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Abstract

Lindström – Gessel – Viennot theorem connects linear algebra and combina-
torics with graph theory. We will present proof of LGV theorem and its appli-
cation on Cauchy – Binnet and generalized Cauchy – Binnet formula as well as
calculation of binomial determinants and some other specific determinants.
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1 Introduction

Linear algebra and combinatorics are one of the oldest mathematical disciplines
which even today significantly influenced further development of other disciplines and
computer science. Although if we think about modern mathematics as a collection of
many overlapping disciplines whose subjects may look far distant from each other,
mathematics was always strongly integrated science with unexpected, mysterious
and beautiful links among diverse subjects. Here we present one such deep result
which connects determinants and graphs.

On the website of KAIST Math Problem of the Week (Weekly Math Challenges
in KAIST) in December 2016 the following problem was posted.
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Problem 1 (Koon and Yun Bum). Let Sn = (aij)ij be an n× n matrix such that

aij =

(
2(i+ j − 1)

i+ j − 1

)
.

Find detSn.

The solution of this problem was given by Koon and Yun Bum in 2017. Using the
properties of linear algebra and binomial coefficients they reduced matrix an upper
triangular matrix which determinant is Sn = 2n. We sketch his solution:
Proof: Let Ln be the lower triangular matrix with entries given by

Ln :=

{ (
2i−1
i+j−1

)
if i ≥ j

0 otherwise

and let Un := LTn . Note that

(LnUn)ij =
2i−1∑
k=1

(
2i− 1

k

)(
2j − 1

k + j − i

)
for i ≥ j.

Observe the following identity(
2(i+ j − 1)

i+ j − 1

)
=

2i−1∑
k=0

(
2i− 1

k

)(
2j − 1

k + j − i

)
.

As

2(LnUn)ij =

2i−1∑
k=0

(
2i− 1

k

)(
2j − 1

k + j − i

)
,

so 2(LnUn)ij = aij , where Sn = (aij). Hence, Sn = (2Ln)Un,

detSn = (det 2Ln) detUn = 2n detLn detUn = 2n.

In this paper we will view this matrix as the matrix of path systems of some
graph. We will say something about its determinant based on the Lindström –
Gessel – Viennot theorem.
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Theorem 1.1 (LGV theorem). Let G be a directed acyclic graph, with a weight
function ω : E → R, A = {A1, A2, . . . , An} and B = {B1, B2, . . . , Bn} be two (not
necessarily disjoint) sets of vertices. Let M be the path matrix from A to B, and let
V D be the set of all vertex disjoint path systems of A to B. Then

detM =
∑
P∈V D

sign(P)ω(P).

In Section 2, we will define basic terms and properties related to directed weighted
acyclic graphs. In Section 3, the proof of LGV theorem and its application in Cauchy-
Binnet’s and generalized Cauchy - Binnet’s formula will be provided. Thus, we will
show how to apply LGV theorem to a binomial determinant. In the last section the
solution of Problem 1 will be provided using LGV theorem for n = 2.

2 Weighted graphs and directed paths in graphs

In this section we review basics of graphs and explain path systems in a graph in
order to state Lindström – Gessel – Viennot theorem.

Definition 2.1. Graph G is pair of sets G = (V,E), where V is a set of vertices,
and E is a set of edges, formed by pairs of vertices.

(a) Graph G (b) Directed graph
G

Figure 1: Example of graphs
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For example in Figure 1(a) we have a graph G = (V,E) with the finite set of vertices
V = {v1, . . . , v6}, and finite set of edges E = {e1, e2, . . . , e7}. If we give a directions
to edges (Figure 1(b)) then we we call a graph directed.

Definition 2.2. A walk is a sequence v0, e1, v1, . . ., vk of graph vertices vi and
graph edges ei such that for 1 ≤ i ≤ k, the edge ei has endpoints vi−1 and vi. The
length of a walk is its number of edges.

Definition 2.3. A path in G is a walk with with all distinct vertices in sequence.

Definition 2.4. A trail is a walk v0, e1, v1, . . ., vk with no repeated edge. The length
of a trail is its number of edges.

A u, v trail is a trail with first vertex u and last vertex v, where u and v are
known as the endpoints. A walk of trail is closed if the first vertex is equal to last
vertex and is the only vertex that is repeated.

