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Solving the dimer problem on Apollonian gasket

Tomislav Dosli¢ and Luka Podrug

Abstract

For any three circles in the plane where each circle is tangent to the other
two, the Descartes’ theorem yields the existence of a fourth circle tangent to
the starting three. Continuing this process by adding a new circle between
any three tangent circles leads to Apollonian packings. The fractal structures
resulting from infinite continuation of such processes are known as Apollo-
nian gaskets. Close-packed dimer configurations on such structures are well
modeled by perfect matchings in the corresponding graphs. We consider Apol-
lonian gaskets for several types of initial configurations and present explicit
expressions for the number of perfect matchings in such graphs.

1 Introduction

Configurations of close-packed dimers are among the most important objects of study
in statistical physics. Also called Kekulé structures in chemical, and perfect match-
ings in mathematical literature, they serve as useful and (in may cases) tractable
models of, among other things, adsorption processes of diatomic molecules on various
types of substrates. In that context, the most interesting cases are two-dimensional
surfaces with regular structure which are best described by finite portions of two-
dimensional infinite lattices. For the simplest case of the square lattice, the exact
solution has been known since the early works of Kasteleyn [5] and Temperley and
Fisher [4,12]. (Here by exact solution we mean explicit expressions for all quanti-
ties of interest in such problems, such as their growth-rate, entropy, and per-dimer
molecular freedom.) For a brief survey of results for some other 2D lattices we refer
the reader to [13].

In recent years much attention has been given to another class of lattices or net-
works, answering thus a need to model processes on fractal-like substrates. The best
known example of such lattices is, certainly, the Serpinski gasket. For an accessible

(Tomislav Dosli¢) University of Zagreb Faculty od Civil Engineering, Croatia, tomis-
lav.doslic@grad.unizg.hr

(Luka Podrug) University of Zagreb Faculty od Civil Engineering, Croatia,
luka.podrug@grad.unizg.hr


https://doi.org/10.5592/CO/CCD.2022.02

T. Dosli¢ and L. Podrug

introduction we refer the reader to [2] and references therein. In this paper we are
concerned with related structures which arise from Apollonian packings of circles in
the plane and which are known as Apollonian gaskets. Apollonian gaskets are fas-
cinating objects; see, for example, [10] for some beautiful illustrations and for their
geometric and number-theoretic properties. They have already attracted significant
attention of researchers both in graph theory and in statistical physics. For example,
their Tutte polynomials and spanning trees were investigated in [8, 14], while Ising
and magnetic models on them were studied in [1,11] by employing transfer matrices
and numerical methods. In this paper we study them from the graph-theoretical
point of view and present explicit formulas for the number of close-packed dimer
configurations by computing the number of perfect matchings in the corresponding
graphs.

In the next section we start from Apollonian packings and introduce the Apollonian
gaskets as fractals arising from iterating the packings. Along the way we introduce
the necessary graph-theoretic terminology and state some preliminary results. In
Section 3 we use those results to present explicit formula for the number of close-
packed dimer configurations in a given stage of one particular Apollonian gasket
which is, in a sense, canonical. In Section 4 we generalize our findings to some
other Apollonian gaskets. The paper is concluded by a short section in which we
establish universality of entropy in all Apollonian gaskets and indicate some possible
directions for future research.

2 Definitions and preliminary results

Apollonian gasket is a fractal that starts with a number of circles, usually arranged
so that each circle is tangent to at least three, but sometimes more, other circles.
Construction of the n'" level, or the n'® iteration, of an Apollonian gasket consists
of adding more circles so that every new circle touches exactly three circles in the
(n — 1)* level. The number of circles inscribed depends on the number of starting
circles and their initial configuration. Radius of each new circle is determined by
Descartes’ theorem which states that four circles that are tangent to each other at
six distinct points with curvatures ki, ko, k3 and k4 satisfy the following relation:

(ky + ko + kg + kg)® = 2(k3 + k3 + k3 + k7). (1)

Here the curvature of a circle is the reciprocal value of its radius, i.e., k = % Note
that equation (1) has two solutions. If one of them is negative, then the correspond-
ing circle touches the other three from inside, otherwise, from outside of a circle. As
an example, Figure 1 demonstrates one possible starting configuration of an Apol-
lonian gasket. The curvatures of starting circles uniquely determine curvatures of
circles in all subsequent iterations.

