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Abstract. We study sums of the form
∑n

k=m ankbkm, where ank
and bkm are binomial coefficients or unsigned Stirling numbers. In
a few cases they can be written in closed form. Failing that, the
sums still share many common features: combinatorial interpre-
tations, Pascal-like recurrences, inverse relations with their signed
versions, and interpretations as coefficients of change between poly-
nomial bases.
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1. Introduction

Let ank and bnk be binomial coefficients
(
n
k

)
or unsigned Stirling

numbers of the first and second kind:
[
n
k

]
and

{
n
k

}
in Karamata-Knuth

notation, respectively. We are interested in the sum
∑n

k=m ankbkm.
Denote by A = [ank] and B = [bnk] the corresponding infinite lower-
triangular matrices, indexed by the non-negative integers. The sum
can be interpreted as the (n,m)-entry of the matrix product A ·B.

Our motivation are the following two sums, that can be written in
closed form:

n∑
k=m

(
n

k

){
k

m

}
=

{
n+ 1

m+ 1

}
, (1)

n∑
k=m

[
n

k

](
k

m

)
=

[
n+ 1

m+ 1

]
. (2)

These are identities (6.15) and (6.16) in the book Concrete Mathemat-
ics [1]. Furthermore, the following sum are the Lah numbers [2, 3],
denoted by L(n,m):

n∑
k=m

[
n

k

]{
k

m

}
=

n!

m!

(
n− 1

m− 1

)
. (3)
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∑
k

(
n
k

)(
k
m

)
A038207

∑
k

(
n
k

) [
k
m

]
A094816

∑
k

(
n
k

) {
k
m

}
A008277∑

k

[
n
k

] (
k
m

)
A130534

∑
k

[
n
k

] [
k
m

]
A325872∗ ∑

k

[
n
k

] {
k
m

}
A271703∑

k

{
n
k

} (
k
m

)
A049020

∑
k

{
n
k

} [
k
m

]
A129062

∑
k

{
n
k

}{
k
m

}
A130191

Table 1. References for the sums in the On-line ency-
clopedia of integer sequences [7].

Closed-form expressions for two more sums are given in the next
section. In the remaining cases we do not know closed forms, but the
sums share many common features. Combinatorial interpretations are
outlined in Section 2. Row sums of the matrix A · B are discussed
in Section 3. Recurrences similar to Pascal’s formula are proved in
Section 4. Inverse relations with signed versions of the sums are given
in Section 5, and in Section 6 the sums are interpreted as coefficients
of change between various polynomial bases.

Our main focus are sums with ank and bnk equal to
(
n
k

)
,
[
n
k

]
or
{
n
k

}
,

but we include some results on sums with L(n, k) as well. Our nine
main sums are listed in the On-line encyclopedia of integer sequences [7]
as “triangles read by rows”, see Table 1 (the entry marked by ∗ is a
signed version). Many properties of the sums are reported in [7]. We
repeat some properties from [7], and reveal some new properties of the
sums. We mainly deal with properties that can be proved by counting
arguments.

2. Combinatorial interpretations and closed forms

Identity (1) follows from the usual combinatorial interpretation of
Stirling numbers of the second kind. The right-hand side

{
n+1
m+1

}
counts

partitions of an (n+ 1)-element set S into m+ 1 blocks. The left-hand
side is obtained by distinguishing an element of S and assuming it is
covered by a block containing n− k other elements of S.

The Stirling number of the first kind
[
n
m

]
is usually interpreted as

the number of permutations of degree n with exactly m cycles. For the
proof of identity (2), however, another combinatorial interpretation is
more useful. Let ∆n denote the board that remains after removing all
tiles below and on the side diagonal of a n× n square board. Consider
a new chess piece similar to a rook, but that only attacks tiles in its
row. Loehr [4] calls this piece a weak rook or wrook. He goes on to
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show that the number of ways of placing k identical wrooks on ∆n so
that they don’t attack each other is equal to

[
n

n−k

]
. The right-hand

side of (2) can now be interpreted as the number of ways of placing
n −m non-attacking wrooks on ∆n+1. The left-hand side is obtained
by partitioning the set of placements based on the number of wrooks
not in the first column, but on the remaining ∆n subboard. If n − k
wrooks are placed on the ∆n subboard, the remaining k −m wrooks
must be placed in k rows of the first column that are not attacked.
This can be done in

[
n
k

] (
k

k−m

)
=
[
n
k

] (
k
m

)
ways.

