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The Birkhoff polytope of the groups F4 and H4

Mathieu Dutour Sikirić

Abstract
We compute the set of facets of the polytope which is the convex hull of the
Coxeter groups F4 or H4:

• For the group F4 we found 2 orbits of facets which contradicts previous
results published in [19].

• For the group H4 we found 1063 orbits of facets which provides a coun-
terexample to the conjecture of [19].

1 Introduction
Given a finite group G acting linearly on a real vector space Rn, there is a strong
interest in finding the orbits of facets of the convex hull Gx of a vector x.
For a coxeter group G with its natural action on Rn, the structure is well known and
given by the Wythoff construction (See [5]). Other representations were considered
in [4] for the alternating group. Another very interesting case for a group having
a n-dimensional representation is to consider the action of the group on itself. For
the symmetric group Sn this gets us the Birkhoff polytope.
In [1, 19] the description was extended to other Coxeter groups by introducing the
Birkhoff tensors BG which are facets of conv G. In [18] the symmetry group of
conv G are determined for all the finite Coxeter groups.
The authors proved the following result:

Theorem 1. For G = An, Bn, I2(n) and H3 all facets of conv G are Birkhoff tensors.

They also proved that for D4 the result does not hold and they claim in Theorem
8.1 that this implies that the result does not hold for Dn and En. Note that the
authors also claimed that F4 satisfy the theorem but we prove that this is not true.
The authors conjectured [19, Problem 8.1] that for H4 the result does hold. As it
turns out, this is not true since while there is just one orbit of Birkhoff tensors, there
is more than one orbit of facets:
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Theorem 2. The polytope conv H4 has 188455824000 facets in 1063 orbits.

The proof of this result is computational with the algorithms presented in Section
3 and the results presented in Section 4.

2 Definitions

2.1 Convex geometry
A set S ⊂ Rn is called convex if for all x, y ∈ S we have [x, y] ⊂ S. A convex set is
called a polytope if there exist vectors x1 . . . , xN such that

S =
{

x ∈ Rn s.t. x =
N∑

i=1
λixi, λi ≥ 0,

N∑
i=1

λi = 1
}

and S is called the convex hull Conv({x1, . . . , xN}) of x1, . . . , xN . A point x ∈ S
which cannot be expressed as the middle of two points y1, y2 ∈ S is called a vertex.
A polytope P has finitely many vertices and the vertices v1, . . . , vN allow to write
P = Conv({v1, . . . , vN}).
For a polytope P there exist a number of linear forms fi and constants Ci such that

P = {x ∈ Rn s.t. fi(x) ≤ Ci for 1 ≤ i ≤ M}

The inequalities fi which cannot be expressed as the sum of two other such inequal-
ities are called facets. Passing from the description from vertices to the description
by facets is called the dual description problem. See [21] for an introduction to the
subject. This paper is just two special cases of dual descriptions problems being
solved.

2.2 Coxeter group
A finite Coxeter group G is a finite group of isometries acting on a real space Rn

which is generated by N reflections. A Coxeter group is called irreducible if there
exist a non-trivial subspace preserved by G. Such groups were classified by Coxeter
himself and we refer to [13] for related definitions and terminology. In dimension 4
there are the A4, B4, D4, F4, H4.
Coxeter groups are tightly related to regular polytopes (see [3]). For example the
isometry group of the 24-cell is the Coxeter group F4. Also the isometry group of
the 120-cell and 600-cell is the Coxeter group H4.

3 Algorithms
The effective computation of dual description of polytopes is a classic problem in [11].
We designed software for using symmetries of polytope when computing their dual
descriptions. The initial version of the code was written in GAP with some parts in
C/C++. After several extensions, the code was completely ported into C++. As a side
product of that, we are allowed to select the numeric type of the occurring matrix
entries.
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3.1 Dual description algorithms
In order to compute the facets of the polytope, we used the recursive adjacency de-
composition technique. This method has been used for many different computations
and is explained in [2, 6, 10,20].
The idea of the adjacency decomposition technique is to compute one facet and
from this facet to compute the adjacent facets. The obtained facets are then tested
for equivalence. Computing the facets adjacent to a given facet is itself a dual
description problem, therefore one may need to apply the method recursively hence
the name recursive adjacency decomposition method.
Some early termination criterion are given in [6] and allow us to avoid having to
compute the adjacencies of all the facets.
For a long time we used the code developed in [8] which is a package of [12]. For
several reasons we have developed a new C++ implementation (see [9]) that allow us
to gain additional speed and functionality.