Definition 2.5. A cycle of a graph G is a subset of the edge set of G that forms a
path such that the first node of the path corresponds to the last.

Definition 2.6. A directed acyclic graph is a graph with directed edges containing
no cycles.

Throughout the paper we consider only simple graphs (no loops and no multiple
edges). Let us suppose that for each edge e of graph G it is associated a real number
w(e) called its weight. Then graph G together with these weights is called a weighted
graph. If their edges are directed, the graph is called directed acyclic graph G. For
us, paths of directed weighted acyclic graph G will be the most interesting.

Definition 2.7. A path system P is given by a permutation σ ∈ Sn and n paths
P1 : A1 → Bσ(1), P2 : A2 → Bσ(2), . . ., Pn : An → Bσ(n). Weight of a path system P
is given by

ω(P) =
n∏
i=1

ω(Pi)

where w(P ) is the weight of path P and sign(P) = sign(σ). Weight of a path P is
defined by the product of the edges in the path

ω(P ) =
∏
e∈P

ω(e).

For a trivial path P (from a vertex v to itself), we define ω(P ) = 1.
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For two vertices A and B of G we define weight from A to B, with

ω(A,B) =
∑

P :A→B
ω(P ). (1)

Example 2.1. We now illustrate the weights of paths from v1 to v6 in the following
weighted graph G:

Figure 2: Directed weighted acyclic graph G

There are three such paths P1 : e2e4e6, path P2 : e1e3e5e6 and path P3 : e1e3e7.
Determine now the weight for all possible paths which we noticed and then we
obtain that their weights are

ω(P1) = ω(e2)ω(e4)ω(e6) = 2 · 1 · 3 = 6,

ω(P2) = ω(e1)ω(e3)ω(e5)ω(e6) = 1 · 2 · 4 · 3 = 24,

ω(P3) = ω(e1)ω(e3)ω(e7) = 1 · 2 · 5 = 10.

Now we deduce that

ω(v1, v6) = ω(P1) + ω(P2) + ω(P3) = 6 + 24 + 10 = 40.

Let A = {A1, A2, . . . , An} ⊂ V and B = {B1, B2, . . . , Bn} ⊂ V be a two subsets
of V having the same cardinality n.

Definition 2.8. Vertex - disjoint path system P : A → B is a collection of all paths
where in every collection there are no two paths Pi, Pj ∈ P with a common vertex.
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Definition 2.9. The matrix of paths M = [mi,j ]
n
i,j=1 from A to B is defined by

mi,j =
∑

P :Ai→Bj

ω(P ) = ω(Ai, Bj).

3 Lindström – Gessel – Viennot theorem

Lindström - Gessel - Viennot Lemma (LGV theorem) or the nonintersecting paths
theorem gives some characterization of determinant of the matrix of paths in terms of
special path systems. The proof of this theorem was presented by Bernt Lindström
(1973) in the context of matroid theory [4], but all beauty of this theorem was
revealed by Ira Gessel and Gerard Viennot in their paper Binomial Determinants,
Paths, and Hook Length Formulae ([2]). In this paper it is described how to apply
the theorem to the combinatorics problems. However, we must mention that similar
idea appeared earlier in the work of Karlin and McGregor (1959) in a probabilistic
framework ("Slater determinant") in quantum mechanics ([3]). Now we will give the
proof of LGV theorem.

Proof of LGV theorem: Determinant of n× n matrix is defined as

det(M) =
∑
σ∈Sn

(
sign(σ)

n∏
i=1

miσ(i)

)
.

Consider σ ∈ Sn, where σ is a permutation of set {1, 2, . . . , n}

sign(σ)
n∏
i=1

mi,σ(i) = sign(σ)m1σ(1)m2σ(2) · · ·mnσ(n),

where miσ(i) is the sum of weights of collection path system from Ai to Biσ(i). Now
apply the definition of weight from some vertex to some other vertex within the
graph to get that

sign(σ)m1σ(1)m2σ(2) · · ·mnσ(n)

= sign(σ)

 ∑
P1:A1→Bσ(1)

ω(P1)

 · · ·
 ∑
Pn:An→Bσ(n)

ω(Pn)


=

∑
P:P1:A1→Bσ(1),...,Pn:An→Bσ(n)

sign(P)ω (P) .
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If we make the sum over all σ, we get

detM =
∑
P

(sign(Pσ))ω(Pσ),

where P = (P1, P2, . . . , Pn) is collection of all path systems which run from A to B
and

Pσ = {P : P system of paths A to B given with σ}.

