engineering [10]. This approach focusses on increasing the
probability of a system to properly operate for a specified period of time. On
the other hand, there is a resilience engineering approach which focuses more on
improving the system’s capability to recuperate from disruptive events in a sense
that a desired level of performance is quickly recovered after the disruption [4]. The
concept of resilience was first introduced in [8] which confirmed its significant role in
maintaining the stability of ecological systems. Since then, this research topic has
received increasing attention, and substantial effort has been dedicated to defining
and to measuring system resilience [3]. In [2], an indicator has been developed to
measure the component importance by quantifying its adverse impact on system
resilience when the disruption affected that component.

There are many definitions of resilience [9] and all these definitions aim at better
understanding of system resilience in different contexts. However, the methods for
resilient infrastructure system design have not been so extensively studied. There
are several related studies ( [5], [12]), however, since in reality many infrastructure
systems exist in the form of networks, it is of the utmost interest to study the re-
silient network design methods ( [1], [6], [7]). One such study of resilient network
design is [13] where the restoration behaviour is described by using a non-linear
function that enables the modelling of more refined attributes of restoration at the
component level. Three components influencing resilience are especially considered:
the remaining capacity (absorptive ability), the degree to which capability can be
recovered (restoration ability) and the recovery speed. The method for designing a
resilient network is consequently formulated as the problem of non-linear optimisa-
tion.

A network is given as a directed graph with one source and one sink. When
constructing a real-life infrastructure system, due to various technical reasons it is
often impracticable to construct the connection between all nodes. Since the net-
work considered here is a mathematical model of the infrastructure system intended
for construction, the edges included in the network represent the connections which
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are technically feasible in the real-life. Generally, not every technically feasible con-
nection is actually constructed in the infrastructure system, as it would often be too
expensive and unnecessary. A satisfactory network can be obtained by constructing
only some of the possible connections. Therefore, in designing the infrastructure
system the engineer has to choose which feasible connections will be constructed.
Mathematically, that means we have to choose a subset of edges in a given network
which induces an optimal subnetwork with respect to the capacity, the cost and
the resilience. In [13] said problem is approached by using a probabilistic solution
discovery algorithm combined with stochastic ranking.

The proposed resilient network design model from [13] can be improved by al-
lowing variable capacities of the edges and by introducing a variable cost of the edge
construction defined as the function of the edge capacity. The aim of this paper is
to implement these improvements in the resilient network design model and, conse-
quently, to propose a simple genetic algorithm approach to the problem, since the
probabilistic solution discovery algorithm proposed in [13] can hardly be extended
to the model with variable edge capacities. Three different resilient network design
models are proposed and then formulated as the problems of non-linear optimisa-
tion, and subsequently approached by a single algorithm. One numerical example
is used to illustrate the proposed procedure and the effectiveness of the proposed
method.

The present paper is structured as follows: the following section describes the
preliminaries and introduces the basic notation. In Section 3, three different resilient
network design models are proposed and then formulated as problems of non-linear
optimisation. Section 4 presents a simple genetic algorithm combined with stochastic
ranking which may be used to approach all three problems stated in Section 3.
Finally, in Section 5, the algorithm presented in Section 4 is applied to one particular
network N , and all three design problems are solved by using said algorithm. The
effectiveness of the proposed method on the given example is verified by comparing
the obtained results with the results obtained by exact calculation.

2 Preliminaries

Let G = (V,E) be a directed graph on the set of vertices V and the set of directed
edges E. Directed edge (v, w) ∈ E will often be denoted by abbreviation vw.

Definition 1 Flow network N is defined by N = (G, u, s, r), where G = (V,E) is a
directed graph, u : E → R+ is a non-negative edge capacity function, s ∈ V is the
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source and r ∈ V is the sink vertex.

The value u(vw) of the edge capacity function u in the network N represents
the capacity of the edge vw ∈ E and will often be shortly denoted by uvw.

Definition 2 Flow in the flow network N = (G, u, s, r) is a non-negative function
ψ : E → R+ such that ψ(vw) ≤ u(vw) for every vw ∈ E and

∑
(w,v)∈E ψ(w, v) =∑

(v,z)∈E ψ(v, z) for every vertex v ∈ V \{s, r}. The value of the flow ψ in the network
N is defined as ψ(N) =

∑
(s,v)∈E ψ(s, v).

The standard problem in the flow networks theory is to find a flow in the network
with the maximum possible value. Since the flow networks are often used to model
various real-life problems, the designing or studying such networks involves the cost
of building the network or similar costs. In addition, once it has been designed,
the flow network exists in time, where a disruptive event can occur and diminish
the edge capacity of several or all edges in the network. Since the original network
is usually designed so that the maximum flow equals the amount of the actually
required flow, it is of utmost interest to repair the network after the disruptive
event as soon as possible. The value of the flow which is lost in a disruptive event
ed is denoted by Loss(td), while the value of flow which can be recovered (of the
flow which was lost) in the time t after td is denoted by Recovery(t). The value of
Loss(td) and Recovery(t) is usually given by real-life circumstances and is therefore
predefined in the analysed problem. Now we can define resilience function R(t) of
the network N in the recovery time t as

R(t) =
Recovery(t)

Loss(td)
.

Note that R(t) is the percentage of the recovered flow in the recovery time t, hence
R(t) ≤ 1. Therefore, it is now possible to consider the maximum flow in the network,
the cost of the network and the resilience of the network in the recovery time t.

One context in which we can consider the maximum flow, the cost and the
resilience of a network is the context of network design. In [13] the authors studied
the problem of designing a network with the lowest cost such that the designed
network satisfies a given lower bound on resilience in the recovery time t. The concept
of resilience is introduced by comparing two networks, the original network denoted
by N and the disrupted network after the recovery time t which is denoted by N∗(t).
Both N and N∗(t) are based on the same directed graph G where the vertices are
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denoted by {1, . . . , n} with vertex 1 being the source and vertex n being the sink,
they differ only in the edge capacity function.

The edge capacity function in the original undisrupted network N is denoted
by u, while the edge capacity function in the disrupted network N∗(t) after the
recovery time t is denoted by u∗(t). The values of the function u for each edge of the
network N are predefined, while the value of the function u∗(t) on the edge ij ∈ E
is denoted by u∗ij(t) and defined as the function

u∗ij(t) = uij(aij + λij(1− aij)(1− e−bijt)).

In this expression, uij is the capacity of an edge ij in the original network, aij is
the percentage of capacity uij which remains operative in a disruptive event (hence,
1 − aij is the percentage of capacity uij lost in a disruptive event). Further, λij
represents the percentage of the lost capacity (1−aij)uij which can be recovered by
repair. Finally, bij denotes the speed of recovery of the edge ij. The values of aij ,
bij and λij are predefined. Note that for t = 0 we have u∗ij(t) = uijaij , therefore the
given function presupposes that t = 0 is the time of the disruptive event, so u∗ij(t)
denotes the capacity of the edge ij in the recovery time t.

Terms ψ(N) and ψ(N∗(t)) denote the value of the maximum flow in networks
N and N∗(t) respectively. The resilience function of the network N is now defined
as

R(N, t) =
ψ(N∗(t))− ψ(N∗(0))

ψ(N)− ψ(N∗(0))
.

After the concept of resilience in a network is introduced, the problem of network
design is postulated as follows. Network N is a mathematical model of the infras-
tructure system an engineer has to construct, where connections between some nodes
are technically feasible, while some other connections are technically impossible to
construct. Therefore, the edges in the network N represent the connections of the
infrastructure system which are technically feasible. Since not all possible connec-
tions will be constructed, the engineer has to choose which connections to construct
in order to obtain the optimal infrastructure system with respect to the capacity,
the cost and the resilience. Mathematically, that means we have to find the subset
of edges in N which induces the optimal subnetwork of N. For a given network N,
one such subset of edges is defined by the edge inclusion function δ : E → {0, 1}
where

δ(ij) =

{
0, if the edge ij is not included in the constructed network,
1, if the edge ij is included in the constructed network.
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We commonly use the abbreviated notation δij instead of δ(ij). Consequently, the
subnetwork of N, which is induced by the set of edges Eδ = {ij ∈ E : δij = 1}, is
denoted by Nδ.

Finally, the cost of the edge construction in the network N is defined as the
non-negative function c : E → R+, where the cost c(ij) of the edge ij ∈ E is often
denoted by abbreviation cij . The authors propose a network design model in which
the subnetwork of the minimum cost is sought for, such that it has a minimum
resilience required. In other words, they propose a network design model which is
defined as the problem of nonlinear optimisation given by

minimize f(Nδ) :=
∑
ij∈E

δijcij subject to R(Nδ, t) ≥ κ.

They also propose an improved probabilistic solution discovery algorithm for solving
the proposed problem of nonlinear optimization. Finally, they provide two numerical
examples on which their algorithm has been tested.

Since in real-life problems it is often possible to connect vertices i and j by the
edge ij of various capacities, it would be more realistic if in a proposed model one
could choose which capacity uij of the edge ij to construct given the upper and
lower capacity bound uij and uij respectively. In addition, the cost of construction
of the edge ij usually depends on the capacity, therefore a model would be more
realistic if the cost were given as the function of edge capacity. Finally, although
the authors of [13] mentioned that, in the problem of nonlinear optimisation an
additional constraint can be added on the lower bound of the required value of
the flow, they did not implement it in their example and therefore did not test
the algorithm on said problem. The inherent problem of the model without the
constraint on the value of the flow, but only with the minimized cost, is that we
can obtain an optimal network which is only slightly cheaper than the rest, but the
value of the maximum flow in it is significantly lower.

For instance, we may observe the network N in Figure 1 (a), where vertex 1 is
the source, while vertex 4 is the sink. The edge labels are the edge capacities and
the cost of every edge equals 1. As for the recovery parameters aij , bij and λij ,
suppose that aij = 0.3 and λij = 0.9 for every edge ij, while bij = 0.7 for ij = 13,
34 and bij = 0.9 for ij = 12, 14, 24. In other words these recovery parameters mean
that the edges 12, 14 and 24 recover considerably faster than the edges 13 and 34.
Therefore, the both flow directions 1 → 4 and 1 → 2 → 4 are substantially more
resilient than the flow direction 1→ 3→ 4. Let us consider two subnetworks of N,
the first denoted by Nδ and shown in Figure 1 (b), the other is denoted by Nδ′ and
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shown in Figure 1 (c). If we apply the model from [13], where we minimise the cost
given the constraint R(Nδ, 6) > 0.8, we will obtain network Nδ as optimal, since it
is the cheapest with the cost equal to 1 and the required resilience R(Nδ, 6) = 0.896.
However, the value of the maximum flow in that network equals ψ(Nδ) = 1. On the
other hand, if we consider the network Nδ′ , we note that at slightly greater cost 2,
we will obtain a similarly resilient network (R(Nδ′ , 6) = 0.896), with a significantly
greater value of the maximum flow (ψ(Nδ′) = 10). Therefore, from the economic
perspective, the network Nδ′ is more frequently regarded as optimal.
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10
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10
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2
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Figure 1: a) The network N , b) the cheapest resilient subnetwork Nδ, b) a slightly
more expensive resilient subnetwork Nδ′ with a significantly greater value of the
maximum flow.

The aim of this paper is to propose three models of resilient network design con-
sidering all the mentioned improvements and to propose a simple genetic algorithm
for problem-solving. The proposed algorithm is tested on one numerical example
for each of the models.

3 Resilient network design models

In order to describe the improved network design models, slightly different notation
should be introduced. Let G = (V,E) be a directed graph where vertices from V
are denoted by integers 1, . . . , n, with vertex 1 being the source and vertex n being
the sink. Let u : E → R+ and u : E → R+ be two non-negative functions such
that u(ij) ≤ u(ij) for every ij ∈ E. The values u(ij) and u(ij) are often denoted by
abbreviations uij and uij respectively. Let us denote by Nu the network (G, u, 1, n)
where the edge capacity function u satisfies the condition uij ≤ uij ≤ uij for every
ij ∈ E. If a disruptive event occurs in the network Nu and diminishes the capacities
of edges in Nu, then N∗u(t) denotes the disrupted network after the recovery time t.
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Therefore, networks Nu and N∗u(t) differ only in the edge capacity function, where
the capacity u∗ij(t) of the edge ij in the network N∗u(t) is defined by

u∗ij(t) = uij(aij + λij(1− aij)(1− e−bijt))

as in the previous section, and the values of the recovery parameters aij , bij and λij
are predefined.

The value of the maximum flow in networks Nu and N∗u(t) is denoted by ψ(Nu)
and ψ(N∗u(t)) respectively. Now, the resilience R(Nu, t) of the network Nu after the
recovery time t is also defined as in the previous section, i.e.

R(Nu, t) =
ψ(N∗u(t))− ψ(N∗u(0))

ψ(Nu)− ψ(N∗u(0))
.

Finally, the cost of the edge construction in the network Nu is defined as the function
c : E → R+ such that c = h(u), where h can be any function which gives the
dependence of the edge cost and the edge capacity. The cost c(Nu) of the network
Nu is then defined by

c(Nu) =
∑
ij∈E

cij .

We can now propose three models of resilient network design. In the first model the
cost is minimised given the constraint on the value of the flow and the resilience,
in the other model the value of the flow is maximised given the constraints on the
resilience and the cost, and, finally, in the third model the resilience is maximised
given the constraints on the flow value and the cost.

In order to formally describe the design models and define them as the prob-
lems of non-linear optimisation, we should primarily describe how the edge capacity
function u of the network Nu can be written in the vector form. Let m denote the
number of edges in the network Nu. Since vertices in Nu are denoted by integers
1, . . . , n, the edges ij ∈ E can be lexicographically ordered. Therefore, we can define
the edge capacity vector u by

u = (. . . , uij , . . .) ∈ Rm

where the order of capacities uij in the m−tuple corresponds to the lexicographic
order of the edges ij ∈ E. By analogy, we can define the vector u∗(t) for the capacity
function u∗(t) in the network N∗u(t). Since all networks Nu are based on the same
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graph G and differ only in the capacity function u, we can denote ψ(Nu), R(Nu, t)
and c(Nu) by ψ(u), R(u, t) and c(u) and regard them as functions in the variable
u ∈ Rm.

We will now consider the general non-linear programming problem formulated
as

minimise f(x) subject to x ∈ S ∩ F ,

where f(x) is the objective function, S is the subset of Rm which consists of x =
(x1, . . . , xm) ∈ Rm satisfying the following constraints

xi ≤ xi ≤ xi

and F is the subset of Rm consisting of x ∈ Rm satisfying conditions gj(x) ≤ 0 for
j = 1, . . . , p, i.e.

F = {x ∈ Rm : g1(x) ≤ 0 ∧ . . . ∧ gp(x) ≤ 0}.

We will further define g+j (x) = max{0, gj(x)} for every j = 1, . . . , p, therefore, by
using a penalty function approach the constraint violations can be treated as a single
penalty function

φ(x) =

p∑
j=1

(g+j (x))2.

Now, a simple genetic algorithm can be developed in order to solve this nonlinear
programming problem which uses stochastic ranking, as presented in the follow-
ing section. We have to define an objective function f(x) we minimise and the
corresponding penalty function φ(x) for all three proposed models.

We can now propose three models of resilient network design.

Model 1. In this model, we minimise the cost subject to constraints on the value
of flow and the resilience of the network. Therefore, the problem can be written as

min c(u)
s.t. ψ(u) ≥ ψ0 and

R(u,t) ≥ R0
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Therefore, in this model the objective function is f(u) = c(u) subject to constraints
g1(u) = ψ0 − ψ(u) ≤ 0 and g2(u) = R0 − R(u,t) ≤ 0. Now the penalty function
φ(u) is defined by

φ(u) =
2∑
j=1

(g+j (u))2

where g+1 (u) = max{ψ0 − ψ(u), 0} and g+2 (u) = max{R0 −R(u,t), 0}.

Model 2. In this model, we maximise the value of the flow subject to constraints
on the cost and the resilience of the network. Therefore, the problem can be written
as

max ψ(u)
s.t. c(u) ≤ c0 and

R(u,t) ≥ R0

In order to apply the same algorithm to all models, we will convert this problem
to minimising, i.e. we define the objective function as f(u) = −ψ(u) and then we
minimise it subject to constraints g1(u) = c(u)−c0 ≤ 0 and g2(u) = R0−R(u,t) ≤ 0.
Now the penalty function φ(u) is defined by

φ(u) =
2∑
j=1

(g+j (u))2

where g+1 (u) = max{c(u)− c0, 0} and g+2 (u) = max{R0 −R(u,t), 0}.

Model 3. In this model, we maximise the resilience of the network in the recovery
time t subject to constraints on the cost and the value of the flow in the network.
Therefore, the problem can be written as

max R(u,t)
s.t. c(u) ≤ c0 and

ψ(u) ≥ ψ0

Again, in order to apply the same algorithm to all models, we will convert this
problem to minimising, i.e. we define objective function as f(u) = −R(u,t) and then
minimize it subject to constraints g1(u) = c(u)− c0 ≤ 0 and g2(u) = ψ0−ψ(u) ≤ 0.
Now the penalty function φ(u) is defined by

φ(u) =
2∑
j=1

(g+j (u))2
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where g+1 (u) = max{c(u)− c0, 0} and g+2 (u) = max{ψ0 − ψ(u), 0}.

After proposing three different models of resilient network design, defined as
the problems of non-linear optimisation, we will propose an efficient algorithm for
solving said problems. Therefore, in the next section we will describe a simple
genetic algorithm for solving these nonlinear optimization problems and then apply
it to the numerical example in the following section.

4 Algorithm for solving resilient network design prob-
lem

We want to propose a simple genetic algorithm for solving the non-linear optimisa-
tion problems to which a resilient network design models reduce. Since all considered
networks are based on the same directed graph G and differ only in the edge ca-
pacity function u, we will represent the network Nu by its edge capacity vector u
throughout the rest of the paper. In the first step of the algorithm, a population
of λ networks G(1) = {u1,1, . . . ,uλ,1} is generated at random, so that the constraint
uij ≤ uij ≤ uij is satisfied for every edge ij in each individual uk,1. This population
represents the first generation of individuals. In addition, a generation counter g is
set to 0, i.e. g ← 0. Until the stopping criterion has been satisfied, the following
steps are repeated. Firstly, the generation counter is set to g+1, i.e. g ← g+1. The
individuals from population G(g) = {u1,g, . . . ,uλ,g} are ranked using the procedure
of stochastic ranking (to be subsequently explained) in order to obtain a new order
of those individuals where Ij is the ranking of j-th individual uj,g from generation
g. The µ best ranked individuals uj,g are denoted by u′Ij ,g and selected to be the

set of genitors P(g) = {u′1,g, . . . ,u′µ,g} of the next generation. The next generation

consists of all genitors from the previous generation (i.e. P(g) ⊆ G(g+1)) and all
children generated by all parents from P(g).

In order for G(g+1) to have λ individuals, besides µ parents from G(g) which are
included in G(g+1), λ−µ children have to be generated. Therefore, for k = 1, . . . , λ−
µ, the child uk,g+1 is generated from the genitor u′i,g where i = (k − 1) modµ + 1.
In order to explain how the child uk,g+1 is generated from the genitor u′i,g, let us
recall that u′i,g ∈ Rm where m is the number of edges in the network. Each of
the m coordinates in u′i,g represents the capacity of the corresponding edge ij and
can be regarded as a gene. Mutation can occur in every gene in the sense that the
capacity of that edge can be changed which results in a new ’mutated’ network.
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If the number of mutations is lower and the size of mutation (i.e. the amount
of capacity change in a gene which represents a certain edge ij) is smaller, the
mutated child uk,g+1 is more similar to its parent u′i,g. Therefore, the child uk,g+1 of
the genitor u′i,g is created so that a random number nmut of mutations is generated
with half-normal distribution along the integers from [1, 2n/3]. The nmut coordinates
in u′i,g where a mutation occurs are selected at random. Now, if a mutation is to
occur in the coordinate corresponding to the edge ij in u′i,g, then the size δij of the
mutation is selected as a random number with normal distribution along the interval
[−(uij − uij), uij − uij ]. Assuming that u′ij denotes the value of the ij coordinate
in u′i,g, then if u′ij + δij doesn’t satisfy the constraint uij ≤ u′ij + δij ≤ uij , the

process is repeated until it does. Furthermore, the genitors from P(g) are included
in G(g+1) by setting uk,g+1 = u′k−(λ−µ),g for k = λ−µ+1, . . . , λ. The entire process is

repeated with G(g+1) and so on until the stopping criterion has been satisfied. The
pseudocode of this algorithm is shown in Figure 2, while the process of offspring
generation is given as the separate procedure whose pseudocode is shown in Figure
3.

Algorithm 1 Simple genetic algorithm for resilient net-
work design.

generate G(1) = {u1,1, . . . ,uλ,1} at random
g ← 0
while (stopping criterion not satisfied) do
g ← g + 1
order G(g) = {u1,g, . . . ,uλ,g} using stochastic ranking
select P(g) = {u′1,g, . . . ,u′µ,g} as µ best ranked indi-

viduals from G(g)
generate G(g+1) from P(g) using the procedure of off-
spring generation

end while
return P(g)

Figure 2: A simple genetic algorithm for resilient network design.