In [6], a nice combinatorial interpretation of the Lah numbers is
given: L(n,m) counts partitions of an n-element set into m lists, i.e.
non-empty totally ordered subsets. From this, identity (3) follows eas-
ily. Two more closed-form identities are

n∑
k=m

(
n

k

)(
k

m

)
= 2n−m

(
n

m

)
(4)

and
n∑

k=m

L(n, k)L(k,m) = 2n−mL(n,m). (5)

The left-hand side of (4) counts pairs (K,M), where K ⊇ M are
subsets of a fixed n-element set S, and |M | = m. The right-hand
side is obtained by choosing M first. Identity (5) has an analogous
proof using the combinatorial interpretation of Lah numbers from [6].
For two partitions Π1, Π2 of S into lists, we write Π1 ≤ Π2 and say
that Π1 is a refinement of Π2 if each list in Π1 is a sublist of some list
in Π2. The left-hand side of (5) counts pairs (Π1,Π2) with Π1 ≤ Π2

and |Π2| = m. We first partition S into Π1 with |Π1| = k ≥ m, then
partition these k lists into m lists containing lists of Π1 as elements,
and finally concatenate the list of lists into elements of Π2. We get the
right-hand side by partitioning S into m lists of Π2 first and splitting
them up into smaller lists of Π1. This can be done in 2n−m ways:
breaks can be made in n − m places, before every element except at
the beginnings of the lists of Π2.

Similar combinatorial interpretations can be given for the double
Stirling sums

∑n
k=m

{
n
k

}{
k
m

}
and

∑n
k=m

[
n
k

] [
k
m

]
. The former is the

number of pairs (Π1,Π2) of ordinary partitions of an n-element set into
blocks (non-empty subsets), with Π1 a refinement of Π2 and |Π2| = m.
The latter is the number of pairs of permutations (π1, π2), where π1 is of
degree n, π2 is of degree equal to the number of cycles of π1, and π2 has
exactly m cycles. However, since we do not see an easy way to count
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the pairs if Π2 or π2 are chosen first, this does not lead to closed-form
expressions for these two sums.

Combinatorial interpretations of the remaining sums in Table 1 are
as follows. The sum

∑n
k=m

{
n
k

} (
k
m

)
is the number of ordinary partitions

of an n-element set with m blocks colored red, and the other blocks col-
ored blue. The sum

∑n
k=m

(
n
k

) [
k
m

]
counts permutations with exactly m

cycles of all subsets of an n-element set. Finally,
∑n

k=m

{
n
k

} [
k
m

]
is the

number of pairs (Π, π), where Π is a partition of an n-element set into
blocks, and π is a permutation with exactly m cycles of degree equal
to the number of blocks of Π. Again, this does not lead to closed-form
expressions, but the combinatorial interpretations of the sums will be
used in the following sections to prove their properties.

3. Row sums

From the combinatorial interpretation of binomial coefficients and
Stirling numbers, it is clear that

∑n
m=0

(
n
m

)
= 2n,

∑n
m=0

[
n
m

]
= n!,

and
∑n

m=0

{
n
m

}
= Bn. Here Bn is the n-th Bell number, i.e. the total

number of partitions of an n-element set into blocks. In this section
the goal is to determine

n∑
m=0

n∑
k=m

ankbkm.

This is the sum of the n-th row of the matrix A ·B.
From identities (1) and (2), we have

n∑
m=0

n∑
k=m

(
n

k

){
k

m

}
= Bn+1 and

n∑
m=0

n∑
k=m

[
n

k

](
k

m

)
= (n+ 1)!.