From the sum over all path systems P from A to B we obtain

detM =
∑
P

sign(P)ω(P). (2)

Let ND be collection of all path systems which have at least two common vertices.
Then we can show the right side of equality (2) as

∑
P

sign(P)ω(P) =
∑
P∈V D

sign(P)ω(P) +
∑
P∈ND

sign(P)ω(P).

The goal is to show that we have∑
P∈ND

(signP)ω(P) = 0.

For a path system R = (R1, R2, . . . , Rn) ∈ ND, define

• i to be the smallest index such that Ri intersected with some Rj ,

• X to be the first vertex at which Ri intersects some other path R,

• j to be the smallest index of all the paths in R that intersects Ri u X (equiv-
alently the smallest index of all paths such that X ∈ Pi ∩ Pj , (j > i),

• LiX to be part of path Ri from Ai to X, and RiX part of path Ri from X to
Bσ(i), so it is ω(Ri) = ω(LiX) · ω(RiX),

• LjX to be part of path Rj from Aj to X, and RjX part of the path Rj from
X to Bσ(j), so it is ω(Rj) = ω(LjX) · ω(RjX).
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Ai X

Bσ(i)
Aj

Bσ(j)
Rj

Ri

Now, we define an involution ϕ on ND by setting

ϕ : ND → ND ϕ(R) = T = (T1, T2, T3, . . . , Tn),

where Tk = Rk when k 6= i, j, and Ti and Tj are defined as

• Ti is the path from Ai using the edges LiX to X, after that we use the edges
from RjX to Bσ(j), so that ω(Ti) = ω(LiX) · ω(RjX),

• Tj is the path from Aj using the edges LjX to X, after that we use the edges
from RiX to Bσ(i), so that ω(Tj) = ω(LjX) · ω(RiX).

R
′
i

R
′
j

Ai X

Bσ(i)
Aj

Bσ(j)

T = (R
′
1, R

′
2, . . . , R

′
n) T have σ′ ∈ Sn where is σ′

= σ ◦ (i, j)

sign σ
′

= sign σ sign(i, j)
sign σ

′
= −sign σ

From which we obtained

sign R = −sign T
−sign R = sign T
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Both path systems T and R are contained from the same set of the edges, so

ω(T ) =

n∏
i=1

ω(Ti) = ω(T1)ω(T2) · · ·ω(Tn)

=

 ∏
k∈{1,2,...,n}\{i,j}

ω(Tk)

ω(Ti)ω(Tj)

=

 ∏
k∈{1,2,...,n}\{i,j}

ω(Rk)

ω(Ti)ω(Tj).

Based on above obtained paths Ti and Tj it follows that

ω(Ti)ω(Tj) = (ω(LiX) · ω(RjX))(ω(LjX) · ω(RiX))
= (ω(LiX) · ω(RiX)) · (ω(LjX) · ω(RjX))
= ω(Ri)ω(Rj).

Thus, ω(T ) = ω(R). From definition ϕ is an involution so it follows that ϕ = ϕ−1,
i.e. ϕ is bijection. Thus we found 1− 1 correspondence for matching pairs of system
paths (R, ϕ(R)) in ND where every pair of system paths is

ω(R) = ω(ϕ(R))
sign(R) = −sign(ϕ(R)).

It follows that ∑
P∈ND

sign(P)ω(P) = 0.

The Theorem is proved.

Apart from the connection with linear algebra, it offers a nice connection be-
tween graph theory and combinatorics, which will be illustrated on the theorem and
examples.

Proposition 3.1. For m,n ∈ N

detM =


(
m
0

) (
m
1

)
. . .

(
m
n−1
)(

m+1
0

) (
m+1
1

)
. . .

(
m+1
n−1
)

...
...

. . .
...(

m+n−1
0

) (
m+n−1

1

)
. . .