In each generation of λ individuals, only µ best ranked individuals are selected to
become parents of the next generation. The ranking of the λ individuals is done by
the stochastic ranking procedure [11] which is a bubble-sort-like procedure where a
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Algorithm 2 The procedure of offspring generation

procedure OffspringGen(P(g) = {u′1,g, . . . ,u′µ,g})
for k = 1, . . . , λ− µ do
i← (k − 1) modµ+ 1
nmut ←

⌈
2m
9 · |N(0, 1)|

⌉
(repeat until nmut ≤ 2m

3 )
δ ← U(0, 1) such that |δ| = nmut
for ij ∈ E do

if δij = 1 then
δij ← δij · (uij − uij) ·N(0, 1)/3 (re-
peat until uij ≤ u′ij + δij ≤ uij)

end if
end for
uk,g+1 ← u′i,g + δ

end for
for k = λ− µ+ 1, . . . , λ do

uk,g+1 ← u′k−(λ−µ),g
end for
G(g+1) ← {u1,g+1, . . . ,uλ,g+1}
return G(g+1)

end procedure

Figure 3: The procedure of offspring generation, N(0, 1) is a random number gen-
erated with normal distribution, while U(0, 1) is randomly generated vector from
{0, 1}m with uniform distribution.

probability Pf of using only the objective function for comparing individuals in the
infeasible region of the search space is introduced. Namely, when two individuals
are compared in order to determine which one is more suitable and should therefore
be better ranked, if both individuals are feasible (the penalty function φ equals zero
for both individuals), then the probability to rank those two individuals according
to the value of the objective function is 1, otherwise that probability is Pf . The
procedure provides a convenient way of balancing the dominance in a ranked set.
The pseudocode of the procedure of stochastic ranking is shown in Figure 4. Since
we, eventually, want to obtain only feasible solutions, the probability Pf should
be set to be less than 0.5 so that there is a pressure against infeasible solutions.
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The value of Pf is usually set to be 0.45 as the previous studies have shown that
Pf = 0.45 is often sufficient.

Algorithm 3 Stochastic ranking

Ij = j ∀j ∈ {1, . . . , λ}
for i = 1, . . . , λ do

for j = 1, . . . , λ− 1 do
sample u ∈ U(0, 1)
if (φ(xIj ) = φ(xIj+1) = 0) or (u < Pf ) then

if (f(xIj ) > f(xIj+1)) then
swap(Ij , Ij+1)

end if
else

if (φ(xIj ) > φ(xIj+1)) then
swap(Ij , Ij+1)

end if
end if

end for
end for

Figure 4: Stochastic ranking procedure, Pf = 0.45.

5 Numerical example

Finally, we applied the proposed resilient network design models on graph G and
used the proposed genetic algorithms to solve those models. Firstly, we define the
directed graph G to which we will apply our models. Let G = (V,E) be a graph
with 6 vertices and 9 directed edges as shown in Figure 5.

Vertex 1 is the source and vertex 6 is the sink. In addition, let

u = (4, 3, 2, 2, 2, 3, 1, 3, 4)

be the vector whose coordinates uij are the upper bounds on the edge capacities
uij . The coordinates uij in the vector u are ordered according to the lexicographic
order of the edges, i.e. u = (u12, u13, u23, u24, u34, u35, u45, u46, u56). The same edge
order will be used throughout this section. The lower bounds on edge capacities
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Figure 5: The directed graph G which to which the proposed network design models
will be applied.

ij 12 13 23 24 34 35 45 46 56

aij 0.37 0.21 0.47 0.28 0.43 0.25 0.33 0.44 0.31

bij 0.92 0.78 0.88 0.81 0.87 0.81 0.79 0.91 0.82

λij 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Table 1: Recovery parameters aij , bij and λij of the edge ij.

are defined by uij = 0 for every ij ∈ E, i.e. u = 0. In order to verify the optimal
solution obtained by the algorithm, we want to be able to calculate the optimum
exactly, so will allow only integer capacity values between uij and uij . Therefore, this
example has 86 400 different possible networks in total. The cost of an individual
edge of capacity uij is defined as c(uij) = 0.3 + uij , while the cost of the network
Nu represented by the vector u is consequently defined as

c(u) =
∑

ij∈E,uij 6=0

c(uij).

Finally, the recovery parameters aij , bij and λij of the edge ij are presented in the
Table 1. We want to design an optimal network according to each of the proposed
three resilient network design models by using the proposed genetic algorithm.

Model 1. Let us recall that in this model the cost is minimised subject to con-
straints on the value of flow and the resilience of the network. Therefore, the problem
can be written as

min c(u)
s.t. ψ(u) ≥ ψ0 and

R(u,t) ≥ R0
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t ngen uopt ψ(uopt) c(uopt) R(uopt, t)

1 33 (2, 3, 0, 2, 2, 1, 0, 3, 1) 4 16.1 0.590

2 51 (2, 3, 0, 2, 2, 2, 0, 3, 1) 4 17.1 0.786

3 49 (2, 3, 0, 2, 1, 2, 0, 2, 2) 4 16.1 0.841

4 31 (2, 3, 0, 2, 1, 2, 0, 2, 2) 4 16.1 0.879

5 44 (2, 3, 0, 2, 2, 1, 0, 3, 1) 4 16.1 0.904

6 50 (2, 3, 0, 2, 1, 2, 0, 2, 2) 4 16.1 0.902

Table 2: The computational results of Model 1 by using the proposed genetic algo-
rithm.

We set that ψ0 = 4 and R0 equals 0.58, 0.779, 0.838, 0.878, 0.892, 0.9 for t = 1, . . . , 6
respectively. By using these set values, we apply the proposed genetic algorithm to
the problem of non-linear optimisation. When applying the genetic algorithm, the
concrete values of the algorithm parameters, namely the size λ of each generation,
the number µ of genitors in every generation and the stopping criterion, must be
selected. In all these models, the same values and stopping criterion are used.
Firstly, the number of individuals in each generation is set to λ = 400, the number of
the most suitable individuals to become genitors of the next generation is set to µ =
50, the stopping criterion is set in a way that the number of generations is at most
gmax = 200 or that the set of different genitors in P(g) is the same in 10 consecutive
generations. The results obtained by using the proposed genetic algorithm are shown
in Table 2, where ngen denotes the number of generations produced by the algorithm
before the stopping criterion was satisfied. Since ngen ≤ 200 = gmax for every t, it
follows that for each t the execution of the algorithm stopped because the population
of genitors was stable throughout the last 10 generation. By uopt the best ranked
individual from the last generation generated by the algorithm is denoted. The last
three columns of Table 2 show the value of the flow, the cost and the resilience of the
network represented by uopt. The comparison of the obtained uopt with the results
of exact calculations confirms that the proposed algorithm indeed resulted in the
optimum solution for every t = 1, . . . , 6.

Model 2. Recall that in this model the value of the flow is maximised subject to
constraints on the cost and the resilience of the network. Therefore, the problem
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t ngen uopt ψ(uopt) c(uopt) R(uopt, t)

1 15 (1, 3, 0, 2, 2, 0, 1, 3, 0) 3 13.8 0.584

2 19 (2, 2, 0, 2, 2, 0, 0, 3, 0) 3 12.5 0.796

3 20 (1, 3, 0, 1, 2, 1, 0, 3, 0) 3 12.8 0.848

4 19 (1, 3, 0, 1, 2, 0, 1, 2, 1) 3 13.1 0.884

5 18 (1, 3, 0, 1, 2, 0, 0, 3, 2) 3 13.8 0.900

6 19 (1, 3, 1, 1, 2, 0, 0, 3, 0) 3 12.8 0.902

Table 3: The computational results of Model 2 by using the proposed genetic algo-
rithm.

can be written as
max ψ(u)
s.t. c(u) ≤ c0 and

R(u,t) ≥ R0

We set that c0 = 14 and R0 equals 0.58, 0.779, 0.838, 0.878, 0.892, 0.9 for t = 1, . . . , 6
respectively. Setting the same λ = 400 and µ = 50 and by using the same stopping
criterion as in the previous model, the proposed genetic algorithm yields the results
presented in Table 3. The comparison of the obtained uopt with the results of exact
calculations confirms that the proposed algorithm indeed resulted in the optimum
solution for every t = 1, . . . , 6.

Model 3. Recall that in this model the resilience of the network in the time t
is maximised subject to constraints on the cost and the value of the flow in the
network. Therefore, the problem can be written as

max R(u,t)
s.t. c(u) ≤ c0 and

ψ(u) ≥ ψ0

We set that c0 = 18 and ψ0 = 4. Setting the same λ = 400 and µ = 50 and using
the same stopping criterion as in previous models, the proposed genetic algorithm
yields the results presented in Table 4. The comparison of the obtained uopt with the
results of exact calculations confirms that the proposed algorithm indeed resulted
in the optimum solution for every t = 1, . . . , 6.
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t ngen uopt ψ(uopt) c(uopt) R(uopt, t)

1 21 (2, 3, 0, 2, 2, 1, 1, 3, 1) 4 17.4 0.601

2 18 (2, 3, 0, 2, 2, 1, 1, 3, 1) 4 17.4 0.786

3 23 (2, 3, 0, 2, 2, 1, 1, 3, 1) 4 17.4 0.862

4 17 (2, 3, 0, 2, 2, 1, 1, 3, 1) 4 17.4 0.893

5 23 (2, 3, 0, 2, 2, 1, 1, 3, 1) 4 17.4 0.906

6 19 (2, 3, 0, 2, 2, 1, 1, 3, 1) 4 17.4 0.912

Table 4: The computational results of Model 3 by using the proposed genetic algo-
rithm.
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Abstract

In 2001 Sir M. F. Atiyah formulated a conjecture C1 and later with P. Sutcliffe
two stronger conjectures C2 and C3. These conjectures, inspired by physics
(spin-statistics theorem of quantum mechanics), are geometrically defined for
any configuration of points in the Euclidean three space. The conjecture C1
is proved for n = 3, 4 and for general n only for some special configurations
(M. F. Atiyah, M. Eastwood and P. Norbury, D.D-- oković). In [11] and [12] we
have verified the conjectures C2 and C3 for parallelograms, cyclic quadrilaterals
and some infinite families of tetrahedra, and have proposed a strengthening of
conjecture C3 for configurations of four points (Four Points Conjectures). All
three Euclidean four-point conjectures have been proved in [14] (2010.) (see
also [15] for more information) then independently four years later in [10].

For almost collinear configurations of type A (with all but one point on a
line) we propose in [12] several new conjectures (some for symmetric functions)
which imply C2 and C3. By using computations with multi-Schur functions we
can do verifications up to n = 9 of our conjectures. For a type B (and some spe-
cial dihedral configurations) we verify a stronger conjecture of D-- oković which
implies C2 for his nonplanar configurations with dihedral symmetry. Recently

DOI: https://doi.org/10.5592/CO/CCD.2018.10
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we have observed that our generalizations from [12] are capable to imply hy-
perbolic C2 for type A and B configurations and we make these connections
clear in Sections 1.2 and 1.3.

Finally we mention that by minimizing a geometrically defined energy, fig-
uring in these conjectures, one gets a connection to some complicated physical
theories, such as Skyrmions and Fullerenes.

Keywords: Atiyah–Sutcliffe conjecture, almost collinear configuration

MSC: 74H05, 11B37, 26A18, 05A15, 11Y55, 11Y65

1 Almost collinear configurations. D-- oković’s approach

1.1 Type A configurations

By a type A configurations of N points x1, . . . , xN we shall mean the case when
N − 1 of the points x1, . . . , xN are collinear. Set n = N − 1. In ([6]) D-- oković has
proved, for configurations of type A, both the Atiyah conjecture (Theorem 2.1) and
the first Atiyah–Sutcliffe conjecture (Theorem 3.1). By using Cartesian coordinates,
with xi = (ai, 0), a1 < a2 < · · · < an and xN = xn+1 = (0, b) (with b = 1), the
normalized Atiyah matrix Mn+1 = Mn+1(λ1, . . . , λn) (denoted by P in [6] when
b = −1) is given by

Mn+1 =



1 λ1 0 · · · 0 0
0 1 λ2 · · · 0 0
0 0 1 0 0
...

...
...

. . .
...

...
0 0 1 λn

(−1)nen (−1)n−1en−1 · · · · · · −e1 1


where λ1 = a1 +

√
a21 + b2 < λ2 = a2 +

√
a22 + b2 < · · · < λn = an +

√
a2n + b2 (with

b = 1) are positive real numbers and where ek = ek(λ1, . . . , λn), 1 ≤ k ≤ n, is the
k–th elementary symmetric function of λ1, λ2, . . . , λn. Its determinant satisfies the
inequality

Dn = 1 + λne1 + λnλn−1e2 + · · ·+ λnλn−1 · · ·λ1en
≥ 1 + e1(λ

2
1, . . . , λ

2
n) + e2(λ

2
1, . . . , λ

2
n) + · · ·+ en(λ21, . . . , λ

2
n)

=
∏n
i=1(1 + λ2i )
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equivalent to the first Atiyah–Sutcliffe conjecture ([4],Conjecture 2). The second
Atiyah–Sutcliffe conjecture ([4],Conjecture 3) for configurations of type A is equiv-
alent to the following inequality

[Dn+1(λ1, . . . , λn)]n−1 ≥
n∏
k=1

Dn(λ1, . . . , λk−1, λk+1, . . . , λn) (1.1)

For n = 2 this inequality takes the form

1 + λ2e1(λ1, λ2) + λ1λ2e2(λ1, λ2) ≥ (1 + λ2e1(λ2))(1 + λ1e1(λ1)

i.e.

1 + λ2e1(λ1, λ2) + λ1λ2e2(λ1, λ2) ≥ (1 + λ22)(1 + λ21). (1.2)

This reduces to (λ2 − λ1)λ1 ≥ 0, so it is true.

1.2 Type A configurations - hyperbolic case

Let H2 = {(x, y) ∈ R2|y > 0} be the upper half plane model of hyperbolic plane. A
type A hyperbolic configuration denoted by An,1 = A(x1,x2, . . . ,xn; xn+1) consists
of N = n+1 points in H2 where n points are collinear, (x1,x2, . . . ,xn), xi = (0, bi),
b1 > b2 > · · · > bn > 0 and xn+1 = (a, b).
Let us abbreviate the directions tij from xi to xj (viewed as points on the absolute
R ∪ {∞})

ti,n+1 = Xi, 1 ≤ i ≤ n tij = 0 for 1 ≤ i < j ≤ n ,
tn+1,i = −ξi, 1 ≤ i ≤ n tji =∞ for 1 ≤ i < j ≤ n .

Then we have ti,n+1 · tn+1,i = −b2i i.e. ξiXi = b2i .
The Atiyah polynomials associated to points xi (1 ≤ i ≤ n+ 1) defined by

pi =
∏
j 6=i

(z − tij)

(with z − tij interpreted as 1 if tij =∞) are given explicitly as follows

p1 = zn−1(z −X1)
p2 = zn−2(z −X2)

...
pn−1 = z(z −Xn−1)
pn = z −Xn

pn+1 = (z + ξ1)(z + ξ2) · · · (z + ξn) = zn + e1z
n−1 + · · ·+ en ,
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where e1, . . . , en denotes the elementary symmetric functions of ξ1, . . . , ξn.
The Atiyah determinant (the determinant of the matrix of coefficients of pi’s)D

hyp
n,1 =

Dhyp
n,1 (x1,x2, . . . ,xn; xn+1) is then equal to

Dhyp
n,1 =

∣∣∣∣∣∣∣∣∣∣∣

1 −X1

0 1 −X2
...

...
...

. . .

1 −Xn

1 e1 e2 . . . en−1 en

∣∣∣∣∣∣∣∣∣∣∣
= X1 · · ·Xn +X2 · · ·Xne1 + · · ·+ en =

=
n∑
i=0

eiXi+1 · · ·Xn .
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X1X2X3X4Xn

xn

tn+1,n

=−ξn

x4

tn+1,4

=−ξ4

x3

tn+1,3

=−ξ3

x2

tn+1,2

=−ξ2

x1

tn+1,1

=−ξ1

xi = (0, bi)

xn+1 =
(a, b)

ti,j = tij = direction from xi to xj ; 0 < a < X1 < X2 < · · · < Xn
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Note that

X1 · · ·Xn ·Dhyp
n,1

∣∣∣∣
Xi→X−1

i

is a specialization of the polynomial

Ψ12...n
12...n ∈ Q[X1, . . . , Xn, ξ1, . . . , ξn]

defined in the section 1.4 which is symmetric in ξ1, . . . , ξn. The properties of poly-
nomials ΨI

J will enable us to study simultaneously both the euclidean and the hy-
perbolic configurations of type A (and B, defined later). Since∣∣∣∣ 1 −tj,n+1

1 −tn+1,j

∣∣∣∣ = tj,n+1 − tn+1,j = Xj + ξj , 1 ≤ j ≤ n,

we obtain for the normalized Atiyah determinant the following formula

Dn,1 =

n∑
i=0

eiXi+1 · · ·Xn

n∏
j=1

(Xj + ξj)

(with ξiXi = b2i ) .

Lemma 1.1 For 0 < X1 ≤ X2 ≤ . . . ≤ Xn and ξ1, . . . , ξn commuting indetermi-
nates, the inequality

n∏
j=1

(Xj + ξj) ≤
n∑
i=0

ei(ξ1, . . . , ξn)Xi+1 · · ·Xn

holds true coefficientwise.

Proof .
n∏
j=1

(Xj + ξj) =
∑
S⊆[n]

∏
j∈S

ξj ·
∏
k∈SC

Xk ≤
∑
S⊆[n]

∏
j∈S

ξj ·X|S|+1 · · ·Xn

=

n∑
i=0

ei ·Xi+1 · · ·Xn

148



Svrtan, Urbiha Atiyah–Sutcliffe Conjectures for Special Configurations

Corollary 1.2 For any n points on a line and one point outside it in a hyperbolic
plane (or space) we have that the second Atiyah–Sutcliffe conjecture holds true:

Dhyp
n,1 (x1, . . . ,xn,xn+1) ≥

∏
1≤i<j≤n+1

D2(xi,xj) =

n∏
j=1

D2(xj ,xn+1) .

Proof .
We have that l.h.s. is equal to

∑
eiXi+1 · · ·Xn and the r.h.s. reduces to the product∏n

j=1(Xj + ξj).

1.3 Type B configurations - hyperbolic case

Let xi = (0, bi), b1 > b2 > · · · > br > c > br+1 > · · · > bn > 0, (c =
√
a2 + b2),

xn+1 = (a, b) and xn+2 = (−a, b) be a type B hyperbolic configuration of N = n+ 2
points in H2 denoted by Bn,2 = B(x1,x2, . . . ,xn; xn+1,xn+2).
The hyperbolic directions from xi to xj we abbreviate as follows

ti,n+1 = Xi, 1 ≤ i ≤ n tij = 0 for 1 ≤ i < j ≤ n ,
tn+1,i = −ξi, 1 ≤ i ≤ n tji =∞ for 1 ≤ i < j ≤ n ,
ti,n+2 = −Xi, 1 ≤ i ≤ n tn+1,n+2 = −c,
tn+2,i = ξi, 1 ≤ i ≤ n tn+2,n+1 = c.

The Atiyah polynomials associated to points xi (1 ≤ i ≤ n+ 2) defined (in [1] - [4])
by

pi =
∏
j 6=i

(z − tij)

(with z − tij interpreted as 1 if tij =∞) associated to points xi (1 ≤ i ≤ n+ 2) are
then

p1 = zn−1(z −X1)(z +X1)
p2 = zn−2(z −X2)(z +X2)

...
pn−1 = z(z −Xn−1)(z +Xn−1)
pn = (z −Xn)(z +Xn)
pn+1 = (z + ξ1)(z + ξ2) · · · (z + ξn)(z + c) = zn+1 + e1z

n + · · ·+ en+1

pn+2 = (z − ξ1)(z − ξ2) · · · (z − ξn)(z − c) = zn+1 − e1zn + · · ·+ (−1)n+1en+1 .
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(−1)n+1Dhyp
n,2 = (−1)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 −X2
1 0 0

0 1 0 −X2
2 0

...
. . .

0 0 0 1 0 −X2
n

1 e1 e2 e3 · · · en en+1

1 −e1 e2 −e3 · · · (−1)n+1en+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

We first add n+1-st row to the n+2-nd row and then subtract a half of the n+2-nd
row from the n+ 1-st row.

= (−1)n+12

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 −X2
1 0 0

0 1 0 −X2
2 0

...
. . .

0 0 0 1 0 −X2
n

0 e1 0 e3 · · · 0 en+1

1 0 e2 0 · · · en 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
( n even ) = . . .

Then we add −1 · 1st row −(X2
1 + e2) · 3rd row +X2

3 (X2
1 + e2) · 5th row + · · · to the

n+ 2-nd row and we also add −e1 · 2nd row +(−(X2
2e1 + e3)) · 4th row + · · · to the

n+ 1-st row.

= 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 −X2
1 0 0 0

0 1 0 −X2
2 0 0

0 0 1 0 −X2
3 0

0 0 0 1 0 −X2
4 0

0 0 0 0 1 0 −X2
5 0

...
...

...
0 0 0 X2

2e1 + e3 0 e5 · · ·
0 0 X2

1 + e2 0 e4 · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= . . .