Another row sum that can be written in closed form is
n∑

m=0

n∑
k=m

(
n

k

)(
k

m

)
= 3n.

The left-hand side counts the total number of pairs (K,M) of subsets
of an n-set S with K ⊇M . An alternative way of counting is to decide
for each element x ∈ S whether it is in M , in K \M , or in S \ K,
leading to the right-hand side.

The row sum of Lah numbers
n∑

m=0

n∑
k=m

[
n

k

]{
k

m

}
=

n∑
m=0

L(n,m)
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can be interpreted as the total number of partitions of an n-set into
lists. This is the “Lah equivalent” of the Bell number Bn and we will
denote it by Ln. In [7], this is sequence number A000262.

Row sums of the remaining matrix products are given in the sequel.
They have nice combinatorial interpretations and can be simplified to
single sums.

n∑
m=0

n∑
k=m

{
n

k

}[
k

m

]
=

n∑
m=0

{
n

m

}
m!.

These are the Fubini numbers, sequence A000670 in [7]. They count
ordered partitions of an n-set, or weak orders on n elements.

n∑
m=0

n∑
k=m

[
n

k

] [
k

m

]
=

n∑
m=0

[
n

m

]
m!.

This is the number of ordered factorizations of permutations of degree n
into cycles, sequence A007840 in [7].

n∑
m=0

n∑
k=m

{
n

k

}(
k

m

)
=

n∑
m=0

{
n

m

}
2m.

The total number of partitions of an n-set with blocks colored red or
blue. This is sequence A001861 in [7].

n∑
m=0

n∑
k=m

(
n

k

)[
k

m

]
=

n∑
m=0

n!

m!
.

The total number of lists with elements from an n-set. Sequence num-
ber A000522 in [7].

n∑
m=0

n∑
k=m

{
n

k

}{
k

m

}
=

n∑
m=0

{
n

m

}
Bm.

The total number of pairs (Π1,Π2) of partitions of an n-set with Π1 ≤
Π2. In [7], this is sequence number A000258.

4. Pascal-like recurrences

The binomial coefficients can be computed by Pascal’s formula(
n

m

)
=

(
n− 1

m− 1

)
+

(
n− 1

m

)
,

(
n

0

)
=

(
n

n

)
= 1.

Analogous recurrences for Stirling numbers are[
n

m

]
=

[
n− 1

m− 1

]
+ (n− 1)

[
n− 1

m

]
,

[
n

0

]
= δn0,

[
n

n

]
= 1,
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m

}
=

{
n− 1

m− 1

}
+m

{
n− 1

m

}
,

{
n

0

}
= δn0,

{
n

n

}
= 1,

and for Lah numbers

L(n,m) = L(n− 1,m− 1) + (n+m− 1)L(n− 1,m)

with boundary values L(n, 0) = δn0 (the Kronecker delta), L(n, n) = 1.
See [6] for proofs of the formulae by distinguishing an element of the
underlying n-set S and counting. Our sums satisfy similar recurrences
that can also be established by counting arguments.

To make the formulae more readable, we denote the sum
∑n

k=m ank bkm
by
∣∣ n
m

∣∣. For example, the double binomial sum
∣∣ n
m

∣∣ =
∑n

k=m

(
n
k

)(
k
m

)
can be computed from∣∣∣∣ nm

∣∣∣∣ =

∣∣∣∣ n− 1

m− 1

∣∣∣∣+ 2

∣∣∣∣n− 1

m

∣∣∣∣ , ∣∣∣∣n0
∣∣∣∣ = 2n,

∣∣∣∣nn
∣∣∣∣ = 1.

This sum also satisfies the absorption identity
∣∣ n
m

∣∣ = n
m

∣∣ n−1
m−1

∣∣, just like
the binomial coefficients.