3.2 Fields
The commonly used numerical type is mpq_class from the GMP library which is
a multiprecision rational type. It is supported in GAP as well as C++. In order to
compute with polytopes related to the Coxeter groups H3 and H4 one needs to allow
for the ring Q[

√
5]. Implementing the arithmetic operations (+, −, ∗, /) is relatively

easy but the sign determinations require more care.
Testing if a + b

√
5 is positive can be done in the following way. If a and b are of

the same sign it is easy to conclude. Otherwise, a and b are of opposite sign and we
write

a + b
√

5 = a − b
√

5
a2 − 5b2

The sign of a−b
√

5 can be decided and together with the sign of the rational number
a2 − 5b2 we can conclude. The same strategy allows one to decide the sign in mixed
cubic rings. For other real fields of algebraic numbers, different approaches would
have to be used.
Also, for some subroutines like lrs one needs only to use ring operations. In that
case one can reduce to the case of Z[

√
5]. For the kind of computations we are doing

here there is no need for algebraic closures or such kind of constructions.

3.3 Canonicalization strategies
In preceding works, when we had two orbits of facets in order to check isomorphism,
we used the [12] implementation of the partition backtrack. See [16,17] and [15] for
accounts of this class of algorithms. That is we encode facets by the subset of their
incident vertices and then use the partition backtrack for set equivalence.
However, in [14] an algorithm for finding a canonical representative of a subset for
a permutation group action was found. This greatly simplifies the code since for
N orbits instead of having to compute N equivalences, we simply have to do one
canonicalization and one string comparison.
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4 Results

4.1 Results for F4

For the group F4 we use the following two generators:

1
2


1 −1 1 1

−1 −1 −1 1
1 1 −1 1
1 −1 −1 −1

 ,
1
2


−1 1 −1 −1
1 −1 −1 −1

−1 −1 1 −1
1 1 1 −1


There are exactly two orbits of facets for conv(F4):

1. Orbit 1 of Birkhoff tensor with incidence 288. Stabilizer has order 4608. One
representative inequality is Tr(XA) ≤ 1 with

A =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 −1


2. Orbit 2 of facets with incidence 288. Stabilizer has order 48. One representa-

tive inequality is Tr(XA) ≤ 1 with

A = 1
4


1 0 1 0
0 1 0 −1
0 1 0 1
1 0 1 −2


The total number of facets is 55872.

4.2 Results for H4

For the group H4 we use the following two generators:

1
4


1 −2 −1 0
2 2 −2 2
1 −2 0 1
0 −2 −1 1

 +
√

5
4


1 0 1 0
0 0 0 0

−1 0 0 1
0 0 −1 −1

 ,


−1 0 0 0
0 0 0 −1
0 −1 0 0
0 0 1 0


We found 1063 orbits of facets of conv H4. If we express such facets in the form
Tr(AX) ≤ 1 then one 1, 4, 130, 928 orbits of facets of rank 1, 2, 3 and 4.
Tables 1 and 2 give the statistics about the incidence of orbits and about the size of
their stabilizers. The full list of orbits is presented in [7]. See below one matrix of
incidence 120 with a stabilizer of size 120. This suffices to show that the conjecture
is false.

A = 1
4


−6 −11 −7 4
0 −2 3 1
0 −1 4 3
0 0 0 0

 +
√

5
4


2 5 3 −2
0 0 −1 −1
0 1 −2 −1
0 0 0 0


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p Nr. p Nr. p Nr. p Nr.
16 376 17 282 18 116 19 85
20 48 21 30 22 12 23 5
24 44 25 3 26 31 28 10
30 7 32 5 36 4 38 1
48 1 100 1 120 1 480 1

Table 1: For each incidence p the number of orbits of incidence p is given.

s Nr. s Nr. s Nr. s Nr.
1 800 2 189 4 50 6 1
8 8 12 4 16 3 24 1
36 1 40 1 48 2 120 1
576 1 2880 1

Table 2: For each size s the number of orbits of orbits having a stabilizer of size s
is given.
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