At the end we get a triangular matrix whose determinant is equal to Dhyp
n,2 = 2f0f1

where we have for n even
f0n,2 = X2

1X
2
3 · · ·X2

n−1 +X2
3 · · ·X2

n−1e2 + · · ·+X2
n−1en−2 + en

f1n,2 = X2
2X

2
4 · · ·X2

ne1 +X2
4 · · ·X2

ne3 + · · ·+X2
nen−1 + en+1,

and for n odd
f0n,2 = X2

1X
2
3 · · ·X2

n +X2
3 · · ·X2

ne2 + · · ·+X2
nen−1 + en+1

f1n,2 = X2
2X

2
4 · · ·X2

n−1e1 +X2
4 · · ·X2

n−1e3 + · · ·+X2
n−1en−2 + en.
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For example

Dhyp
1,2 = 2(X2

1 + e2)e1

Dhyp
2,2 = 2(X2

1 + e2)(X
2
2e1 + e3)

Dhyp
3,2 = 2(X2

1X
2
3 +X2

3e2 + e4)(X
2
2e1 + e3)

Dhyp
4,2 = 2(X2

1X
2
3 +X2

3e2 + e4)(X
2
2X

2
4e1 +X2

4e3 + e5)

Now we shall verify Atiyah-Sutcliffe Conjecture 2 for the hyperbolic configuration
Bn,2 of the type B which reads as follows

Dhyp
n,2 ≥ (X1 + ξ1)

2(X2 + ξ2)
2 · · · (Xn + ξn)22c (?)

Case 1. (n even) We first rewrite f0n,2 and f1n,2 in terms of c and elementary
symmetric functions e′k (1 ≤ k ≤ n) of ξ1, . . . ξn:

f0n,2 = X2
1X

2
3 · · ·X2

n−1 +X2
3 · · ·X2

n−1e
′
2 + · · ·+X2

n−1e
′
n−2 + e′n

+X2
3 · · ·X2

n−1e
′
1c+ · · ·+X2

n−1e
′
n−3c+ e′n−1c

f1n,2 = X2
2X

2
4 · · ·X2

ne
′
1 +X2

4 · · ·X2
ne
′
3 + · · ·+X2

ne
′
n−1 + e′n+1

X2
2X

2
4 · · ·X2

nc+X2
4 · · ·X2

ne
′
2c+ · · ·+X2

nen−2c+ e′nc

Now by Cauchy-Schwartz

Dhyp
n,2 = 2f0n,2f

1
n,2 ≥

≥ 2(X1X3 · · ·Xn−1 ·X2X4 · · ·Xn
√
c+X3X5 · · ·Xn−1 ·X2X4 · · ·Xne

′
1

√
c+ · · ·+ e′n

√
c)2 =

= (X1X2 · · ·Xn +X2X3 · · ·Xne
′
1 + · · ·+Xne

′
n−1 + e′n)2 · 2c =

= (Dhyp
n,1 )2 · 2c

Now by Corollary 1.2 for Dhyp
n,1 the inequality (?) follows.

Case 2. (n odd) Is similar to Case 1.

This concludes the verification of the Atiyah-Sutcliffe Conjecture C2 for hyperbolic
type B configurations.

Now we state the strongest Atiyah-Sutcliffe conjecture C3 for type A and type
B hyperbolic configurations.

Conjecture 3.
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(i) Dhyp
n,1 (x1, . . . ,xn; xn+1)

n−1 ≥
∏n
k=1D

hyp
n−1,1(x1, . . . x̂k, . . . ,xn; xn+1)

(a hyperbolic analogue of formula (1.1))

(ii) Dhyp
n,2 (x1, . . . ,xn; xn+1,xn+2)

n ≥ Dhyp
n,1 (x1, . . . ,xn; xn+1)·

·Dhyp
n,1 (x1, . . . ,xn; xn+2)

∏n
k=1D

hyp
n−1,2(x1, . . . x̂k, . . . ,xn; xn+1,xn+2)

For example for n = 2 we have(
Dhyp

2,2

)2
= 4

[
X2

1 + ξ1ξ2 + (ξ1 + ξ2)c
]2 [

X2
2 (ξ1 + ξ2) + (X2

2 + ξ1ξ2)c
]2 ≥

≥ (X1X2 +X2(ξ1 + ξ2) + ξ1ξ2)
2 · (X2

1 + ξ1c)(c+ ξ2) · (X2
2 + ξ2c)(c+ ξ1)

which can be proved by considering the following three cases:

Case 1: 0 < X1 < X2 < c < ξ2 < ξ1

Case 2: 0 < ξ2 < X1 < c < X2 < ξ1

Case 3: 0 < ξ2 < ξ1 < c < X1 < X2

and we get coefficient-wise inequality in terms of variables representing increments
e.g. in Case 1: h1 = X2 −X1, h2 = c−X2, h3 = ξ2 − c, h4 = ξ1 − ξ2 and X1.

We expect that the general proof will not be so elementary.

For hyperbolic planar four points case the conjectures C1 and C2 were verified and
reported in [16] and the conjecture C1 for non planar case of four points in H3 were
treated in [9] therefore conjecture C1 was verified for any four points in H3.
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xi = (0, bi)

c−c

xn

−ξn ξn

x4

−ξ4 ξ4

x3

−ξ3 ξ3

x2

−ξ2 ξ2

x1

−ξ1 ξ1

xn+1 =
(a, b)

X1X2X3X4Xn

xn+2 =
(−a, b)

−Xn−X4−X3−X2−X1

ti,j = tij = direction from xi to xj ; 0 < a < X1 < X2 < · · · < Xn
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1.4 Type (A) configurations (cont.)

Even for n = 3 the inequality (1.1) is quite messy thanks to nonsymmetric character
of both sides.

Knowing that sometimes it is easier to solve a more general problem we followed
that path (although we didn’t solve the problem in full generality). So let us start
with the case n = 2. If we look at the following inequality

1 +X1(ξ1 + ξ2) +X1X2ξ1ξ2 ≥ (1 +X1ξ1)(1 +X2ξ2)

which is clearly true if X1 ≥ X2 ≥ 0 and ξ1, ξ2 ≥ 0 we obtain the inequality (1.2)
simply by a specialization X1 = ξ1 = λ2, X2 = ξ2 = λ1. So we proceed as follows:

Let ξ1, . . . , ξn, X1, . . . , Xn, n ≥ 1 be two sets of commuting indeterminates. For
any l, 1 ≤ l ≤ n and any sequences 1 ≤ i1 ≤ · · · ≤ il ≤ n, 1 ≤ j1, . . . , jl ≤ n we
define polynomials ΨI

J = Ψi1...il
j1...jl

∈ Q[ξ1, . . . , ξn, X1, . . . , Xn] as follows:

ΨI
J :=

l∑
k=0

ek(ξj1 , ξj2 , . . . , ξjl)Xi1Xi2 · · ·Xik , (l ≥ 1), Ψ∅∅ := 1 (j = 0)

where ek is the k-th elementary symmetric function.
In particular we have

Ψi
j = 1 + ξjXi,

Ψi1i2
j1j2

= 1 + (ξj1 + ξj2)Xi1 + ξj1ξj2Xi1Xi2 ,

Ψi1i2i3
j1j2j3

= 1 + (ξj1 + ξj2 + ξj3)Xi1 + (ξj1ξj2 + ξj1ξj3 + ξj2ξj3)Xi1Xi2+

+ ξj1ξj2ξj3Xi1Xi2Xi3 ,
etc.

The polynomials ΨI
J are symmetric w.r.t. ξj1 , ξj2 , . . . , ξjl , but nonsymmetric w.r.t.

Xi1 , Xi2 , . . . , Xil . By specializing Xi’s to assume real values such that Xi1 ≥ Xi2 ≥
. . . ≥ Xil ≥ 0 then we obtain polynomials in ξj ’s satisfying the following simple but
important property.

Proposition 1.3 (Partition property)
Let (I1, . . . , Is) and (J1, . . . , Js) be ordered set partitions of respective sets I =⋃s
p=1 Ip and J =

⋃s
p=1 Jp such that |Ip| = |Jp|, 1 ≤ p ≤ s. Then the inequality

ΨI
J ≥

s∏
p=1

Ψ
Ip
Jp
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holds coefficientwise w.r.t. ξj’s.

Proof .
Proof is evident from the definition of ΨI

J and the monotonicity of Xi’s.
For the powers

(
ΨI
J

)m
we have the following conjecture.

Conjecture 1.4 (Weighted Multiset Partition Conjecture)
For given natural number m and sets I and J , |I| = |J |, of natural numbers let
(I1, . . . , Is) and (J1, . . . , Js) be the partitions of the multiset Im consisting of m
copies of all elements of I and similarly for Jm.

(i) Then the inequality

(
ΨI
J

)m ≥ s∏
p=1

Ψ
Ip
Jp

holds coefficientwise w.r.t. ξj’s.

(ii) The difference

(
ΨI
J

)m − s∏
p=1

Ψ
Ip
Jp

is multi–Schur positive with respect to partial alphabets corresponding to the
atoms of the intersection lattice of the set system {J1, . . . , Js}.

For example, by Partition property, we have the following inequalities

Ψ1...n
1...n ≥ Ψk

kΨ
1..k̂..n
1..k̂..n

, (1 ≤ k ≤ n)

which imply the following inequality

(
Ψ1...n

1...n

)n ≥ n∏
k=1

Ψk
k

n∏
k=1

Ψ1..k̂..n
1..k̂..n

By Partition property we also have the following inequality

Ψ1...n
1...n ≥

n∏
k=1

Ψk
k
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The last two inequalities suggest the validity of the following inequality

(
Ψ1...n

1...n

)n−1 ≥ n∏
k=1

Ψ1..k̂..n
1..k̂..n

which is far from obvious (see Conjecture 1.5 below) although it would be a simple
consequence of our Weighted Multiset Partition Conjecture.

This last conjectural inequality is interesting because it generalizes some special
cases of not yet proven conjectures of Atiyah and Sutcliffe on configurations of points
in three dimensional Euclidean space.

Our conjecture reads as follows:

Conjecture 1.5 For any n ≥ 1, let X1 ≥ X2 ≥ . . . ≥ Xn ≥ 0, ξ1, ξ2, . . . , ξn ≥ 0,
be nonnegative real numbers. Then we have coefficientwise (w.r.t. ξ1, ξ2, . . . , ξn)
inequality

(
Ψ12···n

12···n
)n−1 ≥ n∏

k=1

Ψ12···k̂···n
12···k̂···n

where 12 · · · k̂ · · ·n denotes the sequence 12 · · · (k − 1)(k + 1) · · ·n. The equality
obviously holds true iff X1 = X2 = · · · = Xn.

This Conjecture implies the strongest Atiyah–Sutcliffe’s conjecture for almost
collinear configurations of points (all but one point are collinear, called type(A) in
[6]).

To illustrate the Conjecture (1.5) we consider first the cases n = 2 and n = 3.

Case n = 2: We have

Ψ12
12= 1 + (ξ1 + ξ2)X1 + ξ1ξ2X1X2 =

= 1 + ξ1X1 + ξ2X2 + ξ1ξ2X1X2 + (X1 −X2)ξ2 =

= (1 + ξ1X1)(1 + ξ2X2) + ξ2(X1 −X2) ≥

≥ (1 + ξ1X1)(1 + ξ2X2) = Ψ1
1Ψ

2
2.

Case n = 3: We first write Ψ123
123 in two different ways:

Ψ123
123 = ξ2(X1 −X2) + Ψ̂123

123 and Ψ123
123 = ξ3(X1 −X2) + Ψ̂123

123.
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Note that Ψ̂123
123 is obtained from Ψ123

123 by replacing the linear term ξ2X1 by
ξ2X2, hence all its coefficients are nonnegative.

The left hand side of the Conjecture (1.5) L3 can be rewritten as follows:

L3 = (Ψ123
123)

2= (ξ2(X1 −X2) + Ψ̂123
123)Ψ

123
123

= ξ2(X1 −X2)Ψ
123
123 + Ψ̂123

123Ψ
123
123

= ξ2(X1 −X2)Ψ
123
123 + Ψ̂123

123(ξ3(X1 −X2) + Ψ̂123
123)

= L′3(X1 −X2) + Ψ̂123
123Ψ̂

123
123

where L′3 = ξ2Ψ
123
123 + ξ3Ψ̂

123
123 is a positive polynomial.

Now we have

L3 ≥ L̂3 := Ψ̂123
123Ψ̂

123
123.

By using the formula

Ψ̂123
123 = Ψ12

13 + ξ2X2Ψ
13
13 = (Ψ2

2 − 1)Ψ13
13 + Ψ12

13

we can rewrite L̂3 as

L̂3=
[
(Ψ12

13 −Ψ13
13) + Ψ2

2Ψ
13
13

]
Ψ̂123

123

= ξ1ξ3X1(X2 −X3)Ψ̂
123
123 + Ψ13

13(Ψ
2
2Ψ̂

123
123)

The last term in parenthesis can be written as

Ψ2
2Ψ̂

123
123= Ψ12

12Ψ
23
23 + Ψ1

2(Ψ
22
23 −Ψ23

23)

= Ψ12
12Ψ

23
23 + ξ2ξ3X2(X2 −X3)Ψ

1
2,

so we get

L̂3 = L′′3(X2 −X3) + Ψ12
12Ψ

13
13Ψ

23
23

where L′′3 denotes the positive polynomial

L′′3 = ξ1ξ3X1Ψ̂
123
123 + ξ2ξ3X2Ψ

1
2Ψ

13
13.

We now have an explicit formula for L3:

L3 = L′3(X1 −X2) + L′′3(X2 −X3) + Ψ12
12Ψ

13
13Ψ

23
23
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with L′3, L
′′
3 positive polynomials, which together with X1 ≥ X2 ≥ X3(≥ 0)

implies that

L3 ≥ R3 := Ψ12
12Ψ

13
13Ψ

23
23

and the Conjecture (1.5) (n = 3) is proved.

In fact we have proven an instance n = 3 L̂3 ≥ R3 of a stronger conjecture which
we are going to formulate now. Let 2 ≤ k ≤ n. We define the modified polynomials
Ψ̂12...k...n

12...k...n as follows:

Ψ̂12...k...n
12...k...n := ξk(X2 −X1) + Ψ12...n

12...n

obtained from Ψ12...n
12...n by replacing only one term ξkX1 by ξkX2, hence Ψ̂12...k...n

12...k...n are
still positive. Let us introduce the following notation:

L̂n :=

n∏
k=2

Ψ̂12...k...n
12...k...n ; Rn :=

n∏
k=1

Ψ12...k̂...n
12...k̂...n

.

Then clearly Ln := (Ψ12...n
12...n)n−1 ≥ L̂n. Now our stronger conjecture reads as

Conjecture 1.6

L̂n ≥ Rn (n ≥ 1)

with equality iff X2 = X3 = · · · = Xn.

More generally, we conjecture that the difference L̂n−Rn is a polynomial in the dif-
ferencesX2−X3, X3−X4, . . ., Xn−1−Xn with coefficients in Z≥0[X1, . . . , Xn, ξ1, . . . , ξn].

Proposition 1.7

Ln = L′n(X1 −X2) + L̂n

for some positive polynomial L′n.

Proof of Proposition 1.7.
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Ln = (Ψ12···n
12···n)n−1 = (ξ2(X1 −X2) + Ψ̂12···n

12···n)(Ψ12···n
12···n)n−2

= ξ2(X1 −X2)(Ψ
12···n
12···n)n−2 + Ψ̂12···n

12···n(ξ3(X1 −X2) + Ψ̂123···n
123···n)(Ψ12···n

12···n)n−3

= ξ2(X1 −X2)(Ψ
12···n
12···n)n−2 + ξ3(X1 −X2)Ψ̂

12···n
12···n(Ψ12···n

12···n)n−3+

+ Ψ̂12···n
12···nΨ̂123···n

123···n(Ψ12···n
12···n)n−3

...

= (
∑n−1

k=1 ξk+1(
∏k
j=2 Ψ̂12...j...n

12...j...n)(Ψ12...n
12...n)n−k)(X1 −X2) +

∏n
j=2 Ψ̂12...j...n

12...j...n.

Now we turn to study the quotient

Ln
Rn

=
(Ψ1...n

1...n)n−1

n∏
k=1

Ψ1...k̂...n
1...k̂...n

by studying the growth behaviour of quotients of its factors Ψ1...n
1...n/Ψ

1...k̂...n
1...k̂...n

w.r.t.
any of its arguments Xr, 1 ≤ r ≤ n.

In the following theorem we obtain an explicit formula for the numerators of the

derivatives w.r.t. Xr, (1 ≤ r ≤ n, r 6= k) of the quantities Ψ1...n
1...n/Ψ

1...k̂...n
1...k̂...n

. From this
formulas we get some monotonicity properties which enable us to state some new
(refined) conjectures later on.

Theorem 1.8 Let

∆r := ∂XrΨ
1...n
1...n ·Ψ1...k̂...n

1...k̂...n
−Ψ1...n

1...n · ∂XrΨ1...k̂...n
1...k̂...n

, (1 ≤ r ≤ n). (1.3)

Then we have the following explicit formulas

(i) for any r, 1 ≤ r < k(≤ n) we have

∆r = ξk
∑

0≤i<r≤j≤n
s
(k)
(j−1,i)′X

2
1 · · ·X2

iXi+1 · · · X̂k · · ·Xj+

+
∑

0≤i<r,k≤j<n
eie

(k)
j X2

1 · · ·X2
iXi+1 · · · X̂r · · · X̂k · · ·Xj(Xk −Xj+1)
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(ii) for any r, (1 ≤)k < r ≤ n we have

∆r = −

 ∑
0≤i<r≤j≤n

s
(k)
(j−1,i)′X

2
1 · · ·X2

iXi+1 · · · X̂k · · · X̂r · · ·Xj+

+
∑

0≤i<k,r≤j<n
e
(k)
i ejX

2
1 · · ·X2

iXi+1 · · · X̂k · · · X̂r · · ·Xj(Xj+1 −Xk)


where s

(k)
λ denotes the λ–th Schur function of ξ1, . . . , ξk−1, ξk+1, . . . , ξn (ξk

omitted).

Proof of Theorem 1.8.
(i) For any r, 1 ≤ r < k(≤ n) we find explicitly a formula as follows. We shall use

notations X1..i := X1X2 · · ·Xi, for multilinear monomials and ei := ei(ξ1, . . . , ξn),

e
(k)
i = ei(ξ1, . . . , ξ̂k, . . . ξn) for the elementary symmetric functions (here k is fixed).

Then we can rewrite our basic quantities

Ψ1...n
1...n :=

n∑
i=0

eiX1..i (1.4)

Ψ1...k̂...n
1...k̂...n

:=
k−1∑
i=0

e
(k)
i X1..i +

1

Xk

n−1∑
i=k

e
(k)
i X1..i+1 =

=
n−1∑
i=0

e
(k)
i X1..i +

1

Xk

n−1∑
i=k

e
(k)
i X1..i(Xi+1 −Xk)

(1.5)

For the derivatives we get immediately

∂XrΨ
1...n
1...n =

1

Xr

n∑
i=r

eiX1..i =
1

Xr

(
Ψ1...n

1...n −
r−1∑
i=0

eiX1..i

)
(1.6)

∂XrΨ
1...k̂...n
1...k̂...n

=
1

Xr

n−1∑
i=r

e
(k)
i X1..i +

1

XkXr

n−1∑
i=k

e
(k)
i X1..i(Xi+1 −Xk) (1.7)

=
1

Xr

(
Ψ1...k̂...n

1...k̂...n
−

r−1∑
i=0

e
(k)
i X1..i

)
(1.8)
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By plugging (1.6) and (1.8) into (1.3) we obtain

Xr∆r = Ψ1...n
1...n

(
r−1∑
i=0

e
(k)
i X1..i

)
−Ψ1...k̂...n

1...k̂...n

(
r−1∑
i=0

eiX1..i

)
=

and after simple cancelation, by invoking (1.5) we get

=
(∑n

j=r ejX1..j

)(∑r−1
i=0 e

(k)
i X1..i

)
−(∑n−1

j=r e
(k)
j X1..j + 1

Xk

∑n−1
j=k e

(k)
j X1..j(Xj+1 −Xk)

)(∑r−1
i=0 eiX1..i

)
i.e.

Xr∆r =
∑

0≤i<r≤j≤n

(eje
(k)
i − eie(k)j )X1..iX1..j +

1

Xk

∑
0≤i<r,k≤j<n

eie
(k)
j X1..iX1..j(Xk −Xj+1)

If we use a simple identity ej = e
(k)
j + ξke

(k)
j−1, we can identify the quantity

eje
(k)
i − eie

(k)
j = (e

(k)
j + ξke

(k)
j−1)e

(k)
i − (e

(k)
i + ξke

(k)
i−1)e

(k)
j =

=

∣∣∣∣∣ e(k)j−1 e
(k)
j

e
(k)
i−1 e

(k)
i

∣∣∣∣∣ ξk = s
(k)

2i1j−i−1ξk

Thus in this case (1 ≤ r < k) we obtain a formula

∆r = ξk
∑

0≤i<r≤j≤n
s
(k)
(j−1,i)′X

2
1 · · ·X2

iXi+1 · · · X̂r · · ·Xj+

+
∑

0≤i<r,k≤j<n
eie

(k)
j X2

1 · · ·X2
iXi+1 · · · X̂r · · · X̂k · · ·Xj(Xk −Xj+1)

(where e
(k)
j = ej(ξ1, . . . , ξ̂k, . . . , ξn)) in terms of Schur functions (of arguments

ξ1, . . . , ξ̂k, . . . , ξn) corresponding to a transpose (j − 1, i)′ = (2i1j−i−1) of a par-
tition (j − 1, i) (cf. Jacobi–Trudi formula, I 3.5 in [8]).