Graphs are one of the most fundamental mathematical objects. They naturally
appear in many mathematical models, and in this paper we present one such model.
More precisely, we consider close-packed dimer configurations on Apollonian gaskets
and model them by perfect matching in the corresponding graphs. For the reader’s
convenience, we state some basic definitions. A graph is an ordered pair G = (V| E),
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Figure 1: Initial configuration of an Apollonian gasket with circle curvatures —1, 2
and 3.

where V' = V(@) stands for a non-empty set of vertices, and £ = E(G) is the set
of edges. We say that vertices u and v are adjacent if there is an edge connecting
them, i.e., edge uv € E(G). For a given vertex v, the number of other vertices
adjacent to it is called the degree of v. The largest degree in G is denoted by A(G).
If all vertices of a graph G have the same degree k, we say that G is k-regular. A
perfect matching in a graph G is a subset M C F(G) such that every vertex of G is
end-point of exactly one edge in M. The number of perfect matchings of graph G is
denoted by ®(G). Clearly, a necessary condition for G to have a perfect matching
is that the number of vertices must be even. We refer the reader to the classical
monograph by Lovasz and Plummer [9] for a comprehensive introduction to almost
all aspects of matching theory.

Perfect matchings are perfect models for close-packed dimer configurations: The fact
that each dimer covers exactly two neighboring sites on the considered substrate
is reflected in the fact that each edge of a perfect matching covers two adjacent
vertices in the corresponding graph. Further, the non-overlapping requirement for
dimers corresponds to the fact that each vertex is incident to exactly one edge of
the perfect matching. Finally, the fact that the matching covers every vertex of the
graph describes the condition that dimers cover all sites on the substrate, i.e., that
they are no empty sites. So the configuration is close-packed.

In order to study dimer configurations on Apollonian gaskets, to each level of an
Apollonian gasket we associate a graph obtained in the following manner: each point
of tangency is a vertex of the graph and two vertices are adjacent if there is an arc
connecting them, provided there are no other tangent points between them. One
should note that not every Apollonian gasket produces a graph which has a perfect
matching: The graph obtained from Apollonian gasket in Figure 1 has 9 vertices,
and thus cannot have a perfect matching. All Apollonian gaskets considered from
now on give rise to graphs with perfect matchings. Also, throughout this paper, we
will assume that the outside circle in our starting configurations has radius 1.

The line graph of a graph G is defined as the graph L(G), where V(L(G)) = E(G),
and two edges in V(L(G)) are adjacent if they have a common end-vertex in G.
The line graph of a cycle is another cycle of the same length, while the line graph
of a path is a path with one vertex less. Figures 2 and 3 show two polyhedra, the
tetrahedron and the four-sided prism, respectively, and their respective line graphs.
Here the edge a in G corresponds to vertex A in L(G), etc.
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Figure 2: Tetrahedron and its line graph.
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Figure 3: Four-sided prism and its line graph.

To determine a line graph of a given graph is quite straightforward, but the opposite
task, to find a graph H such that a given graph G is the line graph of H, can be
challenging. It is well-known that not all graphs are line graphs of other graphs.
For more details we refer the reader to any textbook on graph theory.

It turns out that in some cases there is a simple relationship between the number
of vertices and edges of a given graph GG and the number of perfect matchings in
its line graph L(G). In particular, Dong, Yan and Zhang [3] proved the following
result:

Theorem 1. Let G be connected graph with n vertices and m edges, where m is

even. If A(G) < 3, then ®(L(G)) = 2™+,

We will use this result to obtain the number of perfect matchings of graphs obtained
from some configurations of Apollonian gaskets. We start from the case that is, in
a way, canonical.

3 Tetrahedron - the canonical case

Let A,, denote an Apollonian gasket after n iterations and |.A,| the number of its
circles. We denote the initial state of an Apollonian gasket A by A;.
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Our canonical configuration consists of three starting circles having equal radii 2v/3—
3 and one outside circle with radius 1. Figure 4 shows the initial state and the first
two iterations of the corresponding Apollonian gasket. They have 4, 8 and 20 circles,
respectively. Since the n'! iteration adds 4 - 3”2 new circles, for n > 2, the overall
number of circles in A, is given by

(An) =444 (3% - +3"72) =2

Soles

Figure 4: Apollonian gaskets A,, for n = 1,2, 3.