(
m+n−1
n−1

)
 = 1.
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Proof: This Proposition we will prove using the LGV theorem. The idea consists
of creating the directed weighted acyclic graph which weights of paths is equal to
the appropriate binomial coeficient in determinant. On the other words

(
m
0

) (
m
1

)
. . .

(
m
n−1
)(

m+1
0

) (
m+1
1

)
. . .

(
m+1
n−1
)

...
...

. . .
...(

m+n−1
0

) (
m+n−1

1

)
. . .

(
m+n−1
n−1

)
 =


ω(A1, B1) ω(A1, B2) . . . ω(A1, Bn)
ω(A2, B1) ω(A2, B2) . . . ω(A2, Bn)

...
...

. . .
...

ω(An, B1) ω(An, B2) . . . ω(An, Bn)

 .
That graph we can construct in the following way (Figure 3). The edges of matrix
M are directed on the right (horizontally) and upwards (vertically).

Figure 3: Directed weighted acyclic graph of determinant M

Consider now all disjoint path system in graph constructed graph. If we observe the
path from A1 to B1, we notice that we have only one such path. In case we start
from A2 upwards, paths would be intersected. Thus, one option is to go right so
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that the path from A2 to B2 is determined by only one possible path. The analogy
applies to all other paths in the graph, which means that only one disjoint paths
system exists.

detM = #number of disjoint path systems = 1.

Theorem 3.1 (Chauchy - Binnet’s formula). For every two n × n square matrices
M1 and M2

det(M1M2) = det(M1) det(M2).

Proof: Let us take the following sets of vertices

A = {A1, A2, . . . , An},
B = {B1, B2, . . . , Bn},
C = {C1, C2, . . . , Cn}.

Now we construct directed graph with vertices A, B and C, where the edges are
directed from A to B and from B to C with weights ω(Ai, Bj) = m1[i, j] and
ω(Bj , Ck) = m2[j, k]. If M =M1M2, then

m[i, j] =

k∑
k=1

m1[i, j]m2[j, k].

Consider random system of paths P in which verices are disjoint from A to C. P
must go through B. Every system of paths from A to C is divided in two parts Q
and R, where Q is the system of disjoint paths from A to B, and R is the system of
disjoint paths from B to C. W is the set of all disjoint paths systems from A to B,
and Z is set of all disjoint path systems from B to C. Now consider

det(M1) det(M2) =
∑
Q∈W

sign(Q)ω(Q)
∑
R∈Z

sign(R)ω(R)

=
∑

P∈W×Z
sign(R)sign(Q)ω(R)ω(Q),
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where W × Z is set of ordered pairs (Q,R) suitable disjoint paths Pi : Ai →
Bσ(Q(i)) → Cσ(R(σ(Q(i)))), and σQ ◦ σR = σ. Then weight of random disjoint path
system P is

ω(P) = ω(Q)(R), (3)

and

sign(σ) = sign(σQ ◦ σR) = sign(σQ)sign(σR), (4)

from which it follows

signP = sign(Q)sign(R) (5)

If we now apply LGV theorem, we get

det(M1) det(M2) =
∑

P∈W×Z
sign(R)sign(Q)ω(R)ω(Q)

=
∑
P

sign(P)ω(P) = det(M1M2).

Theorem 3.2 (Generalized Cauchy - Binet’s formula). Let M1 be a n × r matrix
and let M2 be a r × n matrix where n ≤ r. Then we have

det(M1M2) =
∑

X⊂{1,2,...,r},|X|=n

det(M1[X]) det(M2[X]),

where M1[X] is square submatrix formed by columns matrix limited to columns in-
dexed as X and M2[X] is matrix limited on rows indexed as X.

Proof: Construct directed graph G = {A ∪ B ∪ C,E}, where is

A = {A1, A2, . . . , An},
B = {B1, B2, . . . , Bn},
C = {C1, C2, . . . , Cn},
E = {(Ai, Bj) : i ∈ {1, n}, j ∈ {1, r}} ∪ {(Bj , Ck) : j ∈ {1, r}, k ∈ {1, n}}.

Define weights of edges with

ω(Ai, Bj) = m1[i, j],

ω(Bi, Cj) = m2[j, k].
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If M =M1M2, then

m[i, j] =
r∑

k=1

m1[i, k]m2[j, k].