(ii) For any r, (1 ≤)k < r ≤ n. In this case we use

∂XrΨ
1...k̂...n
1...k̂...n

=
1

XkXr

n−1∑
j=r−1

e
(k)
j X1..j+1
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Ψ1...k̂...n
1...k̂...n

=
k−1∑
i=0

e
(k)
i X1..i +

1

Xk

n−1∑
i=k

e
(k)
i X1..i+1 =

=
1

Xk

(
k−1∑
i=0

X1..i(Xk −Xi+1) +

n−1∑
i=0

e
(k)
i X1..i

)
By plugging this into (1.3) we get

XkXr∆r =

 n∑
j=r

ejX1..j

(k−1∑
i=0

e
(k)
i X1..i(Xk −Xi+1) +

n−1∑
i=0

e
(k)
i X1..i+1

)
−

−

r−1∑
j=0

ejX1..j +

n∑
j=r

ejX1..j

( n−1∑
i=r−1

e
(k)
i X1..i+1

)

=

(
r−2∑
i=0

e
(k)
i X1..i+1

) n∑
j=r

ejX1..j

−(r−1∑
i=0

eiX1..i

) n−1∑
j=r−1

e
(k)
j X1..j+1

+

+
k−1∑
i=0

n∑
j=r

e
(k)
i ejX1..iX1..j(Xk −Xi+1)

=

(
r−1∑
i=1

e
(k)
i−1X1..i

) n∑
j=r

ejX1..j

−(r−1∑
i=0

eiX1..i

) n∑
j=r

e
(k)
j−1X1..j

+

+
k−1∑
i=0

n∑
j=r

e
(k)
i ejX1..iX1..j(Xk −Xi+1)

By using a formula for elementary symmetric functions (ei = e
(k)
i + ξke

(k)
i−1) we can

write in terms of Schur functions (of arguments ξ1, . . . , ξk−1, ξk+1, . . . , ξn), where λ′

is a conjugate of λ.

e
(k)
i−1ej − eie

(k)
j−1 = e

(k)
i−1e

(k)
j − e

(k)
i e

(k)
j−1 = −

∣∣∣∣∣ e(k)j−1 e
(k)
j

e
(k)
i−1 e

(k)
i

∣∣∣∣∣ = −s(k)
2i1j−i−1 = −s(k)(j−1,i)′

Thus we obtain a formula

∆r = −

 ∑
0≤i<r≤j≤n

s
(k)
(j−1,i)′X

2
1 · · ·X2

iXi+1 · · · X̂k · · · X̂r · · ·Xj+

+
∑

0≤i<k,r≤j<n
e
(k)
i ejX

2
1 · · ·X2

iXi+1 · · · X̂k · · · X̂r · · ·Xj(Xj+1 −Xk)


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Corollary 1.9 (Xr–monotonicity)
Let X1 ≥ · · · ≥ Xn ≥ 0, ξ1, . . . , ξn ≥ 0 be as before. Then

(i) for any r, 1 ≤ r < k (≤ n) we have

Ψ1...n
1...n

Ψ1...k̂...n
1...k̂...n

≥
Ψ1... r+1 r+1 ...n

1... r r+1 ...n

Ψ1... r+1 r+1 ...k̂...n

1... r r+1 ...k̂...n

(ii) for any r, (1 ≤) k < r (≤ n) we have

Ψ1...n
1...n

Ψ1...k̂...n
1...k̂...n

≥
Ψ1... r−1 r−1 ...n

1... r−1 r ...n

Ψ1...k̂... r−1 r−1 ...n

1...k̂... r−1 r ...n

Now we illustrate how to use Corollary 1.9 to prove our Conjecture 1.5 for n = 2, 3, 4
and 5.
Case n = 2

Q2 :=
Ψ12

12

Ψ1
1Ψ

2
2

≥ Ψ22
12

Ψ2
1Ψ

2
2

= 1 (by (i))

Case n = 3

Q3 :=
Ψ123

123Ψ
123
123

Ψ12
12Ψ

13
13Ψ

23
23

≥ Ψ223
123Ψ123

123

Ψ22
12Ψ13

13Ψ
23
23

≥ Ψ223
123Ψ

223
123

Ψ22
12Ψ

23
13Ψ23

23

(by (i))

≥ Ψ222
123Ψ223

123

Ψ22
12Ψ

22
13Ψ23

23

≥ Ψ222
123Ψ

222
123

Ψ22
12Ψ

22
13Ψ

22
23

= 1 (by (ii))

Case n = 4

Q4 :=
(Ψ1234

1234)
3

Ψ123
123Ψ

124
124Ψ

134
134Ψ

234
234

≥ · · · ≥ Ψ2244
1234(Ψ

2224
1234)

2

Ψ224
123Ψ

224
124Ψ

224
134Ψ

224
234

(≥ 1)

This last inequality follows from the following symmetric function identity:

Ψ2244
1234(Ψ

2224
1234)

2 −Ψ224
123Ψ

224
124Ψ

224
134Ψ

224
234 =

X2
2X

4
4m2222 + 2X2

2X
3
4m2221 +X2

2X
2
4m222 + 3X2

2X
2
4m2211 +X2

2X4m221

+4X2
2X4m2111 +X2

2m211 +X2(3X2 + 2X4)m1111 +X2m111
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where mλ = mλ(ξ1, ξ2, ξ3, ξ4) are the monomial symmetric functions.
Case n = 5

Q5 :=
(Ψ1...5

1...5)
4∏5

k=1 Ψ1...k̂...5
1...k̂...5

≥ · · · ≥ (Ψ22244
12345Ψ

22444
12345)

2

Ψ2244
1234Ψ

2244
1235Ψ

2244
1245Ψ

2244
1345Ψ

2244
2345

(≥ 1)

The last inequality is equivalent to an explicit symmetric function identity with all
coefficients (w.r.t. monomial basis) positive.

Now we state our stronger conjecture.

Conjecture 1.10 (for symmetric functions)
Let X1 ≥ X2 ≥ · · · ≥ Xn ≥ 0 and ξ1, . . . , ξn ≥ 0. Then the inequalities

(a) For n even

Ψ2 2 4 4...n n
1 2 ... n−1 n

n/2∏
k=1

Ψ2 2 4 4...2k 2k 2k...n−2 n−2 n
1 2 3 4 ... n−1 n

2

≥
n∏

k=1

Ψ2 2 4 4...n−2 n−2 n

1 2 ... k̂ ... n−1 n

(b) For n oddbn/2c∏
k=1

Ψ2 2 4 4...2k 2k 2k...n−1 n−1
1 2 3 4 ... n−1 n

2

≥
n∏

k=1

Ψ2 2 4 4...n−1 n−1

1 2 ... k̂ ... n

hold true coefficientwise (m–positivity).

Now we motivate another inequalities for symmetric functions which also refine
the strongest Atiyah–Sutcliffe conjecture for configurations of type (A). Let n = 3.
We apply Corollary 1.9 by using steps (ii) only.

Q3 :=
Ψ123

123Ψ
123
123

Ψ12
12Ψ

13
13Ψ

23
23

≥ Ψ113
123Ψ

123
123

Ψ12
12Ψ

13
13Ψ

13
23

≥ Ψ112
123Ψ

123
123

Ψ12
12Ψ

12
13Ψ

13
23

≥ Ψ112
123Ψ

122
123

Ψ12
12Ψ

12
13Ψ

12
23

≥ 1

The last inequality is equivalent to nonnegativity of the expression

Ψ112
123Ψ

122
123 −Ψ12

12Ψ
12
13Ψ

12
23 (= X1(X1 −X2)

2ξ1ξ2ξ3 ≥ 0).

Similarly, for n = 4, the symmetric function inequality stronger than Q4 ≥ 1 would
be the following

Ψ1123
1234Ψ

1223
1234Ψ

1233
1234 ≥ Ψ123

123Ψ
123
124Ψ

123
134Ψ

123
234

Now we state a general conjecture for symmetric functions which imply the strongest
Atiyah–Sutcliffe conjecture for almost collinear type (A) configurations.
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Conjecture 1.11 Let X1 ≥ · · · ≥ Xn ≥, ξ1, . . . ξn ≥ 0. Then the following inequal-
ity for symmetric functions in ξ1, . . . , ξn

Ψ112...n−1
123...n Ψ1223...n−1

1234...n · · ·Ψ12...n−2 n−1 n−1
12...n−2 n−1 n ≥ Ψ1 2...n−1

1 2...n−1Ψ
1 2...n−1
1 2...n−2 n · · ·Ψ

1 2...n−1
2 3...n−1

i.e.

n−1∏
k=1

Ψ1 2...k k ...n
1 2...k k+1...n ≥

n∏
k=1

Ψ1 2 ... n−1
1 2...k̂...n

holds true coefficientwise (m–positivity, even s–positivity).

Remark 1.12 Conjectures 1.10 and 1.11 seems to hold also for the Schur basis of
symmetric functions in ξ1, . . . , ξn.

We have checked this Conjecture 1.11 up to n = 5 by using Maple and symmetric
function package SF of J. Stembridge. For n bigger than five the computations are
extremely intensive and hopefully in the near future would be possible by using
more powerful computers.

Note that the right hand side of the Conjecture 1.11 involves symmetric functions
of partial alphabets ξ1, ξ2, . . . , ξk−1, ξk+1, . . . , ξn. But the left hand side doesn’t have
this ”defect”. Our objective now is to give explicit formula for the right hand side
in terms of the elementary symmetric functions of the full alphabet ξ1, ξ2, . . . , ξn.
This we are going to achieve by using resultants as follows.

Lemma 1.13 For any k, (1 ≤ k ≤ n), we have

Ψ1...k...n−1
1...k̂...n

=
n−1∑
j=0

ajξ
n−1−j
k

where

an−1 = 1 +X1e1 +X1X2e2 + . . .+X1 · · ·Xn−1en−1,
an−2 = −X1 −X1X2e1 − . . .−X1 · · ·Xn−1en−2,
· · ·
a0 = (−1)n−1X1 · · ·Xn−1

i.e.

an−1−j = (−1)j
n−1∑
i=j

X1 · · ·Xiei−j
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Proof of Lemma 1.13.
By definition we have

Ψ1...n−1
1...k̂...n

=
n−1∑
i=0

X1 · · ·Xie
(k)
i (1.9)

where e
(k)
i is the i–th elementary function of ξ1, . . . , ξk−1, ξk+1, . . . , ξn. Now from

the decomposition

(1 + ξkt)
−1

n∏
j=1

(1 + ξjt) =
∏
j 6=k

(1 + ξjt) =

n−1∑
i=0

e
(k)
i ti

we get

e
(k)
i = ei − ei−1ξk + ei−2ξ

2
k − · · ·+ (−1)iξik

By substituting this into equation (1.9) the Lemma 1.13 follows.

Then, by Lemma 1.13, the right hand side of the Conjecture 1.11

Rn =
n∏
k=1

Ψ1 2 ... k ... n−1
1 2 ... k̂ ... n

=
n∏
k=1

n−1∑
j=0

ajξ
n−1−j
k


can be interpreted as a resultant Rn = Resultant(f, g) of the following two polyno-
mials

f(x) =
n−1∑
j=0

ajx
n−1−j

g(x) =
n∏
i=1

(x− ξi) =
n∑
j=0

(−1)jejx
n−j
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Then Sylvester formula

Rn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −e1 e2 −e3 . . . (−1)nen
1 −e1 e2 −e3 . . .

. . .

1 −e1 · · ·
a0 a1 a2 · · · an

a0 a1 a2 · · · an
. . .

a0 a1 a2 · · · an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
=:

∣∣∣∣ A B
C D

∣∣∣∣)

can be simplified as

= |A| · |D − CA−1B| = |D − CA−1B|.

The entries of the n× n matrix ∆ := D − CA−1B are given by

δij =


(−1)j−i−1

n∑
k=j+1

X1 · · ·Xk+i−jek, 0 ≤ i < j ≤ n− 1

(−1)j−i
j∑

k=0

X1 · · ·Xk+i−jek, 0 ≤ j ≤ i ≤ n− 1

For example, for n = 3

∆3 =

∣∣∣∣∣∣∣∣
1 X1e2 +X1X2e3 −X1e3

−X1 1 +X1e1 X1X2e3

X1X2 −X1 −X1X2e1 1 +X1e1 +X1X2e2

∣∣∣∣∣∣∣∣
By elementary operations (including multiplication of 2nd row and column by −1)
we get

∆3 =

∣∣∣∣∣∣∣∣
1 ∗ ∗

0 Ψ112
123 X1(X2 −X1)e3

0 X2 −X1 Ψ122
123

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣ Ψ112
123 X1(X2 −X1)e3

X2 −X1 Ψ122
123

∣∣∣∣∣ =

=

∣∣∣∣∣ Ψ112
123 X1(X1 −X2)e3

X1 −X2 Ψ122
123

∣∣∣∣∣ .
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Similarly, for n = 4 we obtain

∆4 =

∣∣∣∣∣∣∣∣
Ψ1123

1234 −X1(X1 −X2)e3 −X1X2(X1 −X3)e4 X1(X1 −X2)e4

−(X1 −X2) Ψ1223
1234 −X1X2(X2 −X3)e4

X1(X2 −X3) −(X1 −X3)−X1(X2 −X3)e1 Ψ1233
1234

∣∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣∣
Ψ1123

1234 X1(X1 −X2)e3 +X1X2(X1 −X3)e4 X1(X1 −X2)e4

(X1 −X2) Ψ1223
1234 X1X2(X2 −X3)e4

X1(X2 −X3) (X1 −X3) +X1(X2 −X3)e1 Ψ1233
1234

∣∣∣∣∣∣∣∣ .
By using abbreviations Xij = Xi −Xj it can be rewritten as

∆4 =

∣∣∣∣∣∣∣∣
Ψ1123

1234 X1X12e3 +X1X2X13e4 X1X12e4

X12 Ψ1223
1234 X1X2X23e4

X1X23 X13 +X1X23e1 Ψ1233
1234

∣∣∣∣∣∣∣∣ .
In general

∆n = det(δ′ij)1≤i,j≤n−1

where

δ′ij =



n∑
k=j+1

X1 · · ·Xk+i−j−1(Xi −Xk+i−j)ek , 1 ≤ i < j ≤ n− 1

Ψ1 ... i i ... n
1 2 ... n , i = j

j∑
k=0

X1 · · ·Xk+i−j−1(Xk+i−j −Xi)ek , 1 ≤ j < i ≤ n− 1

Note that all δ′ij are symmetric polynomials with non negative coefficients.

Corollary 1.14 The conjecture 1.11 is equivalent to a Hadamard type inequality,
holding coefficientwise (m–positivity, even s–positivity), for the (non Hermitian)
matrix (δ′ij)1≤i,j≤n−1, i.e.

n−1∏
i=1

δ′ii ≥ det(δ′ij) .
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2 Verification of the D-- oković’s strengthening of the Atiyah–
Sutcliffe Conjecture (C2) for some nonplanar config-
urations with dihedral symmetry

Here we basically follow D-- oković’s [7], where he considered the following dihedral
configurations Cm,n (type D).

Let N = m+ n points be such that

1. The first m points x1, . . . , xm lie on a line L.

2. The remaining n points yj = xm+j+1 (j = 0, 1, ..., n− 1) are the vertices of a
regular n–gon whose plane is perpendicular to L and whose centroid lies on
L.

He only proved Atiyah conjecture C1. We make some additional refinements includ-
ing a proof of Atiyah–Sutcliffe conjecture C2 for such configurations.

We may assume L = R × {0} ⊂ R × C = R3 and write xi = (ai, 0), 1 ≤ i ≤ m,
a1 ≤ . . . ≤ am and yj = (0, bj), bj = −ξj , ξ = e2πi/n, 0 ≤ j ≤ n− 1.

We set

λi = ai +
√

1 + a2i

Recall that a1 < · · · < am and, consequently 0 < λ1 < · · · < λm. Then the
associated polynomials pi (up to scalar factors) are given by

pi(x, y) = xm−iyi−1(xn − λni yn), 1 ≤ i ≤ m

pm+j+1(x, y) =
∏
s 6=j

(
x+

bs − bj
|bs − bj |

y

)
·
m∏
i=1

(y − λibjx), 0 ≤ j < n

By noting that

bs − bj = 2iξ
j+s
2 sin

π(j − s)
n

(in D-- oković ξj+s should be replaced by ξ
j+s
2 ) we obtain

x+
bs − bj
|bs − bj |

y =
(
−bjy − iξ

s−j
2 sgn(s− j)

) 1− bsbj
|bs − bj |
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and

y − λibjx = −bj(−bjy + λix)

Note also that

{ξ
s−j
2 sgn(s− j)|s = 1, . . . , j − 1, j + 1, . . . , n} = {eπik/n|k = 1, . . . , n− 1}

Thus, after dehomogenizing the polynomials pi by setting x = 1, we obtain (up to
scalar factors) the following polynomials:

P̃i(y) = yi−1(1− λni yn), 1 ≤ i ≤ m;

P̃m+j+1(y) = f(ξ−1y), 0 ≤ j < n

where

f(y) =

n−1∏
s=1

(y − ieπis/n)

m∏
i=1

(y + λi)

(in D-- oković the last n polynomials are reordered)
The main result of D-- oković is the Theorem 3.1 where he proved Atiyah conjecture

for configurations described above, by explicitly computing the determinant of the
coefficients matrix P̃ of the polynomials {p̃k(y)|k = 1, . . . ,m+ n︸ ︷︷ ︸

N

} in terms of the

coefficients of

f(y) =
N−1∑
k=0

Ẽky
N−1−k

His formula reads as follows:∣∣∣det(P̃ )
∣∣∣ = nn/2

n−1∏
k=0

fk

where

fk =
∑
s≥0

 s∏
j=1

λnN−jn−k

 Ẽk+sn, 0 ≤ k < n.

We shall now present an amazingly simple formula for coefficients of the polynomial

h(y) :=
n−1∏
s=1

(y − ieπis/n) =
n−1∑
j=0

cjy
n−1−j
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Proposition 2.1 let γk := cot
(
kπ
2n

)
. Then

c0 = 1, cj =

j∏
k=1

γk (1 ≤ j ≤ n− 1)

Proof .
Put ξk = −ieπik/n, k = 1, . . . , n− 1. Then

cj = the j–th elementary symmetric function of ξ1, . . . , ξn−1
= ej(ξ1, . . . , ξn−1)

Let us first compute the power sums

ps =

n−1∑
k=1

ξsk = (−i)s
n−1∑
k=1

eπisk/n = (−i)s(eπis/n − eπis)/(1− eπis)

=

{
(−1)

s
2
−1, s even

(−1)
s−1
2 cot( sπ2n) = (−1)

s−1
2 γs, s odd

The proof will be by induction. For j = 1 we have c1 = ξ1 + · · · + ξn−1 = p1 = γ1.
Suppose that the proposition is true for all k < i. Then by Newton formula for
symmetric functions

jej =

j∑
k=1

(−1)k−1pkej−k =

dj/2e∑
l=1

(p2l−1ej−2l+1 − p2lej−2l)
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we obtain by writing cj−2l+1 = cj−2lγj−2l+1

jej =

dj/2e∑
l=1

(
(−1)l−1γ2l−1γj−2l+1 − (−1)l−1

)
cj−2l

=

dj/2e∑
l=1

(−1)l−1(γ2l−1γj−2l+1 − 1)cj−2l

∗
=

dj/2e∑
l=1

(−1)l−1(γ2l−1 + γj−2l+1)γjcj−2l

=

dj/2e∑
l=1

(p2l−1cj−2l − p2l−2γj−2l+1cj−2l)γj (here p0 := −1)

=

dj/2e∑
l=1

(p2l−1cj−2l − p2l−2cj−2l+1)γj

=

dj/2e∑
l=1

(p2l−1cj−1−(2l−1) − p2l−2cj−1−(2l−2))γj

= (−p0cj−1 +

d(j−1)/2e∑
l=1

(p2l−1cj−1−(2l−1) − p2lcj−1−2l))γj
∗∗
= (cj−1 + (j − 1)cj−1)γj
= jcj−1γj = jcj

Here in (∗) we have used the cotangent addition formula cot(α) cot(β)−1 = (cotα+
cotβ) cot(α + β) and in (∗∗) Newton formula for i − 1 which holds by induction
hypothesis. The proposition is thus proved.

For our dihedral configurations we can state the stronger conjecture of Atiyah
and Sutcliffe ([7], Conjecture 2.) as follows

n
n
2

n−1∏
k=0

fk ≥ 2(n2)
n∏
i=0

(1 + λ2i )
n (2.10)

where

fk =
∑
s≥0

 s∏
j=1

λnN−jn−kẼk+sn, (0 ≤ k < n)

 (2.11)
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From the factorization

f(y) = h(y)
m∏
i=1

(y + λi)

we can write

Ẽk =

n−1∑
i=0

ciEk−i

in terms of elementary symmetric functions Ek = ek(λ1, . . . , λm) of our positive
quantities 0 < λ1 < · · · < λm with coefficients ci given in Proposition 2.1 (note
that c0 = 1 ≤ c1 ≤ · · · ≤ cbn−1

2
c ≥ · · · ≥ cn−1 = 1 (unimodality) and ci = cn−1−i

(symmetry)).
Now we shall prove a generalization of the D-- oković’s conjecture which apparently

strengthens (2.10).