Now we consider the graphs obtained from this Apollonian gasket. Let A,, denote a
graph produced by the n'® level of A,. Then A, is a 4-regular graph with 6 vertices
and 12 edges. In the second iteration there are 18 vertices, 36 edges, and the graph
is again 4-regular. Since the n'® iteration adds 4-3"~2 circles and every new circle is
tangent to three previously added circles, the n'" iteration adds 4-3"~! new vertices.
So,

n—1
V(4,)]|=6+4> 3 =2-3"

i=1

Graphs A,, are shown in Figure 5 for n = 1,2, 3. In is not hard to see that A, is a 4-

Figure 5: Graphs A;, As and As.

regular graph for every n. Addition of a new circle results in inscribing a new triangle
in an already existing one. As shown in Figure 6, after inscribing new triangle shown
in red, all new and old vertices have four neighbors. Thus, 4-regularity is preserved.
It follows that the number of edges is |[E(A,)| =4 - 3™

One can see that A; is the octahedron, the line graph of tetrahedron, so we are
motivated to ask whether other A,, also appear as line graphs of some related graphs.
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Figure 6: Inscribing a new triangle preserves 4-regularity.

We turn our attention to tetrahedron and start truncating it at its vertices. In every
iteration we truncate every vertex of the graph constructed so far (Fig. 7). (Here
we do not make distinction between a polyhedron and its graph, but there is no
danger of confusion.) Let 7,, denotes the graph obtained from the tetrahedron after
n — 1 iterations. Graph 77 is non-truncated tetrahedron and has 4 vertices. To
obtain T,, we truncate every vertex and every vertex produces 3 vertices. Hence,
|V(T,)| = 4-3""'. There are 6 edges in graph T; and n'® iteration brings 3|V (T,,_;)]
new edges. Hence,

Figure 7: Graphs T7, T5 and T5.

In the next lemma we establish the crucial connection between graphs A, and 7T,,.
Lemma 1. L(T},) = A,.

Proof. The proof is by induction. The base of induction is true, as demonstrated in
Figure 2. Graphs isomorphic to A;, A; and Aj are shown in Figure 8, where their
fractal nature is more clear. As we stated, adding new circle results in a subdivision
of graph A,,. More precisely, a new triangle is inscribed in an already existing one,
thus producing four new triangles. The middle one of those four triangles is not
further divided, but the other three are. The triangles that are to be divided are
not hard to determine. The leftmost and the rightmost triangle with vertex at the
top are divided in every iteration because the middle triangle with top vertex denotes
the uppermost of the three original circles, and left and right of that circle is where
we add new circles in every iteration. Since some triangles presents circles and other
present blank spaces between them, no two divided triangles can share an edge. In
that manner, all triangles that will be divided in next iteration are determined. The
triangles that will be divided in the next iteration are the colored ones in Figure 8.
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Figure 8: Graphs A;, Ay and A3 with colored triangles that will be divided in the
next iteration.

On the other hand, T}, is a 3-regular graph, and every triplet of edges that share
a vertex forms a triangle in the corresponding line graph. We say that the vertex
is represented by this triangle. Is is not hard to see that graphs shown in Figure 8
are also line graphs of T}, Ty and T3, respectively, as truncating a common vertex
inscribes a new triangle in the triangle that represents that vertex. The operation
of truncating a vertex and inscribing a triangle in the line graph is shown in Figure
9. The left panel of Figure 9 shows newly-added edges, and the right part shows the
corresponding vertices in the line graph, both marked red. We just need to show
that triangles which represent vertices of T}, are precisely those colored triangles in
Figure 8. First note that two triangles that share an edge in the line graph L(T},)
cannot both represent a vertex. We consider three triangles in line graph that share
top vertex. Since |V(T,)| = 4-3"7!, there are at least 4 - 3"~! triangles in L(T},).
The middle triangle can not represent a vertex, otherwise some vertices would have
triangles with shared edge. Thus, alignment of triangles corresponds to Figure 8,
and that concludes our proof.

N\ /

Figure 9: Truncation of a vertex in 7,, and its effect in the line graph.

]

Figure 10 demonstrates the connection between graphs T, and As, more precisely,
the fact that L(T3) = As.

Now, by Lemma 1 we have L(T,,) = A, and A(T,,) = 3, thus Theorem 1 is applicable
to our graphs. Hence we can state the main result of this section.

Theorem 2.

D(A,) =2-4-3"".
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Figure 10: L(T3) = As.