By (1), the sum
∣∣ n
m

∣∣ =
∑n

k=m

(
n
k

) {
k
m

}
are shifted Stirling numbers

of the second kind. Therefore,∣∣∣∣ nm
∣∣∣∣ =

∣∣∣∣ n− 1

m− 1

∣∣∣∣+ (m+ 1)

∣∣∣∣n− 1

m

∣∣∣∣ , ∣∣∣∣n0
∣∣∣∣ =

∣∣∣∣nn
∣∣∣∣ = 1.

Similarly, by (2), the sum
∣∣ n
m

∣∣ =
∑n

k=m

[
n
k

] (
k
m

)
satisfies∣∣∣∣ nm

∣∣∣∣ =

∣∣∣∣ n− 1

m− 1

∣∣∣∣+ n

∣∣∣∣n− 1

m

∣∣∣∣ , ∣∣∣∣n0
∣∣∣∣ = n!,

∣∣∣∣nn
∣∣∣∣ = 1.

The sum
∣∣ n
m

∣∣ =
∑n

k=m

(
n
k

)
L(k,m) is sequence A271705 in [7], where

the following recurrence is given:∣∣∣∣ nm
∣∣∣∣ =

n

m

∣∣∣∣ n− 1

m− 1

∣∣∣∣+ n

∣∣∣∣n− 1

m

∣∣∣∣ , ∣∣∣∣n0
∣∣∣∣ =

∣∣∣∣nn
∣∣∣∣ = 1.

The sum
∣∣ n
m

∣∣ =
∑n

k=m L(n, k)
(
k
m

)
is sequence A059110. It satisfies the

same recurrence, but with different boundary values
∣∣n
0

∣∣ = Ln.

The double Lah sum
∣∣ n
m

∣∣ =
∑n

k=m L(n, k)L(k,m) satisfies∣∣∣∣ nm
∣∣∣∣ =

n

m

∣∣∣∣ n− 1

m− 1

∣∣∣∣+ 2n

∣∣∣∣n− 1

m

∣∣∣∣ , ∣∣∣∣n0
∣∣∣∣ = δn0,

∣∣∣∣nn
∣∣∣∣ = 1.

This sum also satisfies the absorption-like identity
∣∣ n
m

∣∣ = n−m+1
2m(m−1)

∣∣ n
m−1

∣∣,
while the Lah numbers satisfy L(n,m) = n−m+1

m(m−1)
L(n,m− 1).
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Now let
∣∣ n
m

∣∣ =
∑n

k=m

(
n
k

) [
k
m

]
. This sum cannot be computed from

the two values
∣∣ n−1
m−1

∣∣ and
∣∣n−1
m

∣∣ alone, but we can give a Pascal-like
recurrence involving more previous values:∣∣∣∣ nm

∣∣∣∣ =
n−m∑
k=0

(n− 1)k
∣∣∣∣n− 1− k
m− 1

∣∣∣∣+

∣∣∣∣n− 1

m

∣∣∣∣ , ∣∣∣∣n0
∣∣∣∣ =

∣∣∣∣nn
∣∣∣∣ = 1.

Here (n− 1)k = (n− 1) · (n− 2) · · · (n− k) is the falling factorial. For
the proof, recall that

∣∣ n
m

∣∣ counts permutations with m cycles of subsets
T ⊆ S, where S is a set of n elements. Fix an element x ∈ S and
divide the permutations according to whether they contain x or do not
contain x. In the latter case there are clearly

∣∣n−1
m

∣∣ permutations. In
the former case, assume x is in a cycle with k other elements of S.
This cycle can be chosen in (n− 1)k ways, and m− 1 more cycles have
to be chosen from the remaining n − 1 − k elements. Thus, there are∑n−m

k=0 (n− 1)k
∣∣n−1−k
m−1

∣∣ permutations containing x.