Theorem 2.2 We have:

1.
n−1∏
k=0

fk ≥
n−1∏
k=0

ck

 m∑
l=0

l−1∏
j=0

λm−jEl

n

2.
n−1∏
k=0

fk ≥
n−1∏
k=0

ck

m∏
i=1

(1 + λ2i )
n

Proof .
Let us write

fk =

m∑
l=0

ϕklEl

Let us substitute Ẽk+sn =

n−1∑
i=0

ciEk−i+sn into (2.11). Then for fixed k (0 ≤ k < n−1)

and given l (0 ≤ l ≤ m) we seek s ≥ 0 and i, 0 ≤ i < n such that l = k− 1 + sn, i.e.
l − k = sn − i, 0 ≤ i < n. We conclude that s and i are uniquely determined by a
division algorithm (with nonpositive remainder):

sk :=

⌈
l − k
n

⌉
, ik = skn− l − k.
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Hence

ϕkl =

sk∏
j=1

λnN−jn−kcik

with sk and ik just defined. It is easy to see that

sk = s0

(
=

⌈
l

n

⌉)
and ik = i0 + k for 0 ≤ k ≤ n− i0 − 1

and

sk = s0 − 1 and ik = i0 + k − n for n− i0 ≤ k ≤ n− 1.

Lemma 2.3 For each l, 0 ≤ l ≤ m, we have

n−1∏
k=0

ϕkl =
l−1∏
j=0

λnm−j

n−1∏
j=0

cj

Proof (of Lemma).
n−1∏
k=0

ϕkl =

n−i0−1∏
k=0

 s0∏
j=1

λnN−jn−k

n−1∏
k=i0

ck

 n−1∏
k=n−i0

s0−1∏
j=1

λnN−jn−k

i0−1∏
k=0

ck

=
n−1∏
k=0

s0−1∏
j=1

λnN−jn−k

n−i0−1∏
k=0

λnN−s0n−k

n−1∏
k=0

ck

We put now N = n+m

= λnmλ
n
m−1 · · ·λnm+n−s0n−(n−i0−1)

n−1∏
k=0

ck

= λnmλ
n
m−1 · · ·λnm−l+1

n−1∏
k=0

ck

Proof (of Theorem).
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We shall use the Hölder inequality

n−1∏
k=0

fk =

n−1∏
k=0

(
m∑
l=0

ϕklEl

)
≥

 m∑
l=0

(
n−1∏
k=1

ϕklEl

) 1
n

n

=

 m∑
l=0

l−1∏
j=0

λm−j

n−1∏
j=0

cj

 1
n

El


n

(by lemma)

=

n−1∏
j=0

cj

 m∑
l=0

l−1∏
j=0

λm−jEl

n

Thus 1. is proved. To obtain 2. we apply D-- oković proof of Atiyah conjecture for
type A configurations

m∑
l=0

l−1∏
j=0

λm−jEl ≥
m∏
i=1

(
1 + λ2i

)
(c.f. section 3.)

3 Appendix

After the first version of this paper was finished, in the meantime, we have discovered

formulas for the partial derivatives, of the quantities Ψ1...n
1...n/Ψ

1...k̂...n
1...k̂...n

, with respect to

variables ξr (Note that in Theorem 1.8 we have given formulas w.r.t. variables Xr!).

Lemma 3.1 For 2 ≤ r ≤ n the partial derivative w.r.t. ξr of the quotient Ψ1...n
1...n/Ψ

2...n
2...n

is given by

(
Ψ2...n

2...n

)2
∂ξr

(
Ψ1...n

1...n

Ψ2...n
2...n

)
=
∑
i≥j

s′ijX1(X2 · · ·Xj)
2Xj+1 · · ·Xi+1(Xj+1 −Xi+2)

where s′ij is the conjugated Schur function sij = sij(ξ2, . . . , ξr−1, ξr+1, . . . , ξn) corre-
sponding to a two–rowed partition λ = (i ≥ j).
In particular for X1 ≥ · · · ≥ Xn > 0 the function Ψ1...n

1...n/Ψ
2...n
2...n is monotonically

increasing w.r.t. the variable ξr (for r = 1, too).
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Proof .
By using the formula Ψ1...n

1...n = Ψ1...n−1
1...r̂...n +X1ξrΨ

2...n
1...r̂...n we get

∂ξr(Ψ
1...n
1...n)Ψ2...n

2...n −Ψ1...n
1...n∂ξr(Ψ

2...n
2...n) =

= X1Ψ
2...n
1...r̂...n

(
Ψ2...n−1

2...r̂...n +X2ξrΨ
3...n
2...r̂...n

)
−
(
Ψ1...n−1

1...r̂...n +X1ξrΨ
2...n
1...r̂...n

)
X2Ψ

3...n
2...r̂...n

= X1Ψ
2...n
1...r̂...nΨ2...n−1

2...r̂...n −X2Ψ
1...n−1
1...r̂...nΨ3...n

2...r̂...n

= X1

(
Ψ2...n−1

2...r̂...n +X2ξ1Ψ
3...n
2...r̂...n

)
Ψ2...n−1

2...r̂...n −X2

(
Ψ1...n−2

2...r̂...n +X1ξ1Ψ
2...n−1
2...r̂...n

)
Ψ3...n

2...r̂...n

= X1

(
Ψ2...n−2

2...r̂...n

)2 −X2Ψ
1...n−2
2...r̂...nΨ3...n

2...r̂...n

With ei = e
(1r)
i = ei(ξ2, . . . , ξr−1, ξr+1, . . . , ξn) denoting the i–th elementary sym-

metric function of the truncated alphabet A(1r) = {ξ2, . . . , ξr−1, ξr+1, . . . , ξn} we
have further

= X1

∑
i,j

eiejX2...i+1X2...j+1

−X2

∑
i,j

eiejX1...iX3...j+2


=
∑
i,j

eiejX1..i+1X2..j+1 −
∑
i,j

eiejX1..iX2..j+2

=
∑
i,j

∣∣∣∣ ei ei+1

ej−1 ej

∣∣∣∣X1..i+1X2..j+1

=
∑
i≥j

∣∣∣∣ ei ei+1

ej−1 ej

∣∣∣∣X1(X2..j)
2Xj+1 · · ·Xi+1(Xj+1 −Xi+2)

Now by Jacobi–Trudy formula we can write

∣∣∣∣ ei ei+1

ej−1 ej

∣∣∣∣ as the conjugated Schur

function s′ij = s′
(1r)
ij corresponding to a partition (i ≥ j).

Corollary 3.2 (ξn–monotonicity)
We have the following inequality:

Ψ1...n
1...n

Ψ2...n
2...n

≥
Ψ1...n−1

1...n−1

Ψ2...n−1
2...n−1

Proof .
By Lemma 3.1 by letting ξn ↓ 0 we get

Ψ1...n
1...n/Ψ

2...n
2...n ≥ Ψ1...n

1...n/Ψ
2...n
2...n

∣∣
ξn=0

= Ψ1...n−1
1...n−1/Ψ

2...n−1
2...n−1
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By using this Corollary we state a strengthening of our Conjecture 1.5:

Conjecture 3.3

(
Ψ1...n

1...n

)n−2 ≥ Ψ2...n−1
2...n−2

n−1∏
k=2

Ψ1...k̂...n
1...k̂...n

We also have formulas for partial derivative of the quotient Ψ1...n
1...n/Ψ

1...k̂...n
1...k̂...n

w.r.t.

variable ξr, 2 ≤ r ≤ n, which are more complicated than for k = 1 (given in Lemma
3.1). Without loss of generality we take r = n and proceed as follows:

∂ξn(Ψ1...n
1...n)Ψ1...k̂...n

1...k̂...n
−Ψ1...n

1...n∂ξn(Ψ1...k̂...n
1...k̂...n

) =

= X1Ψ
2...n
1...n−1Ψ

1...k̂...n
1...k̂...n

−X1Ψ
1...n
1...nΨ2...k̂...n

1...k̂...n−1

= X1Ψ
2...n
1...n−1

(
Ψ1...k̂...n

1...k̂...n
+X1ξnΨ2...k̂...n

1...k̂...n−1

)
−X1

(
Ψ1...n−1

1...n−1 +X1ξnΨ2...n
1...n−1

)
Ψ2...k̂...n

1...k̂...n−1

= X1

(
Ψ2...n

1...n−1Ψ
1...k̂...n−1
1...k̂...n−1

−Ψ1...n−1
1...n−1Ψ

2...k̂...n
1...k̂...n−1

)
= X1

[(
Ψ2...n−1

1...k̂...n−1
+X2ξkΨ

3...n
1...k̂...n−1

)
Ψ1...k̂...n−1

1...k̂...n−1
−

−
(

Ψ1...n−2
1...k̂...n−1

+X1ξkΨ
2...n−1
1...k̂...n−1

)
Ψ2...k̂...n

1...k̂...n−1

]
= X1

[
Ψ2...n−1

1...k̂...n−1
Ψ1...k̂...n−1

1...k̂...n−1
−Ψ1...n−2

1...k̂...n−1
Ψ2...k̂...n

1...k̂...n−1
+

+ξk

(
X2Ψ

3...n
1...k̂...n−1

Ψ1...k̂...n−1
1...k̂...n−1

−X1Ψ
2...n−1
1...k̂...n−1

Ψ2...k̂...n
1...k̂...n−1

)]
= X1 [I1 − ξkI2]

177



Svrtan, Urbiha Atiyah–Sutcliffe Conjectures for Special Configurations

Now we first compute

I1 = Ψ2...n−1
1...k̂...n−1

Ψ1...k̂...n−1
1...k̂...n−1

−Ψ1...n−2
1...k̂...n−1

Ψ2...k̂...n
1...k̂...n−1 =(

k−2∑
i=0

eiX2..i+1 +

n−2∑
i=k−1

eiX2..i+1

)k−1∑
j=0

ejX1..j +

n−2∑
j=k

ejX1..k̂..j+1

−
−

k−1∑
j=0

ejX1..j +

n−2∑
j=k

ejX1..j

(k−2∑
i=0

eiX2..i+1 +

n−2∑
i=k−1

eiX2..k̂..i+2

)
=

=
n−2∑
i=k−1

k−1∑
j=0

eiej

(
X2..i+1X1..j −X2..k̂..i+1

X1..j

)
+

+
n−2∑
j=k

k−2∑
i=0

ejei

(
X

1..k̂..j+1
X2..i+1 −X1..jX2..i+1

)
+

+
n−2∑
i=k−1

n−2∑
j=k

eiej

(
X2..i+1X1..k̂..j+1

−X1..jX2..k̂..i+2

)
By replacing, in the middle sum, j with i+ 1 and i with j − 1, and observing that
then X

1..k̂..i+2
X2..j−X1..i+1X2..j = −(X2..i+1X1..j−X2..k̂..i+2

X1..j) the contribution
of the first two sums is

n−2∑
i=k−1

k−1∑
j=0

∣∣∣∣ ei ei+1

ej−1 ej

∣∣∣∣X2..k̂..i+1
(Xk −Xi+2)X1..j

The third sum can similarly be transformed to the following form:∑
k≤j≤i≤n−2

∣∣∣∣ ei ei+1

ej−1 ej

∣∣∣∣X2..k̂..i+1
(Xj+1 −Xi+2)X1..j

Hence

I1 =
∑

0≤j,max{j,k−1}≤i≤n−2

s′ijX2..k̂..i+1
(Xmax{j+1,k} −Xi+2)X1..j (≥ 0)

By a similar manipulation we can obtain the expression for the quantity

I2 = X1Ψ
2...n−1
1...k̂...n−1

Ψ2...k̂...n
1...k̂...n−1 −X2Ψ

3...n
1...k̂...n−1Ψ

1...k̂...n−1
1...k̂...n−1

=

= X1 −X2 +

n−1∑
i=1

∑
j≤min{k−1,i}

s′ijX2..k̂..i+2
X1..j(Xj+1 −Xk) ≥ 0
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where s′ij is conjugated Schur function s′ij = s′
(kn)
ij . We see that

(
Ψ1...k̂...n

1...k̂...n

)2
∂ξn

 Ψ1...n
1...n

Ψ1...k̂...n
1...k̂...n

 = X1 [I1 − ξkI2]

has both positive and negative terms. And we have not been able to apply it so far.
Now we illustrate use of ξ–monotonicity (in addition to X–monotonicity) for

proving once more the case n = 4 of our Conjecture 1.5:

(Ψ1234
1234)

3

Ψ234
234Ψ

134
134Ψ

124
124Ψ

123
123

=
Ψ1234

1234

Ψ234
234Ψ

123
123

Ψ1234
1234

Ψ134
134

Ψ1234
1234

Ψ124
124

≥ (by ξ4–monotonicity)

≥ 1

Ψ23
23

Ψ1234
1234

Ψ134
134

Ψ1234
1234

Ψ124
124

≥ (by X1–monotonicity twice and X4–monotonicity)

≥ 1

Ψ23
23

Ψ2234
1243

Ψ234
143

Ψ2233
1234

Ψ223
124

≥ (by ξ3–monotonicity)

≥ 1

Ψ23
23

Ψ223
124

Ψ23
14

Ψ2233
1234

Ψ223
124

=
Ψ2233

1234

Ψ23
23Ψ

23
14

≥ 1

Similarly the cases n = 5, 6, 7 of Conjecture 1.5 would be, by using ξ–monotonicity
and X–monotonicity, consequences of the following inequalities

Q̃n ≥ 1

where

Q̃5 = Ψ22344
12345Ψ

22344
12345/Ψ

234
234Ψ

234
135Ψ

2244
1245

Q̃6 = Ψ223445
123456Ψ

233455
123456/Ψ

2345
2345Ψ

2345
1346Ψ

2345
1256

Q̃7 = Ψ2234556
1234567Ψ

2334566
1234567Ψ

2344566
1234567/Ψ

23456
23456Ψ

23456
13457Ψ

23456
12467Ψ

234566
123567

3.1 Computer verification of the Conjecture 1.5 (and hence of the
Atiyah–Sutcliffe conjecture C3) for almost collinear 9 + 1 con-
figuration.

Let us now explain our computer verification of the inequality Q̃9 ≥ 1 where

Q̃9 =
Ψ223456778

123456789Ψ
233456788
123456789Ψ

223456678
123456789Ψ

234456788
123456789

Ψ2345678
2345678Ψ

2345678
1345679Ψ

2345678
1245689Ψ

2345678
1235789Ψ

22346788
12346789
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which refines the case n = 9 of the Conjecture 1.5. We have observed first that Q̃9

is symmetric in partial alphabets

A1 = {ξ1, ξ2, ξ8, ξ9}, A2 = {ξ3, ξ4, ξ6, ξ7}, A3 = {ξ5}

then by introducing the elementary symmetric functions {e1, e2, e3, e4} of A1 and
{f1, f2, f3, f4} of A2 we first computed the products

Ψ2345678
2345678Ψ

2345678
1345679 and Ψ2345678

1245689Ψ
2345678
1235789

in terms of {e1, e2, e3, e4, f1, f2, f3, f4, ξ5}. Then by successive application of Stem-
bridge’s Maple SF package we expressed the difference ∆ := numer(Q̃9)−denom(Q̃9)
in terms of the Schur functions of both alphabets A1 and A2. Then we factored each
coefficient in such a multi–Schur expansion and into non-monomial factors we sub-
stituted X2 = X3 + h2, X3 = X4 + h3, . . ., X7 = X8 + h7. Then the computation
showed that the coefficients of all monomials in X8, h2, . . . , h7 were nonnegative.
The factoring out the trivial monomial factors in X2, . . . , X8 (which are trivially
nonnegative) was crucial because otherwise the expansion of multi–Schur function
coefficients in terms of increments h2, . . . , h7 may not be feasible.
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Abstract

We present two interesting inequalities: one geometric and one combinatorial.
The geometric one involves symmetric functions of side lengths of a triangle.
It simultaneously improves Euler’s inequality and isoperimetric inequality for
triangles and has non-Euclidean versions. As a consequence, in combinatorics
we apply it to degenerate (Fibonacci) triangles. We discuss similar inequalities
for simplices in higher dimensions. The combinatorial inequality deals with
the following question. What is more probable among maps: an injection or a
surjection? For maps between finite sets, the answer is surjection. We present
several proofs and provide a brief discussion on open problems for continuous
maps for metric and other spaces.
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Introduction

The paper has two separate parts. The first part contains sections 1-4, and deals with
geometric symmetric functions-inequalities for triangles and simplices; the second
part is section 5, devoted to a combinatorial inequality which answers an intriguing
question: what is more probable – surjections or injections?
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1 Symmetric functions-inequality for side lengths of a
triangle

We shall prove an interesting and somewhat unusual inequality for side lengths of a
triangle. It is symmetric in all three sides. Therefore, it can better be comprehended
in terms of symmetric functions in three variables.

In standard notations, let a, b and c be side lengths of a triangle (even degenerate)
and let e1 = a + b + c, e2 = ab + bc + ca, e3 = abc be the elementary symmetric
functions of a, b and c. Then the following symmetric inequality in a, b, c holds.

Theorem 1.1

e61 + 12e31e3 + 12e21e
2
2 + 36e23 ≥ 7e41e2 + 40e1e2e3. (1)

Equality holds if and only if the triangle is equilateral, a = b = c.

Proof .
Let S, 2s, R and r be the area, perimeter, circumradius and inradius, respectively,
of the triangle with side lengths a, b and c. Then we have

R

r
=

abcs

4S2
=

abc

4(s− a)(s− b)(s− c)
=

2abc

(−a + b + c)(a− b + c)(a + b− c)

≥ abc + a3 + b3 + c3

2abc
≥ 2. (2)

The second inequality in (2) is the AM-GM inequality for a3, b3 and c3, and the
first inequality is proved below. Note that it is an improvement of Euler’s inequality
R/r ≥ 2 from 1765. For more details see [7], and for more on AM-GM inequality
see [8].

To prove the first inequality in (2), let x, y and z be the tangent segments from
vertices to the incircle, so a = y + z, b = z + x, and c = x + y. Then it is easy to
see that the first inequality in (2) is equivalent to

2x2y2(x− z)(y − z) + 2y2z2(y − x)(z − x) + 2z2x2(x− y)(z − y)

+ x4(y − z)2 + y4(z − x)2 + z4(x− y)2 ≥ 0. (3)

To prove (3) it suffices to prove that the sum of the first three summands in (3) is
non negative. Without loss of generality, we may assume that x ≤ y ≤ z. Then
the half of the sum of the first three summands in (3) is greater or equal than
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x2y2(x− z)(y − z) + z2x2(y − z)(x− y) + z2x2(z − y)(x− y) = x2y2(x− z)(y − z),
and this number is greater or equal than 0. This proves (3). The first inequality
in (2) has on both sides fractions of symmetric functions in a, b, c. By expressing
numerators and denominators in terms of e1, e2 and e3, it is not hard to show that
this is equivalent to the inequality (1). Finally, since the equality R/r = 2 holds if
and only if the triangle is equilateral, it follows that equality in (1) holds if and only
if a = b = c.

We can write (2) also in the form

R

r
=

(a + b + c)abc

8S2
≥ abc + a3 + b3 + c3

2abc
.

From Heron’s formula
16S2 = e1(4e1e2 − e31 − 8e3),

we thus obtain the following inequality equivalent to (1):

4S2(e31 − 3e1e2 + 4e3) ≤ e1e
2
3. (4)

Equality in (4) again occurs if and only if the triangle is equilateral. The standard
isoperimetric inequality for triangles reads as follows

S ≤ e21

√
3

36
, (5)

with equality if and only if the triangle is equilateral. By comparing (4) and (5), we
shall show that (4), which is equivalent to (1), in fact improves (5). Namely,

4S2 = e1(4e1e2 − e31 − 8e3)/4 ≤ e1e
2
3/(e31 − 3e1e2 + 4e3) ≤ e41/2233. (6)

Here, the equality is Heron’s formula, the first inequality is (1), and the second
inequality is equivalent to

e31(e
3
1 + 4e3) ≥ 3(e41e2 + 36e23).

But this follows by applying Newton’s inequalities (see [8]), once as e21 ≥ 3e2, and
once as e31 ≥ 27e3. So, we have proved the following.

Theorem 1.2 The inequality (1) improves not only Euler’s inequality that the cir-
cumcircle of a triangle is at least twice longer than its incircle, but also improves
the standard isoperimetric inequality (5) for triangles. This improvement becomes
equality if and only if the triangle is equilateral.
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We can also give a lower bound for the area S. Again we start with Heron’s
formula written as

S2 = s
{

[(s− a)(s− b)(s− c)]1/3
}3

,

and apply the geometric-harmonic inequalities to the last three factors of the pre-
vious expression to obtain

S2 ≥ s

{
3(s− a)(s− b)(s− c)

(s− a)(s− b) + (s− b)(s− c) + (s− a)(s− c)

}3

. (7)

Now we express both the numerator and denominator in terms of e1, e2 and e3.
Then we can summarize inequalities (4), (5), (6) and (7) in the following chain of
inequalities.