4 Other Apollonian gaskets

As we stated above, the initial number and the alignment of circles can vary. There
are many different Apollonian packings yielding graphs with perfect matchings, and
we here consider some possible simple alignments. Our first example starts with five
circles, four with radius v/2 — 1 and central one with radius 3 — 2v/2. As before, in
each iteration we add circles in blank spaces between them. First three iterations
of this gasket are shown in Figure 11. Similar as before, by B, we denote a graph

Figure 11: An Apollonian gasket starting with 5 circles.

obtained after (n—1)* iteration. Graph By is 4-regular, it has 12 vertices and hence,
24 edges. There are 8 - 372 new circles in the n'" iteration that produce 8 - 37!
new vertices. So graph B, has

V(B,)|=12+8-3+--46-3""1=4.3"

vertices. Thus, it has |E(B,)| = 8 - 3" edges. Graphs isomorphic tor By, By and
B3 are shown in Figure 12. Again, their fractal nature is clearly visible, because in
each iteration, adding new circles in Apollonian gasket produces inscribed triangles
in the corresponding graph. As before, B, is 4-regular for every n.

As in the previous section, we want to identify a family of graphs P, whose line
graphs are graphs B,. We start with a four-sided prism P;, shown in Figure 3.
Graph P, is 3-regular, it has 8 vertices and 12 edges. Furthermore, let P, denote
the starting prism which is truncated n — 1 times. Every iteration has 8 - 3"1
vertices, and since truncation preserves 3-regularity, we have |E(G)| = 4-3". Figure
3 shows the mapping E(P;) — V(L(P;)) where edge a on the left corresponds to
vertex A on the right, etc. So, L(P;) = Bj. Since truncating a vertex produces

same result as it did with tetrahedron, same arguments can be applied to prove that
L(P,) = A,.
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Figure 12: Graphs of initial levels of an Apollonian gasket starting with 5 circles.

Since graphs P, satisfy assumptions of Theorem 1, we can compute the number of
perfect matchings for this class of Apollonian gaskets:

Corollary 1.
®(B,) =2-16>"".

The Apollonian gasket we have just considered, the one defined by circle curvatures
—1 and 1 + /2, can be generalized in a straightforward way. Instead of four circles
whose centers are vertices of a square, we can start with m circles whose centers
are vertices of regular polygon with m vertices, where m > 4 is an even integer.
As before, let the radius of the outside circle be 1, and let R denote the radius
of m circles. The central circle of radius r touches each of those m circles. Since

sin <%) = R}ir and r + 2R = 1, we have

Figure 13: Graph of an Apollonian gasket starting with 9 circles.

We denote the n'® iteration of this Apollonian gasket configuration by A™ and the
corresponding graph by A™. The graph AT* has 3m vertices and since it is 4-regular,
it has 6m edges. With every iteration we add 2m - 372 circles, hence, 2m - 371
new vertices. The overall number of vertices is now V(A") = m3™ and the overall
number of edges is E(A}) = 2m -3". As we are interested in the number of perfect
matchings of graph A", we only consider cases with m even, otherwise there are no
perfect matchings.
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By applying the same reasoning as in the previous cases, one can show that A" is
the line graph of n — 1 times truncated m-sided prism, denoted by P”. Again, the
graph P™ is 3-regular and it has 2m-3"~! vertices and m-3" edges. Since A(P") =3
and m is even, by Theorem 1, we have:

Corollary 2.
DA™Y =2. 23"

We notice that our results apply also to B = A*.

5 Universality of entropy

We conclude the paper with a few quick glances back to our original problem.
First, we notice that our canonical tetrahedral case could be brought within the
framework of the gaskets generated by even-sided prisms by writing its growth rate
43" as 223" and observing that it fits the pattern 273" followed by their growth
rates. Hence, the tetrahedron could be considered in this context as an "honorary”
even-sided prism.

Our second glance back is toward entropies. The entropy of a lattice is defined as
the limit of the ratio of the logarithm of the number of perfect matchings and the
length of a perfect matching when the number of sites tends to infinity. Hence,

L 2lnd(GR)
R (AT

where by G,, we denote the graph corresponding to the n*® level of a gasket G. From
our results it immediately follows that the entropy of A™ does not depend on m.

Corollary 3.
In4

3
Hence, while the growth rates depend strongly on m, the corresponding entropy

seems to be universal. This fact also implies the universality of the quantity known
as per-dimer molecular freedom, defined as

E(A™) =

W(G) = 5@,

When the considered dimer configurations are not close-packed, i.e., when one deals
with monomer-dimer configurations, all quantites of interest become much more
difficult to determine; see, for example, a recent paper concerned with generalized
Tower of Hanoi graphs [7]. Tt would be interesting to examine whether some progress
could be made by using the approach of the present paper.

Our last remark is concerned with a recent paper by Li et al. [6] which extends the
line of research of Dong et al. by looking at the dimer problem at the vertex-edge
graphs of cubic graphs. It would be interesting to find classes of fractal lattices for
which the results by Li et al. would provide compact explicit solutions of the type
presented here.
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