The sum
∣∣ n
m

∣∣ =
∑n

k=m

{
n
k

} (
k
m

)
counts partitions of S with m blocks

colored red, and the other blocks colored blue. Again, fix an element
x ∈ S. If x is in a red block alone, there are

∣∣ n−1
m−1

∣∣ partitions. If x is in

a red block with some other elements of S, there are m
∣∣n−1
m

∣∣ partitions.
Finally, if x is in a blue block with k other elements of S, there are(
n−1
k

) ∣∣n−1−k
m

∣∣ such partitions. Therefore, the following recursion holds:∣∣∣∣ nm
∣∣∣∣ =

∣∣∣∣ n− 1

m− 1

∣∣∣∣+m

∣∣∣∣n− 1

m

∣∣∣∣+
n−m−1∑
k=0

(
n− 1

k

) ∣∣∣∣n− 1− k
m

∣∣∣∣ .
The boundary values are

∣∣n
0

∣∣ = Bn and
∣∣n
n

∣∣ = 1.

The sum
∣∣ n
m

∣∣ =
∑n

k=m

{
n
k

}{
k
m

}
counts pairs (Π1,Π2) of partitions

of S, where Π2 has m blocks and Π1 is a refinement of Π2. Now let the
fixed element x ∈ S be contained in a block of Π2 of size k. We can
choose this block in

(
n−1
k−1

)
ways and partition it into blocks of Π1 in

Bk ways. The remaining blocks of Π2 and Π1 can be chosen in
∣∣ n−k
m−1

∣∣
ways. Therefore,∣∣∣ n

m

∣∣∣ =
n−m+1∑
k=1

(
n− 1

k − 1

)
Bk

∣∣∣∣ n− km− 1

∣∣∣∣ , ∣∣∣∣n0
∣∣∣∣ = δn0,

∣∣∣∣nn
∣∣∣∣ = 1.

For the sum
∣∣ n
m

∣∣ =
∑n

k=m

[
n
k

] [
k
m

]
a similar argument leads to the

recurrence∣∣∣ n
m

∣∣∣ =
n−m+1∑
k=1

(
n− 1

k − 1

) k∑
i=1

[
k

i

]
(i− 1)!

∣∣∣∣ n− km− 1

∣∣∣∣ , ∣∣∣∣n0
∣∣∣∣ = δn0,

∣∣∣∣nn
∣∣∣∣ = 1,
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and for the sum
∣∣ n
m

∣∣ =
∑n

k=m

{
n
k

} [
k
m

]
to the recurrence

∣∣∣ n
m

∣∣∣ =
n−m+1∑
k=1

(
n− 1

k − 1

) k∑
i=1

{
k

i

}
(i−1)!

∣∣∣∣ n− km− 1

∣∣∣∣ , ∣∣∣∣n0
∣∣∣∣ = δn0,

∣∣∣∣nn
∣∣∣∣ = 1.

However, these increasingly complex recurrences become less useful as
the coefficients are more difficult to evaluate than the sum

∣∣ n
m

∣∣ directly.

5. Inverses

We denote signed versions of the Stirling numbers and their relatives
by an exponent σ, e.g.

[
n
m

]σ
= (−1)n−m

[
n
m

]
. For the matrix A = [anm],

we denote Aσ = [aσnm] = [(−1)n−manm]. To avoid excessive bracketing,

we write
[
n
m

]−1
for the inverse matrix A−1.

It is well-known that
(
n
m

)−1
=
(
n
m

)σ
,
[
n
m

]−1
=
{
n
m

}σ
, and

{
n
m

}−1
=[

n
m

]σ
. From this and the properties (A·B)−1 = B−1 ·A−1 and (A·B)σ =

Aσ · Bσ, we can determine inverses of our sums. For example, let
amn =

[
n
m

]
and bmn =

{
n
m

}
. Then A ·B are the Lah numbers L(n,m)

and we have

L(n,m)−1 = (A ·B)−1 = B−1 · A−1 = Aσ ·Bσ = (A ·B)σ = L(n,m)σ.