Theorem 1.3 The squared area S2 of a triangle is bounded in terms of ei’s of side
lengths as

(27e1/4)[(4e1e2 − e31 − 8e3)/(4e2 − e21)]
3 ≤ 4S2 ≤ e1e

2
3/(e31 − 3e1e2 + 4e3) ≤ e41/108.

2 Symmetric functions-inequalities for non-Euclidean tri-
angles

The spherical and hyperbolic versions of Euler’s inequality R/r ≥ 2, respectively,
are the following inequalities (see [6]):

tan(R)/ tan(r) ≥ 2 and tanh(R)/ tanh(r) ≥ 2. (8)

As proved in [2], non-Euclidean Euler’s inequalities (8) can be strengthened in a
symmetric way via side-lengths, but not in the sense analogous to (2). It seems (2)
is too strong in these cases. Still, improvements to non-Euclidean cases can be done
by using the following Lemma proved in [2].

Lemma 2.1 If f(a, b, c) ≥ 0 is an inequality which holds for all Euclidean triangles
with side lengths a, b, c, then f(s(a), s(b), s(c)) ≥ 0 for all spherical or hyperbolic
triangles with side lengths a, b, c, where s(x) = x/2 in Euclidean geometry, s(x) =
sin(x/2) in spherical geometry and s(x) = sinh(x/2) in hyperbolic geometry.

By using the above Lemma and Theorem 1 we conclude that the following the-
orem holds true.
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Theorem 2.2 Inequality (1) holds also for non-Euclidean triangles with side lengths
a,b and c but with symmetric functions in corresponding quantities s(a), s(b) and
s(c) as in Lemma. Equalities hold again if and only if a = b = c. These inequal-
ities are simultaneous improvements of Euler’s inequalities (8) and isoperimetric
inequalities as (5) in both spherical and hyperbolic geometry.

3 Degenerate triangles and Fibonacci numbers

Theorem 1 and all of its equivalent forms hold also in the case of a degenerate
triangle, for instance if a + b = c. A natural example of such a degenerate triangle
is given by a Fibonacci triple (Fn−1, Fn, Fn+1). Recall Heron’s formula in the form

16S2 = (a2 + b2 + c2)2 − 2(a4 + b4 + c4).

Since degenerate triangle has area S = 0, it follows that the equality a + b = c can
be replaced by the totally symmetric expression

(a2 + b2 + c2)2 = 2(a4 + b4 + c4), (9)

known as Candido’ s identity (from 1950). In fact, it was first noted just for Fi-
bonacci numbers. However, it is a pure algebraic result which holds in any com-
mutative ring for any of its two elements a, b, and their sum c. This can easily be
checked directly.

A little historical remark on Fibonacci numbers is due to M. Bhargava. He said in
an interview that they should actually be called Virahanka-Fibonacci numbers after
Indian mathematician Virahanka who discovered them back in 7th century, in the
sense that Fn+1 is the number of ways to write n as an ordered sum (composition)
of 1’s and 2’s. On different aspects of Candido’s identity see in [9].

Not only that Candido’s identity (9) and inequality (1) hold for Fibonacci num-
bers but they also hold for any combinatorially interesting numbers satisfying re-
currence of the form c = a + b. Examples include binomial coefficients (due to
Pascal’s formula), Padovan numbers (Pn) defined by P0 = P1 = P2 = 1 and
Pn+2 = Pn +Pn−1, where Pn is the number of ways to write n+2 as an ordered sum
of 2’s and 3’s, and many other. The inequality (1) in the degenerate case a + b = c
is equivalent to the trivial inequality a2b2 ≥ 0, for any two real numbers a, b, which
reveals the fact that a square of any real number is nonnegative and the product of
such numbers is also nonnegative.
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4 Inequalities for tetrahedra and simplices

Let T = ABCD be a tetrahedron or a 3-dimensional simplex with edge lengths a,
b, c, a′, b′, c′, where a, b, c form a triangle, a is opposite to a′ etc. Let V = vol(T )
be the volume, S the surface area of T , and R, and r, respectively, the circumradius
and inradius of T , and C the area of the Crelle triangle of T whose side lengths are
products aa′, bb′, cc′ of opposite edge lengths of T . The Crelle formula C = 6RV ,
the fact 3V = rS, and Euler’s inequality R/r ≥ 3 imply

54V 2 ≤ C · S. (10)

By applying the standard isoperimetric inequality to both C and S, from (10) we
infer

25·36V 2 ≤ (aa′+bb′cc′)2[(a+b+c)2+(a+b′+c′)2+(a′+b+c′)2+(a′+b′+c)2]. (11)

Substituting V 2 in (11) in terms of a, a′, ..., c′, for instance Euler’s formula (from
1752):

144V 2 = (2a′b′c′)2

− a′2(b′2 + c′2 − a2)2 − b′2(c′2 + a′2 − b2)2 − c′2(a′2 + b′2 − c2)2

+ (a′2 + b′2 − c2)(b′2 + c′2 − a2)(c′2 + a′2 − b2),

we get an inequality of degree 6 for edge lengths of T , in a way analogous to (1)
for a triangle, with equality if T is regular. However, (11) is not as sharp as the
inequality

72V 2 ≤ aa′ bb′ cc′

with equality if and only if T is regular (see [10],[11]). Inequality (11) can be
improved by applying (4) to C2 and all four face areas S2

i , with S = S1+S2+S3+S4

and using the arithmetic-quadratic inequality for Si in the form S2 ≤ 4(S2
1 + S2

2 +
S2
3 + S2

4). The obtained inequality becomes equality if and only if T is equifacial,
i.e. S1 = S2 = S3 = S4, or equivalently a = a′, b = b′, c = c′. It is in the range of
the known inequality (see [4])

72V 2 ≤ (aa′ + bb′ − cc′)(bb′ + cc′ − aa′)(cc′ + aa′ − bb′),

with equality if and only if T is equifacial.
Let us briefly explain Euler’s inequality R/r ≥ 3 for a tetrahedron T . Let T ′ be

the tetrahedron whose vertices are centroids of faces of T . Then T ′ is similar to T
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with the similarity coefficient 3. Hence, the circumradius R′ of T ′ is one third of R,
that is, R = 3R′. But, R′ ≥ r, because the smallest ball that touches all faces of T
is just the inscribed ball of T . So, R ≥ 3r. The equality is attained if and only if T
is regular. The same argument works for any n-dimensional simplex (and of course,
R ≥ nr in that case).

Unlike this simple argument, there is no evident argument for yet another in-
equality relating R, r and the distance d between the circumcenter and incenter of
a tetrahedron. It is known as Grace-Danielsson’s inequality (from 1949). It reads
as follows

d2 + (2r)2 ≤ (R− r)2.

Euler’s formula for triangles d2 + r2 = (R − r)2 can easily be proved via inversion,
but for Grace-Danielsson’s inequality, a short elegant proof in the sense of CEEG
(Classical Euclidean Elementary Geometry) is still missing. There is a proof using
quantum information theory [5] and computer aided proof [3]. Corresponding for-
mulas or inequalities for simplices in higher dimensions are also not known as well
as non-Euclidean versions.

Recall that for triangles we found a rational non-constant symmetric function
f(a, b, c) such that (see (2)):

R

r
≥ f(a, b, c) ≥ 2,

and this essentially refined Euler’s inequality. A similar problem is for tetrahedron T :
find a non-constant simple enough symmetric function Θ in edge lengths a, a′, ..., c′

and in aa′, bb′, cc′ such that

R

r
=

C · S
18V 2

≥ Θ ≥ 3.

We can express C, S and V in terms of edges of T and get the corresponding
inequality for edges of T , but this is not quite adequate because we have sum of
four square roots, so it is not good in the above sense. In fact, in [7] we proved an
interpolation of (R/r)2 ≥ 9 in terms of symmetric functions of aa′, bb′ and cc′.

For general simplices, besides exact volume formulas, the Cayley-Menger for-
mula, some known inequalities may be of interest such as ([10],[11]):

(n!V )2nn ≤ (n + 1)n+1R2n, (n!V )22n ≤ (n + 1)(
∏

aij)
4/(n+1). (12)

Both of them attain equality if and only if the simplex is regular. For n = 2, the right
inequality (12) is not as good as our Theorem 1 (or equivalently, the inequality (4)).
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For n = 3, we mentioned it earlier. For higher dimensions, no essential improvement
of Euler’s inequality is known.

5 Are surjections more probable than injections? Yes
– for finite sets!

Problem 11957 of the American Mathematical Monthly (AMM) [12] was proposed by
É. Pité, Paris, France, in vol. 124, February 2017. It is as follows (a bit rephrased).

Let n ≥ k ≥ 1 be integers. Prove that

nkS(n, k) ≥ kn
(
n

k

)
, (13)

where S(n, k) is the Stirling number of the second kind, equal to the number of
partitions of an n-set into k blocks (nonempty subsets).

We shall survey several proofs of (13) and provide some comments. Two solutions
appeared in November 2018 issue of AMM ([13]) and one solution was published on-
line earlier. This earlier solution by R. Tauraso, Rome, Italy, is by double induction
on n ≥ k ≥ 1 using some known identities involving Stirling numbers and binomial
coefficients and using convexity proving that the second derivative of the function
fk(x) = (1 + x/k)−k is positive for x > 0. We skip this proof and concentrate on
combinatorial proofs.

But first some comments. For k = 1 or k = n, the inequality (13) becomes
equality, as well as for k > n, when S(n, k) =

(
n
k

)
= 0. For k = 2, S(n, 2) = 2n−1−1,

so (13) reduces to the well known inequality 2n−1 ≥ n. For k = n − 1, since
S(n, n−1) =

(
n
2

)
, (13) reduces to the also well known inequality nn−1 ≥ 2(n−1)n−1.

In fact, (13) is not very surprising, because S(n, k) for large n behaves as kn/k!,
so (13) is then of the type

nk ≥ nk = n(n− 1)(n− 2)...(n− k + 1),

which is obviously true.
Let us first prove a weaker inequality (interesting by itself):

nkS(n, k) ≥ kn−k
(
n

k

)
. (14)

Proof was given by M. Wildon, London, UK, in mathoverflow on 4 July 2017.
(Recall, [n] = {1, 2, ..., n}.)
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The right-hand side of (14) counts the set

Y = {(K, f)|K ⊆ [n] is a k − set, and f : [n]\K → K is a function},

while the left-hand side of (14) counts the set

X = {(P, g)|P is a k − partition of [n], and g : P → [n] a function}.

Define the function h : Y → X by h(K, f) = (P, g), where P = {{x} ∪ f−1(x)|x ∈
K}, and g(x ∪ f−1(x)) = x. Function g essentially picks a point (element) from
each block, and serves to uniquely reconstruct the subset K and the function f :
[n]\K → K. Hence, h is an injection which proves (14).

One more (even simpler) proof of (14) is this. Let H : X → Y , given by
H(P, g) = (K, f) be defined as follows. Let P = {B1, ..., Bk} and g : P → [n]. Then
let K = {x1, ..., xk}, xi ∈ Bi, i = 1, ..., k, be any selection of one element from each
block of P and define f : [n]\K → K. Let x ∈ [n]\K, specifically x ∈ Bi\xi and
assume g(Bi) ∈ Bj ⊆ [n]. Then let f(x) := xj . The map H is clearly surjective,
proving (14). Perhaps (13) can also be proved in a similar manner.

We now prove (13). The following elegant proof was given by T. Horine, Indiana
Univ. SE, New Albany, IN. To partition the set [n] into k blocks first choose k
elements (points) and place one in each block. This choice can be done in

(
n
k

)
ways.

The rest, that is n − k elements, can be put to those k blocks in kn−k ways to
complete a partition. But a partition with block sizes s1, ..., sk has been counted
s1s2...sk times, since each block can be initiated by any of its si elements. In each
case, s1 + ... + sk = n. By the AM-GM inequality s1s2...sk ≤ (n/k)k for each
partition. Hence we have

(n/k)kS(n, k) = [(s1 + ... + sk)/k]kS(n, k) ≥ (s1...sk)S(n, k) ≥
(
n

k

)
kn−k.

This proves (13).
A similar proof of (13) was provided by Filip Nikšić (Germany) in mathoverflow

on 4 July 2017.
Given a k-partition P of [n] and a k-set S of [n], we say that P splits S if every

block of P contains exactly one point of S, that is, B ∩ S 6= ∅ for every B ∈ P . We
prove equivalent inequality to (13):

kn−k
(
n

k

)
≤ (n/k)kS(n, k). (15)
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Let M be a (0,1)-matrix whose rows are indexed by k-partitions P of [n] and columns
by k-subsets S of [n]. (So, M is of the size S(n, k) ×

(
n
k

)
.) The entry M(P, S) = 1

if and only if P splits S.
We count the number of ones in two ways. The number of ones in a column

indexed by S is the number of partitions that split S. Such a partition is uniquely
determined by a map [n]\S → S that maps x ∈ [n]\S to y ∈ S if x and y are in the
same block of the partition. Hence the number of ones in the column is kn−k and
the total number of ones in M is kn−k

(
n
k

)
. On the other hand, the number of ones in

a row indexed by P = {B1, ..., Bk} is the number of k-sets split by P . Such a set is
uniquely determined by a choice of one element from each block. Hence, the number
of ones in the row is s1s2...sk, where si = |Bi|, i = 1, ..., k. The total number of
ones in M is therefore the sum of such products over all k-partitions of [n]. By the
AM-GM inequality (as in the previous proof) we have s1s2...sk ≤ (n/k)k. Finally,
we conclude

kn−k
(
n

k

)
=
∑

s1s2...sk ≤ (n/k)kS(n, k).

This proves (15), and hence (13).
One more combinatorial proof of (13) was provided by M. Wildon. By consid-

ering |Im(f)| = r and |Im(g)| = r ≤ k, for various r, (13) reduces to show the
following interesting inequality

S(n, k)S(k, r) ≥
(
n− r

k − r

)
S(n, r),

for all r ≤ k ≤ n.
To prove this inequality, start with given r-partition Q of [n]. Let M(Q) be the

r-subset of [n] consisting of the largest element in each block of Q. Choose also a
set T of k − r elements in the set [n]\M(Q). The right-hand side counts all such
pairs (Q,T ).

Given such a pair (Q,T ), define a k-partition P of [n] that refines Q. Simply
extract each element of T from its block in Q and make a new singleton block.

Next consider all pairs (Q,T ), where Q is an r-partition and P a k-partition
of [n] and P a refinement of Q. We can build such pairs by first choosing P and
then grouping the blocks of P into a partition with r blocks. Hence, there are
S(n, k)S(k, r) such pairs. So, it suffices to show that the map (Q,T ) 7→ (Q,P ) is
1-1.

If (Q,P ) arises from (Q,T ) by this map, then P has at least k − r singleton
blocks. The element x of a singleton block lies in T if and only if x 6∈M(Q). Thus
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we can uniquely reconstruct (Q,T ) from (Q,P ) and the map is injective as desired.
Finally, let us explain the title of this paragraph. Namely, the main inequality

(13) is equivalent to
k!S(n, k)/kn ≥ nk/nk. (16)

The right-hand side of (16) is the probability that a uniformly chosen random
function [k]→ [n] is injective, while the left-hand side of (16) is the probability that
a uniformly chosen random function [n]→ [k] is surjective. So, surjections are more
probable than injections among maps between finite sets.

Small numerical examples of (16): for n = 7 and k = 4, Prob([7] → [4]surj) =
0.51269... ≥ 0.34985... = Prob([4] → [7]inj), for n = 4 and k = 3, Prob([4] →
[3]surj) = 4/9 ≈ 0.44 ≥ 0.375 = Prob([3]→ [4]inj). So, the event that a uniformly
chosen random map [4] → [3] is surjective is not very likely to happen, because its
probability is less than 0.5.

Note that for fixed k, both sides of (16) tend to 1, when n→∞. But for k = n,
or k = n− 1, both sides of (16) tend to 0, when n→∞.

Finally, let us make some comments and raise some problems. It would be inter-
esting to find a direct probabilistic argument for (16). Next, what is a “continuous”
version of (16)?

For instance, if X and Y are compact metric spaces and, say, Y ⊆ X, is it
more probable that a uniformly and randomly chosen (continuous) map X → Y
is surjective (covering) than a uniformly and randomly chosen (continuous) map
Y → X injective (embedding)? Of course, this requires a choice of an appropriate
probability measure (i.e. a positive regular Borel measure m with m(X) = 1 and
if f ∈ L1(X,m), then m(f) =

∫
fdm, and similarly on Y ). A related but more

complex problem is to find probability distribution of injections among all maps
Y → X (and similarly for surjections among all maps X → Y ), or at least find
good bounds. We can restrict questions to, say, manifolds (Riemannian, smooth
or topological), or generalize further to more general (topological) spaces or even
to more general categorical framework. Even in the case X = Y = [0, 1] nothing
essential in this respect is known. Another “concrete” examples are: Y = I = [0, 1],
and X = I3 ( a sort of self-avoiding walk problem) and Y = S1 (circle) and X = S3

(3-sphere), problems in knot theory. Perhaps a good starting point to think about
such general problems is Grothendieck’s inequality (see e.g. [1]).
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[3] L. László, On the Grace-Danielsson inequality for tetrahedra, Discrete Appl.
Math. 256 (2019) 83–90.

[4] M. Mazur, An inequality for the volume of a tetrahedron, Amer. Math. Monthly
125 (2018) 273–275.

[5] A. Milne, The Euler and Grace-Danielsson inequalities for nested triangles and
tetrahedra: a derivation and generalization using quantum information theory,
J. Geom. 106 (2015) 455–463.

[6] D. Svrtan and D. Veljan, Non Euclidean versions of some classical triangle
inequalities, Forum Geom. 12 (2012) 197–209.

[7] D. Veljan, Symmetric functions-inequalities for triangles and simplices: Euler’s
case, submitted.

[8] D. Veljan, The AM-GM inequality from different viewpoints, Elem. Math. 72
(2017) 24–34.

[9] D. Veljan, A note on Candido’s identity and Heron’s formula, Proceedings of
the 1st Croatian Combinatorial. Days, Zagreb, Sept. 29-30, 2016 (Eds. T. Došlić
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Abstract

In this paper we explore a way of securing a secret inside a graph by observing
pieces of the secret as colors assigned to the graph vertices. If a graph allows a
highly (a, b)-resistant k-multicoloring then a secret can be divided into k parts
and sets of those parts distributed to the vertices of the graph so that no a at-
tackers can steal the secret, and when a attackers and b malfuntioning vertices
leave the graph, the secret is still whole in the remaining graph. In this paper
we explore how many vertices a graph must have in order to allow a highly
(3, 1)-resistant k-multicoloring, and what is the minimal number of colors, for
graphs that do allow such multicoloring.
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1 Introduction

In paper Multicoloring of graphs to secure a secret, [7], we were motivated by a
problem of securing a secret by dividing it into parts and distributing them to the
participants of some network. This is a known method of securing a secret [6]. In
our model, there are a attacker vertices in the network, trying to read the secret
or disable the group from reading it. Here we make an additional assumption,
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that besides the a attacker vertices, there are b vertices that are malfunctioning
and leaving the network. The secret is secure if a attackers didn’t steal the secret
and if the group is still able to read the whole secret after a attacker vertices,
their neighbors, and b malfunctioning vertices are removed from the network. We
represented the network with graph and parts of the secret with colors assigned to
the vertices. Coloring and multicoloring of graphs are often used to model some
real-life problem, like scheduling or frequency allocation and there are many new
colorings defined with different coloring conditions [2, 3, 4, 5, 9]. This prompted us
to define a highly (a, b)-resistant multicoloring with the conditions that make the
secret secure.

Our goal is to analyze minimal number of vertices a graph must have to allow a
highly (a, b)-resistant multicoloring, for given a and b, and if such a coloring exists
for a graph G, to determine what is the minimal number of colors. The results for
a = 1, b ∈ N and a = 2, b = 1, 2, 3 are presented in paper Highly (a, b)-resistant
multicoloring of graphs, [8], which is not yet published at this point. It can be
obtained from the authors by request, however, it is not necessary for understanding
this paper.

In this manuscript we analyze what graphs will allow a highly (a, b)-resistant
multicoloring for a = 3 and b = 1.

2 Preliminaries

We will mostly use standard definitions and notations of graph theory from [1], and
the rest we present in this section. For graph G and u ∈ V (G), with N(u) = NG(u)
we denote the set of neighbors of u in G, and M(u) = MG(u) = N(u) ∪ {u}.
Naturally, for A ⊆ V (G) we denote:

N(A) = NG(A) =
⋃
u∈A

NG(u);

M(A) = MG(A) =
⋃
u∈A

MG(u).

First, let us give the formal definition of highly (a, b)-resistant multicoloring.

Definition 1. Let G be a graph, and a, b, k ∈ N0. Vertex k-multicoloring κ of G is
called a highly (a, b)-resistant vertex k-multicoloring if for each A,B ⊆ V (G),
where |A| = a and |B| = b, the following holds:
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1. There exists a component H of the graph G\(MG(A) ∪B) such that⋃
u∈V (H)

κ(u) = {1, ..., k}.

2.
⋃
u∈A

κ(u) 6= {1, ..., k}.

We will say that graph G allows a highly (a, b)-resistant multicoloring if a
multicoloring function κ exists that is highly (a, b)-resistant. We will denote by
HRa,b(n) = k the fact that there exists a graph G with n vertices that allows
a highly (a, b)-resistant k-multicoloring, where k is the minimal number of colors
needed.