Fix some arbitrary X ⊂ {1, 2, . . . , r}. Let PAX be set of all disjoint paths from A
to B[X ], where is B[X ] subset of B limited with indexes of X, and PXB the set of
all disjoint path systems from B[X ] to C. Consider now

det(M1) · det(M2) =
∑

Q∈PAX

sign(Q)ω(Q)
∑

R∈PXB

sign(R)ω(R)

=
∑

P∈PAX×PXB

sign(P)ω(P),

where PAX × PXB contains set of all disjoint path systems from A to C which go
through all vertices B[X]. Now, in principle, we get∑

X⊂{1,2,...,r},|X|=n

det(M1[X]) det(M2[X]).

This sum also gives us a sum over all system paths from A to C. Furthermore, we
have ∑

X⊂{1,...,r},|X|=n

det(M1[X]) det(M2[X])

=
∑

X⊂{1,...,r},|X|=n

 ∑
P∈PAX×PXB

sign(P)ω(P)


=

∑
P

sign(P)ω(P) = det(M1 ·M2).

4 LGV and Problem 1

We calculate matrix using LGV theorem in the case n = 2. (21) (
4
2

)
(
4
2

) (
6
3

)
 =

 2 6

6 20


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The Idea is same as like in the Proposition 3.1. We want to create the directed
weighted acyclic graph in which weights of paths are equal to the value in our matrix,
i.e.

 ω(A1, B1) ω(A1, B2)

ω(A2, B1) ω(A2, B2)

 =

 2 6

6 20


So consider our case of matrix S2 and create a directed weighted graph of matrix
S2. First, we will consider the possible paths from A1 to B2 (Figure 4).

(a) Path P1 (b) Path P2

Figure 4: Paths from A1 to B1

Check now the weight of path from A1 to B1. Path P1 and P2 in our graph have
a weight one, using (2) we get that the weight of path form A1 to B1 is 2. Now,
consider all possible paths from A1 to B2 (Figure 5).
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(a) Path P3 (b) Path P4

(c) Path P5 (d) Path P6

(e) Path P4 (f) Path P8

Figure 5: Paths from A1 to B2

Every paths Pi, i = 1, . . . , 6 have a weight one. Using the (2) we obtain that the

85



Liđan Lindström – Gessel – Viennot theorem

weight of path from A1 to B2 is equal to 6. Analogously we will obtained the weight
of paths from A2 to B1. Now, we will consider the possible paths from A2 to B2

(Figure 6).
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(a) Path P15 (b) Path P16 (c) Path P17 (d) Path P18

(e) Path P19 (f) Path P20 (g) Path P21 (h) Path P22

(i) Path P23 (j) Path P24 (k) Path P25 (l) Path P26

(m) Path P27 (n) Path P28 (o) Path P29 (p) Path P30

(q) Path P31 (r) Path P32 (s) Path P33 (t) Path P34

Figure 6: Paths from A2 to B2
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Using (2) we obtained ω(A2, B2) = 20. If we now consider disjoint path systems
in the graph and their signs we conclude that detS2 = 4 (Figure 7).

Figure 7: Disjoint system of paths

In the case of Sn, we use the same idea and create the graph of matrix Sn in the
following way (Figure 8). It’s known that in rectangular dimensions of m × n we
have a (m+n)!

m!n! different nonintersecting paths.
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Figure 8: Directed weighted acyclic graph of matrix sn

From Koon and Yun Bum’s solution we know that the difference between the number
of non-intersecting paths with positive sign and the number of non-intersecting paths
with negative sign is 2n. However, in general the number of all non-intersecting path
systems is large, even for n = 3 so deducing the result directly from the LGV theorem
requires this result, which seems non-trivial.

Problem 2. Find a combinatorial argument that the difference between the number
of non-intersecting paths with positive sign and the number of non-intersecting paths
with negative sign from {A1, . . . , An} and {B1, . . . , Bn} in the graph on the Figure 8
is 2n.

5 Conclusion

We illustrated some possibilities of applying LGV theorem. This theorem can be
implemented many problems in combinatorics and some other mathematicians area,
for example we can LGV theorem apply on: Dyck paths, Motzkin numbers, Hankel
determinants, Catalan numbers, rhombus tilings and many others problems.
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