Similarly it follows(
n∑

k=m

(
n

k

){
k

m

})−1

=

(
n∑

k=m

[
n

k

](
k

m

))σ

,

(
n∑

k=m

{
n

k

}(
k

m

))−1

=

(
n∑

k=m

(
n

k

)[
k

m

])σ

,

(
n∑

k=m

{
n

k

}{
k

m

})−1

=

(
n∑

k=m

[
n

k

] [
k

m

])σ

,

and (
n∑

k=m

{
n

k

}[
k

m

])−1

=

(
n∑

k=m

{
n

k

}[
k

m

])σ

.

The exponents −1 and σ can be exchanged in the formulae above.
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6. Polynomial bases

We denote the falling factorials by xn = x(x− 1) · · · (x− n+ 1) and
the rising factorials by xn = x(x + 1) · · · (x + n − 1), following [1]. It
is known that Stirling numbers of the second kind are coefficients of
change from the standard polynomial basis of powers (xn | n ∈ N0) to
the basis of falling factorials (xm | m ∈ N0):

xn =
n∑

m=0

{ n
m

}
xm. (6)

Stirling numbers of the first kind are coefficients of change from (xn)
to (xm):

xn =
n∑

m=0

[ n
m

]
xm. (7)

From (6) and (7) it follows that coefficients of change from (xn) to (xm)
are the Lah numbers L(n,m) =

∑n
k=m

[
n
k

] {
k
m

}
:

xn =
n∑

m=0

L(n,m)xm.

Ivo Lah’s original definition of his numbers [2, 3] was a signed version
of this relation. We concentrate on changes between polynomial bases
with non-negative coefficients. The opposite changes have inverse co-
efficients, with alternating signs as shown in the previous section.

From the binomial theorem (1 + x)n =
∑n

m=0

(
n
m

)
xm and (6) we

see that the sums
∑n

k=m

(
n
k

) {
k
m

}
can be interpreted as coefficients of

change from the polynomial basis ((1 + x)n) to the basis of falling
factorials (xm):

(1 + x)n =
n∑

m=0

(
n∑

k=m

(
n

k

){
k

m

})
xm.

Similar interpretations can be given to other sums from Table 1. The
double binomial sums

∑n
k=m

(
n
k

)(
k
m

)
are coefficients of change from the

basis ((2+x)n) to the standard basis (xm). The sums
∑n

k=m

(
n
k

) [
k
m

]
are

coefficients of change from the basis (
∑n

k=0

(
n
k

)
xk) to the standard basis.

The former basis contains a special case of Charlier polynomials [7], a
family of orthogonal polynomials that can be written in terms of the
generalized hypergeometric function (see [5]). Double Stirling sums
of the second kind

∑n
k=m

{
n
k

}{
k
m

}
are coefficients of change from the

basis of Bell polynomials (Bn(x)), Bn(x) =
∑n

k=0

{
n
k

}
xk to the basis

of falling factorials (xm).
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The two families of sums
∑n

k=m

{
n
k

} [
k
m

]
and

∑n
k=m

[
n
k

] [
k
m

]
can be

seen as coefficients of the polynomials
∑n

k=0

{
n
k

}
xk and

∑n
k=0

[
n
k

]
xk,

i.e. coefficients of change to the standard basis (xm). Similarly, the
two families

∑n
k=m

{
n
k

} (
k
m

)
and

∑n
k=m

[
n
k

] (
k
m

)
are coefficients of Bell

polynomials Bn(1+x) and polynomials
∑n

k=0

[
n
k

]
(1+x)k, respectively.
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[5] N. Özmen, E. Erkuş-Duman, On the Poisson-Charlier polynomials, Serdica
Math. J. 41 (2015), no. 4, 457–470.
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greb, Bijenička 30, HR-10000 Zagreb, Croatia

Email address: lucijarelic7@gmail.com

44

https://oeis.org

	1. Introduction
	2. Combinatorial interpretations and closed forms
	3. Row sums
	4. Pascal-like recurrences
	5. Inverses
	6. Polynomial bases
	References