It can be easily proven that if a graph G with n vertices allows a highly (a, b)-
resistant k-multicoloring than the same graph allows a highly (a, b)-resistant (k+1)-
multicoloring, and there exists a graph G′ with n + 1 vertices that allows a highly
(a, b)-resistant k-multicoloring.

In our proofs, we will make use of the notion of an l-separable graph.

Definition 2. Let G be a graph and a, b, l ∈ N0. We will say that G is l-separable
with (a, b) vertices, if subsets A,B ⊆ V (G) exist, with |A| = a and |B| = b, such
that all the components in graph G\(MG(A) ∪B) have at most l vertices.

For a graph to allow a highly (3, 1)-resistant multicoloring, no 3 vertices can
have all the colors, so we will need the notion of a 3-separable graph.

3 Highly (3, 1)-resistant multicoloring

Our main theorem answers two questions:
1. What is the minimal number of vertices a graph must have in order to allow a
highly (3, 1)-resistant multicoloring?
2. What is the minimal number of colors needed for a highly (3, 1)-resistant multi-
coloring in all the graphs that allow such a coloring?

In order to shorten the proof of the theorem, we will first prove several lemmas.

Lemma 1. Let G be a graph.
i) If G has at most 8 vertices it is 3-separable with (1, 1) vertices.
ii) If G has at most 10 vertices it is 3-separable with (2, 0) vertices.
iii) If G has at most 12 vertices it is 3-separable with (2, 1) vertices.
iv) If G has at most 13 vertices it is 3-separable with (3, 0) vertices.

197
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Proof. All the claims will be proven for connected graphs, and from that it easily
follows that they also hold for disconnected graphs.

i) Let G be a connected graph with at most 8 vertices. If G contains a vertex u
of degree at least 3 the claim is obvious, and if that is not the case then let u be any
vertex of degree 2 in G. G\M(u) has at most 5 vertices and it is a union of paths
so it is 3-separable with (0, 1) vertices.

ii) Let G be a connected graph with at most 10 vertices. If there exists a vertex
u of degree at least 3 in G then G\M(u) has at most 6 vertices. If there exists
a vertex of degree at least 2 in G\M(u), then G\M(u) is 3-separable with (1, 0)
vertices, and if all the vertices have the degree at most 1 then all the components
already have at most 3 vertices. On the other hand, if all the vertices in G have
the degree at most 2, and u is any vertex of degree 2 then G\M(u) has at most 7
vertices and it is a union of paths so it is easily seen that it is 3- separable with
(1, 0) vertices.

iii) Let G be a connected graph with at most 12 vertices. If there exists a vertex
u of degree at least 3 in G then G\M(u) has at most 8 vertices and the claim now
follows from i). On the other hand, if the highest degree in G is at most 2 then by
observing any vertex u of degree 2, G\M(u) remains with at most 9 vertices and it
is a union of paths so the claim again easily follows.

iv) This case is proven in paper [7].

Lemma 2. i) A graph G with 9 vertices, ∆(G) ≤ 3 and δ(G) = 1 is 3-separable
with (1, 1) vertices.

ii) A graph G with 13 vertices, ∆(G) ≤ 3 and δ(G) = 1 is 3-separable with (2, 1)
vertices.

Proof. i) Let G be a connected graph with 9 vertices, ∆(G) ≤ 3 and δ(G) = 1. Let
x be a vertex of degree 1 in G, and let us denote its only neighbor by y. If y has the
degree 2 then let us denote the other neighbor of y by w. G\{w} has 8 vertices and at
most 6 vertices in its largest component. If we denote any vertex u of degree at least
2 in that component then G\(M(u)∪{w}) is a graph with all components of size at
most 3. On the other hand, if y has the degree 3, let us denote its other 2 neighbors
by w1 and w2. At least one of them has another neighbor, not in {x, y, w1, w2}. Let
us assume that w1 has another neighbor and let us denote it by u. If u has the
degree 3 than G\M(u) has 5 vertices and either its largest component has at most
4 vertices (if u was adjacent to w2), so it is 3-separable with (0, 1) vertices, or its
largest component has at most 5 vertices and by removing w2 obtain a graph with
all components of size at most 3. If u has the degree 2, then either it is adjacent
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to w2 and then by removing the third neighbor of w2 and its neighbors, and w1, we
obtain a graph with components of size at most 3, or G\(M(u) ∪ {w2}) is such a
graph. If G is disconnected it can be easily seen that the claim also stands.

ii) Let G be a connected graph with 13 vertices, ∆(G) ≤ 3 and δ(G) = 1. Let x
be a vertex of degree 1, and y its only neighbor. If y has the degree 2 let us denote
by w its other neighbor. G\{w} has 1 component of 2 vertices, x and y, and the
remaining graph has 10 so it is 3-separable with (2, 0) vertices by Lemma 1 ii). If y
has the degree 3 let us denote its other 2 neighbors by w1 and w2. Now, if there exists
a vertex u in G\{y} of degree 3 in G then G\M(u) has 9 vertices, ∆(G\M(u)) ≤ 3
and δ(G\M(u)) ≤ 1, so the claim follows from i) (if δ(G\M(u)) = 1) or from Lemma
1 i) (if δ(G\M(u)) = 0). If this is not the case then the only vertex with degree 3
in G is y and G\M(y) has 9 vertices in a union of paths and it is easy to see that
the claim also follows. If G is disconnected the claim also holds.

Lemma 3. Let G be a graph with 9 vertices, ∆(G) = 3 and δ(G) ≥ 2. G is
3-separable with (1, 1) vertices.

Proof. It is easy to see that G cannot be 3-regular, so there is at least 1 vertex of
degree 2, let us denote it by x. Let us denote the two neighbors of x by u and v.
If u or v have a neighbor of degree 3, let us denote it by y. G\M(y) has 5 vertices
and x is of degree 0 or 1 so that graph is 3-separable by the (0, 1) vertices. On the
other hand, if neither u nor v have a neighbor of degree 3 then at least 1 of them
has a neighbor of degree 2, not in {u, x, v} and we distinguish three subcases:

1) One of them, say u, has a neighbor y of degree 2 and v is adjacent only to
vertices in {x,M(y)\{y}}.

Let us denote the other neighbor of y by z. Now G\M(y) has 6 vertices, one
component contains vertices x and v and the graph of 4 remaining vertices is 3-
separable with (0, 1) vertices.

2) One of them, say u, has a neighbor y of degree 2 and v is adjacent only to x
and y. This means that u must have another neighbor, say z, of degree 2. Graph
G\M(z) has 6 vertices, and one component contains only vertices x, v and y so the
claim easily follows.

3) Both of u and v have neighbors, say y and w of degree 2, and y has another
neighbor, z (not necessarily different from w).

If w has a neighbor in {u, y, z} then let us observe G\M(y).
3.1.) v has the degree 2 in G. Now G\M(y) has 6 vertices, x and v form one

component and the remaining graph of 4 vertices is 3-separable by (0, 1) vertices.
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3.2.) v has the degree 3 in G. Let us denote the neighbor of v different from x
and w by v1. Now G\ (M(y) ∪ {v1}) has all the components with at most 3 vertices.

On the other hand, if non v neighbor of w is not in {u, y, z} then G\(M(y)∪{v})
has 5 vertices in two components so the claim again stands.

If G is not connected it is easy to see that the claim also holds.

Lemma 4. Let k ≤ 5 and let it hold that no three vertices can have all the colors.
Then:

i) A graph G with at most 6 vertices doesn’t allow a highly (0, 1)-resistant k-
multicoloring.

ii) A graph G with at most 7 vertices doesn’t allow a highly (1, 0)-resistant k-
multicoloring.

iii) A graph G with at most 10 vertices doesn’t allow a highly (1, 1)-resistant
k-multicoloring.

iv) A graph G with at most 11 vertices doesn’t allow a highly (2, 0)-resistant
k-multicoloring.

Proof. We will prove all the claims for connected graphs and the claims for dis-
connected graphs follow from there. Without the loss of generality we can assume
k = 5.

i) Let G be a connected graph with at most 6 vertices. Each color must be
assigned at least 2 times so at least one vertex will have at least two colors. Moreover,
no vertex can have three or more colors because no three vertices can have all the
colors. Let us assume that one of the vertices has the set of colors {1, 2}. Now
neither of the remaining vertices can have neither of the sets {3, 4}, {3, 5}, {4, 5}.
But then it is impossible to assign the colors two times each.

ii) Let G be a connected graph with at most 7 vertices. If there is a vertex of
degree at least 3 in G the claim is easily seen, so let ∆(G) = 2. If G is a path the
claim can again be easily seen so let us assume G is a cycle. No vertex can have 3
or more colors and every color must be assigned at least twice so at least one vertex
must have two colors. Let us assume one of the vertices has the set of colors {1, 2}
and let us denote that vertex by u1. Further, let us denote the rest of the vertices
in the cycle by u2, ..., u7, starting from u1 in any direction. Now, no other vertex
can have neither of the sets {3, 4}, {3, 5}, {4, 5}, and since each of those colors must
appear at least twice we assign the colors 3, 4, 5 to the remaining 6 vertices, one to
each. It is obvious that the colors 3, 4, 5 will not appear anywhere else so there is
no point in assigning them in such a way that one color is given to two vertices that
are on a distance 2 or less, since then both instances of that single color could be
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easily removed. So without the loss of generality we may assume the multicoloring
function is the following:

u1 u2 u3 u4 u5 u6 u7
1, 2 3 4 5 3 4 5

Now we must assign the colors 1 and 2 once more each. It is easy to see that if
we assign the colors 1 and 2 to two vertices that have different colors, three vertices
could be found that have all the colors, so the only option is to assign 1 and 2 only
to u2 and u5, or u3 and u6, or u4 and u7, one to each. However in each of those
possibilities a vertex can be chosen to remove both instances of one of the colors.

iii) Let G be a connected graph with at most 10 vertices. Each color must be
assigned at least 3 times so at least one vertex will have 2 or more colors. If one
vertex would have 3 or more colors it would be easy to find three vertices that have
all the colors, so let us assume that one of the vertices has exactly 2 keys, the set
{1, 2}. Now none of the other vertices can have neither of the sets {3, 4}, {3, 5},
{4, 5} and since each of those colors must be assigned at least 3 times each, we
must assign them to the remaining 9 vertices so that each vertex has exactly one
color from the set {3, 4, 5}. The colors 1 and 2 must be assigned twice more each
so obviously two of the 9 vertices that have different colors from {3, 4, 5} will have
different colors from {1, 2}. But then again 3 vertices can be found that have all
the colors.

iv) Let G be a connected graph with at most 11 vertices. If there is a vertex
of degree 3 in G then let us denote it by u. G\M(u) has 7 vertices and the claim
follows from ii). Let us assume that the highest degree in G is 2. If G is a path the
claim is easy to see so let us assume G is a cycle. Let u be any vertex in G. G\M(u)
is a path of 8 vertices and by denoting one of the central vertices with v we can see
that G\(M(u) ∪M(v)) has all the components of size at most 3.

Lemma 5. Let k ≤ 5 and let it hold that no three vertices can have all the colors.
Then:

i) A graph G with 7 vertices that is either a path or it is disconnected doesn’t
allow a highly (0, 1)-resistant k-multicoloring.

ii) A graph G with 11 vertices that is either disconnected or it has a minimal
degree 1 doesn’t allow a highly (1, 1)-resistant k-multicoloring.

iii) A disconnected graph G with 15 vertices doesn’t allow a highly (2, 1)-resistant
k-multicoloring.
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Proof. i) If G is a disconnected graph with 7 vertices the claim follows from Lemma
4 i), and if G is a path it is 3-separable with (0, 1) vertices.

ii) Let G be a disconnected graph with 11 vertices. The claim follows from
Lemma 4 i), ii) and iii). Now let G be a connected graph with 11 vertices such that
δ(G) = 1. Let us denote with x a vertex of degree 1 and with y its only neighbor.
We distinguish two cases.

1) y has the degree 2. We follow the path starting in y until we reach a vertex of
degree 3. If such a vertex doesn’t exist G is a path and it is 3-separable with (1, 1)
vertices. On the other hand, if such a vertex exists, let us denote it by u. G\M(u)
has 7 vertices and it is either disconnected or it is a path so the claim follows from
i).

2) y has the degree 3. If any neighbor of y has the degree 3 let us denote it
by u. G\M(u) is disconnected (x is isolated) with 7 vertices so the claim follows
from i). Let us assume both neighbors of y have the degree at most 2. If they
have a common neighbor other then y, it must have the degree 3 so by removing it
along with its neighbors we again obtain a disconnected graph with 7 vertices and
the claim follows as before. If one of those neighbors has the degree 1 then let us
observe the other neighbor of y, of degree 2. By following the path starting in that
neighbor, not containing y, let us denote by w the first vertex of degree 3 we find.
If G\M(w) is disconnected the claim follows from i), and if it is connected then
G\M(w) is a path of 5 vertices with two leaves attached to one end of it (vertex y).
If we denote by z the neighbor of y that has the degree 2, then G is 3-separable by
w and z.

Let us assume both neighbors of y have the degree 2 and each has its own
neighbor. Let us denote those neighbors by u and v. We consider three subcases.

2.1.) u and v are adjacent. In that case at least one of them must have the degree
3, without the loss of generality let us assume d(u) = 3. G\M(u) is disconnected
with 7 vertices so the claim follows from i).

2.2.) u and v are not adjacent and at least one of them has the degree 3. We
may assume d(u) = 3. Now G\(M(u) ∪ {v}) has all the components with at most
3 vertices.

2.3.) u and v both have the degree 2. If they have a common neighbor it must
have the degree 3, so the claim follows as before. Let us assume each of them has
its own neighbor, let us denote them by u1 and v1, respectively. If u1 and v1 are
adjacent the claim follows as in 2.1. and if they are not adjacent and at least one
of them has the degree 3 then it is easy to see that G is 3-separable, similarly as
in 2.2. Let us assume u1 and v1 both have the degree 2, and let us denote their
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neighbors by u2 and v2, respectively. If u2 and v2 are adjacent, at least one of them
must have the degree 3, without the loss of generality we may assume d(u2) = 3.
Now G\(M(u2)∪ {y}) has all the components with at most 3 vertices. If any of u2,
v2 has the degree 1 then G\M(y) has 7 vertices and is disconnected so the claim
follows from i). And if they are not adjacent and both have the degree 2, they are
both adjacent to the 1 remaining vertex in the graph. But now G\M(y) is a path
of 7 vertices and the claim again follows from i).

iii) Let G be a graph with 15 vertices and at least 2 components.
If the smallest component in G has 1 vertex it obviously cannot have all the

colors so let us observe the remaining 14 vertices. If there exist a vertex of degree
3 among those 14 vertices let us denote it by u. G\M(u) a graph with 10 vertices
which is doesn’t allow a highly (1, 1)-resistant k-multicoloring by Lemma 4 iii). The
same reasoning follows if the smallest component in G has 2 or 3 vertices.

If the smallest component in G has 4 vertices then that component is 3-separable
with (0, 1) vertices and the graph remaining 11 vertices doesn’t allow a highly (2, 0)-
resistant k-multicoloring by Lemma 4 iv).

If the smallest component in G has 5, 6 or 7 vertices then by Lemma 4 ii) it
doesn’t allow a highly (1, 0)-resistant k-multicoloring and the graph of remaining
10, 9 or 8 vertices doesn’t allow a highly (1, 1)-resistant k-multicoloring by Lemma
4 iii).

Lemma 6. Let G be a connected graph with 19 vertices, ∆(G) = 3, and ∆(G\M(u)) =
3, for any vertex u with degree 3 in G. Then one of the following holds:

a) There exists a vertex u in G such that G\M(u) is disconnected with 15 ver-
tices.

b) There are vertices u and v in G such that G\(M(u) ∪M(v)) has 11 vertices
and it is either disconnected or it has the minimal degree 1.

Proof. We will prove the claim through two cases, depending on the minimal degree
in G. Obviously G cannot be 3-regular so its minimal degree is either 1 or 2.

1) δ(G) = 1. Let us denote by x the vertex of degree 1 and by y its only neighbor.
If y has the degree 2 we follow the path starting in y, not containing x, and denote
by u the first vertex of degree 3 in that path. G\M(u) has 15 vertices and it is
disconnected, so a) holds. Let us assume y has the degree 3 and let us denote the
other two neighbors of y by u and v. If any of them has the degree 3 then by
removing it and its neighbors, we obtain a disconnected graph (x is isolated) with
15 vertices and again a) holds. If any of u and v has the degree 1 the claim is
easy to see, similarly as when y has the degree 2. So let us assume u and v both
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have the degree 2. If u and v have a common neighbor it must have the degree 3
so by removing and its neighbors, we again obtain a disconnected graph with 15
vertices. Let us assume u and v have each its own new neighbor and let us denote
them by u1 and v1, respectively. If any of them has the degree 3, without the loss
of generality we may assume that d(u1) = 3, then y has the degree 2 in G\M(u1) so
when we remove another vertex of degree 3 from G\M(u1) along with its neighbors,
the remaining graph will have 11 vertices and x will have the degree 1 in it, so b)
holds. If any of u1 and v1 has the degree 1, let us assume d(u1) = 1, then whatever
two vertices of degree 3 we remove along with their neighbors, u1 will have the
degree 0 or 1 in the remaining graph of 11 vertices so b) holds. On the other hand,
if u1 and v1 both have the degree 2 we observe the rest of the graph. There must be
at least one vertex besides y with degree 3. Let us remove it and its neighbors. Now
by removing y and its neighbors at least one of u1 and v1 remains either isolated or
with the degree 1 in the remaining graph of 11 vertices, so again b) holds.

2) δ(G) = 2. Let us distinguish two subcases.
2.1.) Two vertices of degree 2 are adjacent in G.
Let us denote those vertices by x and y. If x and y have a common neighbor of

degree 3 let us denote it by u and let us observe the path starting in u not containing
x nor y. Let us denote by w the first vertex of degree 3 on that path. If G\M(w) is
disconnected then a) holds and if it is connected then u is the only vertex of degree
3 in the remaining graph and by removing it and its neighbors, we obtain a path
of 11 vertices so b) holds. Let us assume x and y have one more neighbor each. If
they are adjacent at least one of them must have the degree 3 and by removing it
and its neighbors, either x or y will remain isolated so a) holds. Let us assume the
neighbors are not adjacent and let us denote them by x1 and y1. If at least one of
those neighbors has the degree 2, without the loss of generality we may assume that
it is x1, then let us follow the path starting in x, not passing through y, and let us
denote by u the first vertex of degree 3 in that path (not necessarily different from
y1) (such a vertex must exist because δ(G) > 1), and let us denote the predecessor
of the predecessor of u by v (note that v can be x if we found u on a distance 2 from
x). Now vertex v has the degree 1 in G\M(u) and since its only neighbor is surely
of degree 2 then by removing the other vertex of degree 3 and its neighbors (one
more vertex of degree 3 must exist) from G\M(u), v will remain with the degree at
most 1 and b) holds.

So let us assume that both neighbors, of x and y, have the degree 3. Let us again
denote the neighbors by x1 and y1, respectively. If they have a common neighbor
then let us remove x1 and its neighbors. Now y has the degree 1 and y1 has the
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degree 2 in G\M(x1) so after removing the other vertex of degree 3 and its neighbors
(one more vertex of degree 3 must exist), y will have the degree at most 1 and b)
holds.

Let us assume x1 and y1 have no common neighbors but instead have 2 more
neighbors each. If any of them has the degree 3, without the loss of generality we
may assume that it is the neighbor of x1, then by removing it and its neighbors, x
remains with the degree 1 and it will have the degree at most 1 after removing the
other vertex of degree 3 along with its neighbors, by the same reasoning as before.
Let us assume that all the neighbors of x1 and y1 have the degree 2.

If two of them are adjacent, both of them from x1 (or y1), then it is easy to
see that 1 vertex of degree 3 can be found to leave the graph disconnected with 15
vertices. And if one neighbor of x1 is adjacent to a neighbor of y1 then we observe
the other neighbors of x1 and y1 and let us denote them by x2 and y2, respectively.
They obviously cannot be adjacent and if they have a common neighbor it must be
of degree 3, so by removing it and its neighbors, we obtain a disconnected graph
with 15 vertices. Let us assume x2 and y2 have each its own neighbor and let us
denote them by x3 and y3, respectively. If any of x3 and y3 has the degree 3, without
the loss of generality let us assume it is x3, then G\(M(x3)∪M(y1)) is disconnected
with 11 vertices so b) holds. Let us assume x3 and y3 have the degree 2. Now if we
remove x1 and its neighbors, y and x3 have the degree 1 in G\M(x1). If we remove
y1 and its neighbors, then x3 will have the degree 1 in the remaining graph of 11
vertices and otherwise y will remain with degree 1 so in each case a) holds.

On the other hand, if none of the neighbors of x1 and y1 are adjacent let us
denote them by x11, x12, y11, y12. If x11 and x12 (or y11 and y12) have a common
neighbor of degree 2 or 3 it is easy to obtain a disconnected graph. Let us assume
that some other two have a common neighbor and without the loss of generality let
us assume those are x12 and y11. (Figure 1 a) If that neighbor has the degree 2 then
G\(M(x1)∪M(y1)) is disconnected with 11 vertices and if it has the degree 3 then
that vertex will have the degree at most 1 in G\(M(x1) ∪M(y1)) so b) holds. Let
us assume none of x11, x12, y11, y12 have a common neighbor and let us denote their
neighbors by x21, x22, y21, y22 (Figure 1 b)).

If any of x21, x22, y21, y22 has the degree 3, without the loss of generality let
us assume x21 then G\(M(x21) ∪ M(y1)) has 11 vertices and minimal degree 1
(d(x) = 1), so let us assume they all have the degree 2. But now y, x21 and x22
have the degree 1 in G\M(x1) and when we remove any vertex of degree 3 and
its neighbors, at least one of them will have the degree at most 1 in the remaining
graph of 11 vertices.
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Figure 1: Subcases of 2.1.

2.2.) There are no adjacent vertices of degree 2.
Let x be a vertex of degree 2 and u and v its neighbors of degree 3. Let us

consider two subcases.
2.2.1.) u and v are adjacent.
If they have a common neighbor it must have the degree 3 and by removing it

and its neighbors, we obtain a disconnected graph with 15 vertices.
If u and v have one more neighbor each and at least one of them has the degree 3,

without the loss of generality let us assume it is the neighbor of u, then by removing
it and its neighbors, x remains with degree 1 and v with degree 2, so by removing
the other vertex of degree 3 and its neighbors from the graph the degree of x will
be at most 1 and b) will hold. Let us assume both neighbors have the degree 2
and let us denote them by u1 and v1. If u1 and v1 have a common neighbor the
claim is again easy to see so let us assume they have one more neighbor each and
let us denote them by u2 and v2. They must have the degree 3 because there are
no adjacent vertices of degree 2 in the graph.

If u2 and v2 are adjacent then by removing any of them and its neighbors, we
obtain a disconnected graph on 15 vertices and if they have a common neighbor of
degree 3 then by removing it and its neighbors, we obtain a disconnected graph on 15
vertices. If u2 and v2 have a common neighbor of degree 2 then G\(M(u2)∪M(v))
has 11 vertices and v2 has the degree at most 1 so b) holds. And if they have no
common neighbors then G\(M(u2) ∪M(v2)) is disconnected with 11 vertices.

2.2.2.) u and v are not adjacent.
If they have a common neighbor of degree 3 the claim is easy to see. Let us

first assume they have a common neighbor of degree 2 and let us denote their other
neighbors by u1 and v1 (they cannot have 2 common neighbors of degree 2). If at
least one of them has the degree 3, without the loss of generality let us assume that
it is u1, then in G\M(u1) x has the degree 1. If v is not the only vertex of degree 3 in
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G\M(u1) then by removing that other vertex we obtain a graph with 11 vertices in
which x has the degree 1. And if v is the only vertex with the degree 3 in G\M(u1)
then that means v1 has the degree at most 2 in G\M(u1) and by removing v and its
neighbors, the other (non v) neighbor of v1 remains with the degree 1 in a graph of
11 vertices or we have obtained a disconnected graph. So let us assume that u1 and
v1 have the degree 2. They are obviously not adjacent and if they have a common
neighbor of degree 3 the claim is easily seen, so let us assume they each have a new
neighbor of degree 3, let us denote them by u2 and v2. Now G\(M(u2) ∪M(v)) is
disconnected (u is isolated) with 11 vertices.

If u and v have no common neighbors let us denote their neighbors by u1, u2,
v1, v2. If any of them has the degree 3, without the loss of generality let us assume
it is u1, then x has the degree 1 in G\M(u1). If there exists a vertex of degree 3 in
G\M(u1) different from v then by removing it as the other agent x has the degree
at most 1 in the remaining graph of 11 vertices. And if v is the only vertex with
degree 3 in G\M(u1) then v1 and v2 have the degree at most 2 in G\M(u1) and
by removing v and its neighbors we either obtain a disconnected graph or at least
one neighbor of v1 and v2 has the degree at most 1 in G\(M(u1)∪M(v)). The only
remaining case to consider is when u1, u2, v1, v2 all have the degree 2. Neither two
of them may be adjacent and they cannot have common neighbors of degree 2. If
any two of them have a common neighbor of degree 3 the claim is easy to see and
if they have no common neighbors then let us remove the neighbor of u1 and its
neighbors, and M(v). The remaining graph has 11 vertices and u has the degree 1
so the claim is proven.

Theorem 7. 1. A graph G with at most 17 vertices doesn’t allow a highly (3, 1)-
resistant multicoloring.

2. 6 ≤ HR3,1(19) ≤ HR3,1(18) ≤ 7.

3. HR3,1(20) = 4.

Proof. First we observe that that if G allows a highly (3, 1)-resistant k-multicoloring,
then k ≥ 4. Let us first prove that a graph G with at most 17 vertices doesn’t allow
a highly (3, 1)-resistant multicoloring. Let us assume the opposite, that there exists
a graph G with 17 vertices and k ∈ N, such that G allows a highly (3, 1)-resistant
k-multicoloring. Components of at most 3 vertices cannot have all the colors so
we disregard them. We will prove the claim through four cases, depending on the
number of components with at least 4 vertices in G.

1) G has 4 components with at least 4 vertices.
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The largest component in G has at most 5 vertices and it is 3-separable with
(1, 0) vertices. The second and third largest component are also 3-separable with
(1, 0) vertices, and the fourth largest component is 3-separable with (0, 1) vertices.
This means that G is 3-separable by (3, 1) vertices and therefore doesn’t allow the
aforementioned coloring.

2) G has 3 components with at least 4 vertices.
If the largest component in G has 9 or 8 vertices then it is 3-separable with

(2, 0) vertices by Lemma 1 ii), the second largest component is 3-separable with
(1, 0) vertices and the remaining component with (0, 1) vertices.

If the largest component in G has 7 vertices it is 3-separable with (1, 1) vertices
by Lemma 1 i) and the two remaining components are 3-separable by (1, 0) vertices
each.

3) G has 2 components with at least 4 vertices.
If the largest component in G has 13 vertices it is 3-separable with (3, 0) vertices

by Lemma 1 iv), and the remaining component of at most 4 vertices is 3-separable
with (0, 1) vertices.

If the largest component in G has 11 or 12 vertices it is 3-separable with (2, 1)
vertices by Lemma 1 iii) and it is easily seen that the remaining component is
3-separable with (1, 0) vertices.

If the largest component has 9 or 10 vertices it is 3-separable with (2, 0) vertices
by Lemma 1 ii) and the remaining component is 3-separable with (1, 1) vertices by
Lemma 1 i).

4) G has exactly 1 component with at least 4 vertices.
Let G be a connected graph with 17 vertices. We can assume this because all

other cases are implied by this solution. We consider 3 subcases, depending on the
highest degree in G.

4.1.) The highest degree in G is 4.
Let u be a vertex of degree 4 in G. G\M(u) has 12 vertices and it is 3-separable

with (2, 1) vertices by Lemma 1 iii).
4.2.) The highest degree in G is 2.
G is obviously a cycle or a path and by choosing a vertex u of degree 2, G\M(u)

is a union of paths and has 14 vertices. It can now be easily seen that the claim
holds.

4.3.) The highest degree in G is 3.
Let us denote any vertex of degree 3 by u. G\M(u) has 13 vertices. If the

highest degree in G\M(u) is at most 2 the claim easily follows so let us assume the
highest degree in G\M(u) is 3. We distinguish 2 possibilities.
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a) There is a vertex of degree 1 in G\M(u). The claim now follows from Lemma
2 ii).

b) The minimal degree in G\M(u) is 2. Let v be a vertex in G\M(u) with degree
3. G\(M(u) ∪M(v)) has 9 vertices. If the highest degree in G\(M(u) ∪M(v)) is
at most 2 the claim can easily be seen, so let us assume the highest degree in
G\(M(u)∪M(v)) is 3. Also, if there exists a vertex of degree 1 in G\(M(u)∪M(v)),
the claim follows from Lemma 2 i). The only case left to consider is if all the vertices
in G\(M(u) ∪M(v)) are of degree 2 or 3. But in this case the claim follows from
Lemma 3. We have proven that a graph G with at most 17 vertices doesn’t allow a
highly (3, 1)-resistant multicoloring.

A graph with 18 vertices that that allows a highly (3, 1)-resistant 7-multicoloring
is given in Figure 2.

Figure 2: A graph with 18 vertices and a highly (3, 1)-resistant 7-
multicoloring

From this it follows that HR3,1(19) ≤ 7.
Let us prove that HR3,1(19) ≥ 6. Let us assume the opposite, that there exists

a graph G with 19 vertices that allows a highly (3, 1)-resistant 5-multicoloring.
Since no three vertices can have all the colors it is enough to observe only com-

ponents with 4 or more vertices. We distinguish four possibilities:
1) G has four components with at least 4 vertices.
The largest component has at most 7 vertices so by Lemma 4 ii) it doesn’t allow

a highly (1, 0)-resistant 5-multicoloring. The second and third largest component
also don’t allow a highly (1, 0)-resistant 5-multicoloring and the smallest of the
4 observed components can have 4 vertices at most so it is 3-separable by (0, 1)
vertices.

2) G has three components with at least 4 vertices.
Possible component sizes are different, depending on how many vertices in G

are in components with less then 4 vertices. However, the largest component can
have 11 vertices at most so by Lemma 4 iv) it doesn’t allow a highly (2, 0)-resistant
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5-multicoloring. Second largest component can have 7 vertices at most so by Lemma
4 ii) it doesn’t allow a highly (1, 0)-resistant 5-multicoloring and the third largest
component has at most 6 vertices so by Lemma 4 i) it doesn’t allow a highly (0, 1)-
resistant 5-multicoloring. This holds for all possible sizes of the components.

3) G has two components with at least 4 vertices.
The largest component has 15 vertices at most and the fact that a graph of

15 vertices doesn’t allow a highly (3, 0)-resistant 5-multicoloring follows from the
results in [7]. The second largest component has 4 vertices and it is 3-separable by
(0, 1) vertices. The case when the largest component has 14 or 13 vertices and the
second largest 5 or 6 follows in the same way.

If the largest component has 12 vertices then it is 3-separable by (2, 1) vertices
which follows from Lemma 1 iii). The second largest component has at most 7
vertices and it doesn’t allow a highly (1, 0)-resistant 5-multicoloring, by Lemma 4
ii).

If the largest component has 11 or 10 vertices then it doesn’t allow a highly
(2, 0)-resistant 5-multicoloring and the second largest component then has at most
8 or 9 vertices and it doesn’t allow a highly (1, 1)-resistant 5-multicoloring, which
follows from Lemma 4 iv) and iii).

4) G has exactly one component with at least 4 vertices.
Without the loss of generality we may assume that G is connected with 19

vertices because all other cases are implied by this solution.
4.1.) The highest degree in G is 2. Let u be any vertex with degree 2. G\M(u)

has 16 vertices and it is a union of paths. Let us denote by v the center of the
largest path in G\M(u). Now G\(M(u) ∪M(v)) has 13 vertices and it is a union
of at least 2 paths of which the largest one has at most 7 vertices and it is doesn’t
allow a highly (1, 0)-resistant 5-multicoloring by Lemma 4 ii) The remaining grapf
of 6 vertices doesn’t allow a highly (0, 1)-resistant 5-multicoloring by Lemma 4 i).

4.2.) The highest degree in G is 3. Let u be any vertex with degree 3. G\M(u)
has 15 vertices.

If all of them have the degree at most 2 then let v be any vertex of degree 2.
G\(M(u)∪M(v)) has 12 vertices and it is a union of paths. If G\(M(u)∪M(v)) is
not connected it is easy to see that it is 3-separable with (1, 1) vertices and if it is
one path of 12 vertices then let w be a vertex on a distance 4 from the end of that
path. G\(M(u) ∪M(v) ∪M(w)) is a union of two paths, of lengths three and six,
and the larger one is 3-separable with (0, 1) vertices.

On the other hand, if there exists a vertex of degree 3 in G\M(u) than the claim
follows from Lemma 6 and Lemma 5 ii) and iii).
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4.3.) The highest degree in G is at least 4. Let u be a vertex in G with the highest
degree. G\M(u) has at most 14 vertices and it doesn’t allow a highly (2, 1)-resistant
5-multicoloring by Lemma 5 iii). This proves our claim that HR3,1(19) ≥ 6.

It remains to prove that HR3,1(20) = 4. It is easily seen that HR3,1(20) ≥ 4
must hold, and the graph G with 20 vertices that allows a highly (3, 1)-resistant
4-multicoloring is given in Figure 3.

Figure 3: A graph with 20 vertices and a highly (3, 1)-resistant 4-
multicoloring
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Abstract

A matching M in a graph G is maximal if it cannot be extended to a larger
matching in G. The enumerative properties of maximal matchings are much
less known and researched than for maximum and perfect matchings. In this
paper we present the recurrences and generating functions for the sequences
enumerating maximal matchings in rooted products of paths and short cycles.
We also analyze the asymptotic behavior of those sequences.
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1 Introduction

A matching in a graph is a collection of its edges such that no two edges in this
collection have a vertex in common. Many problems in natural, technical and social
sciences can be successfully modeled by matchings in graphs. Today the matching
theory is a well developed part of graph theory, strongly influenced by chemical
applications. Particularly well researched are perfect and maximum matchings. For
a general background on matching theory and terminology we refer the reader to
the classical monograph by Lóvasz and Plummer [4].

A matching is perfect if its edges are collectively incident to all vertices of G. It is
clear that perfect matchings are as large as possible and that no other matching in G
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can be “ larger” than a perfect one. In all other applications we are also interested
mostly in large matchings. If we are using the number of edges as the measure
of “largeness”, we get the maximum matchings. For them we have well developed
structural theory and many enumerative results. No such theory, however, exists for
another class of large matchings - maximal matchings. A matching M is maximal
if it cannot be extended to a larger matching in G. Obviously, every maximum
matching is also maximal, but the opposite is generally not true. Maximal matchings
are much less researched, but still very useful. That goes both for their structural
and their enumerative aspects. The crucial difference is non-locality. That means
that we cannot split the set of all maximal matchings into those containing an edge
e and those not containing it without taking into account the edge-neighborhood of
e. The main goal of this work is to increase our knowledge about the enumerative
aspects of maximal matchings.

We begin by establishing the principal terminology and notation which we will
use throughout the article. It is taken from [7]. All graphs G considered in this
paper will be finite and simple, with vertex set V (G) and set of edges E(G). We
will denote by n = |V (G)| the number of vertices and by m = |E(G)| the number
of edges in G. As usual, the cycle and complete graph on n vertices are denoted by
Cn and Kn, respectively. However, by Pn we denote the path of length n, i.e., on
n + 1 vertices. Let Ψ(G) denote the number of maximal matchings in graph G.

2 Rooted product of graphs

Many interesting graphs arise from simpler building blocks via some binary op-
erations known as graph products. In 1978, Godsil and McKay [2] introduced a
new product of two graphs G1 and G2, called the rooted product, and denoted by
G1 �G2. The rooted product graphs are used, for example, in internet networking
for connecting local networks to a wider frame. One can view such a situation as a
combination of many local networks (copies of graph H) having a server (the root
vertex of graph H). These servers are themselves connected through a global net-
work (the graph G). So, one motivation to count the maximal matchings can be
securing networks with as few sensors as possible.

The main goal of this paper is to study the enumerative aspects of maximal
matchings in some classes of rooted products. We establish recurrences for the
enumerating sequences and, in some cases, we use generating functions to determine
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their asymptotic behavior. We consider operations of rooted product of paths and
cycles, and enumerate maximal matchings in the resulting graphs.

Let V (G) = {ui| 1 ≤ i ≤ n} and v ∈ V (H). The rooted product G�H of a
graph G and a rooted graph H with respect to the root v is defined as follows: take
n = |V (G)| copies of H, and for every vertex ui of G, identify ui with the root v of
the i-th copy of H. Obviously,

|V (G�H)| = |V (G)| |V (H)|
|E (G�H)| = |E(G)|+ |V (G)| |E(H)| .

Hence, we take as many copies of graph H as we have vertices in graph G. If
H or G is the singleton graph, then G�H is equal to G or H, respectively. In this
sense, to obtain the rooted product G �H, hereafter we will only consider graphs
G and H of orders greater than or equal to two. We note that the rooted product
is not commutative.

The rooted product is especially relevant for trees, as a rooted product of two
trees is another tree. For instance, [3] used rooted products to find graceful number-
ings for a wide family of trees. Also, the rooted product of two graphs is a subgraph
of the Cartesian product of those two graphs.

3 Rooted product graph Pn � Pm

We first consider the case when we have a rooted product of two paths, always
taking a leaf as a root. In all cases we obtain a tree. An example is shown in Figure
1.

Figure 1: Example of Pn � P2 rooted product

The next lemma is a direct consequence of Proposition 6.1. from article [1].
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Lemma 1. The number of maximal matchings in rooted product graph Pn � P1 is
equal to the value of the (n + 2)-nd Fibonacci number, i.e. Ψ(Pn � P1) = Fn+2.

Proof. It is clear that every vertex of the Pn must be covered by an edge of a
maximal matching. If vertex n is covered by the edge vn−1vn, the remaining edges
of a maximal matching must form a valid maximal matching in Pn−2 � P1, and
hence are counted by Ψ(Pn−2�P1). If vn is covered by the pendent edge of P1, the
remaining maximal matchings are counted by Ψ(Pn−1 � P1). Hence, the number of
maximal matchings in Pn � P1 satisfies the recurrence

Ψ(Pn � P1) = Ψ(Pn−1 � P1) + Ψ(Pn−2 � P1),

with initial conditions Ψ(P0 � P1) = 1,Ψ(P1 � P1) = 2.
The sequence Fn of Fibonacci numbers is defined by the same recurrence relation
and the same initial conditions, so the claim follows.

We now give another result for a rooted product of two paths, this time for the
case Pn � P2 shown in Figure 1. We will denote the number of maximal matchings
in the graph Pn � P2 with tn.

Proposition 1. The sequence tn satisfies the recurrence tn = tn−1 + 2tn−2 + tn−3

with the initial conditions t0 = 2, t1 = 4.

In the proof we will repeat argument from paper [6] – we split graph into two
parts: counting the number of matchings containing the root and counting the
matchings which do not contain the root. We must take into account the edge-
neighborhood of e.

Proof. Each maximal matching in Pn � P2 either covers the rightmost root or does
not cover it. In the first case, the remaining edges must form either a valid matching
in Pn−1 � P2 (if is root covered by edge of P2) or a valid maximal matching in
Pn−2 � P2 (if the root is covered by edge of Pn).

Maximal matchings that do not cover that root must cover both its neighbors.
The neighbor in Pn can be covered in two ways, one of them counted by the number
of maximal matchings in Pn−2 � P2, another by the number of maximal matchings
in Pn−3 � P2. The claim now follows by adding the two contributions.

The following proposition and corollary give the generating function and asymp-
totic behavior of tn.
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Proposition 2. The generating function T (x) for the sequence tn is given by

T (x) =
x2 + 2x + 2

1− x− 2x2 − x3
.

Corollary 1. The asymptotic behavior of tn is given by tn ∼ 1.92485 · 0.51952n.

The sequence tn provides a new combinatorial interpretation of sequence A141015
from the OEIS [5].

4 Rooted product graph Pn � Cm

In this section we will show some results about rooted product graph Pn � Cm.
Figure 2 shows the first case - the rooted product Pn � C3.

Figure 2: Example of Pn � C3 rooted product

The next lemma is a consequence of Proposition 7.3. from article [1]. We will
denote the number of maximal matchings in the rooted product graph Pn�C3 with
pn.

Lemma 2. The sequence pn satisfies the recurrence

pn = 2pn−1 + 3pn−2 + pn−3,

with the initial conditions p0 = 3, p1 = 9, p2 = 28.

The sequence pn appears as A084084 in the OEIS.

An example for the next case, the rooted product Pn�C4, is shown in Figure 3.
We will denote the number of maximal matchings in this case with Ψ(Pn�C4) = rn.
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Proposition 3. The sequence rn satisfies the recurrence

rn = 2rn−1 + 4rn−2,

with the initial conditions r0 = 2, r1 = 8.

Proof. Each maximal matching in Pn � C4 must cover the root of the copy of C4

rooted at the rightmost vertex of Pn. If the root is covered by one of the two edges of
C4 incident with it, the remaining edges of this maximal matching must form a valid
maximal matching in Pn−1 � C4. If the root is covered by the edge incident with
it in Pn, the remaining edges must form a valid maximal matching in Pn−2 � C4.
In that case, there are four ways to form maximal matchings in the rest of the two
rightmost copies of C4. The claim now follows by adding the two contributions.

Proposition 4. The generating function R(x) for the sequence rn is given by

R(x) =
1

1− 2x− 4x2
.

Corollary 2. The asymptotic behavior of rn is given by rn ∼ 1 +
√

5, twice the
golden ratio.

Figure 3: Example of Pn � C4 rooted product

The sequence rn is known as the Horadam sequence an = s · an−1 + r · an−2 for
s = 2, r = 4. It appears as A085449 in the OEIS and it counts, among other things,
the number of ways to tile an n-board with two types of colored squares and four
types of colored dominoes.
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5 Concluding remarks

In this paper we have counted maximal matchings in rooted products of some graphs.
We have addressed only the combination of paths and short cycles. It would be
probably too ambitious to hope for general enumerative results for rooted products.
However, many interesting cases should be within the reach. Another interesting
thing in such graphs would be to consider their saturation number and to compute
their maximal matching polynomials.
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