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Grids of equidistant walks

Biserka Kolarec

Abstract
We look at arithmetical progressions as equidistant walks, the difference being
the steps’ length. One can construct equidistant grids by putting equidistant
walks to rows and columns. We introduce a notion of diagonal walks across
grids. One specific diagonal walk is interesting because the sum of its ele-
ments gives polygonal numbers. We give one specific construction method
for obtaining equidistant grids. It assumes alternating two equidistant walks
placed in the first two columns, shifted up by the same shift whenever some
of them repeat. We find conditions on the steps’ lengths and the shift size
that ensure that grids obtained in this way are equidistant. Also, we define a
zig-zag pattern walks over a two-column grid. It is possible to identify them
with horizontal walks in an infinite grid made of given columns by the men-
tioned construction method. Finally, we form equidistant walks of differences
of consecutive products with overlapping odd and even factors and show that
the distance between them is constant.
Keywords: arithmetical progression, equidistant walks, equidistant grids,
polygonal numbers, products with overlapping factors

1 Introduction and preliminaries
An arithmetical progression or an arithmetical sequence is a sequence of numbers
such that the difference between consecutive numbers is constant. If a1 is the initial
term and d is the common difference of consecutive numbers, then the n-th term an

of the progression is given by: an = a1 +(n−1)d. In general an = am +(n−m)d for
natural numbers n and m, n > m. We restrict here to sequences of positive integers,
so a1, d ∈ N+.
We consider arithmetical progressions as equidistant walks to infinity with a com-
mon difference as "the step length." Indeed, starting from the first term a1 one
obtains the next term from the previous by taking the step of the length d:

a1, a1 + d, (a1 + d) + d, . . .
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The arithmetical progression of odd numbers: 1, 3, 5, 7, 9, . . . is an equidistant walk
with the steps’ length equal to 2, the same as the arithmetical progression of even
numbers: 2, 4, 6, 8, 10, . . .. The only difference between those two equidistant walks
is in the initial term.
Equidistant walks serve as building blocks for grids. To form a grid, we put one
equidistant walk that starts with a1 and has the steps’ length dc to the first column,
and the other starting again with a1 with the step length dr to the first row. Then
we add equidistant walks with step lengths equal to dc (or dr) to columns (or rows).
So, equidistant grids are given by the first term a1 and the pair of differences (dr, dc).
There are different kinds of number grids in literature. For example, the most
well-known is the Pascal triangle based on the usual Euclidean square grid

1 1 1 1 · · ·
1 2 3 4 · · ·
1 3 6 10 · · ·
1 4 10 20 · · ·
... ... ... . . . .

and the hyperbolic Pascal triangles based on the hyperbolic square grids, see [1].
Here we consider the Euclidean grid and new number grids: equidistant grids with
equidistant walks in rows and columns.

Example 1. Having a1 = 1 and dc = dr = 2, we obtain the next grid of odd numbers

1 3 5 7 · · ·
3 5 7 9 · · ·
5 7 9 11 · · ·
7 9 11 13 · · ·
... ... ... . . . .

(1)

Notice also the other possible construction of this grid: besides odd numbers in the
first column, we add new columns by shifting the walk from the previous column up
by one and omitting the first number.

Here, we define walks over equidistant grids and a grid characteristic. We will
show that equidistant grids are means to generate polygonal numbers. There are
known problems of finding arithmetical progressions in polygonal numbers tackled
in [2] and [3]. Polygonal numbers may not contain long arithmetical sequences.
However, they constitute them. It is not new that polygonal numbers are sums of
numbers that form an arithmetical sequence. However, equidistant grids provide
more than one way to do this and give all possible ways. More precisely, we shall
prove that s-gonal numbers are sums of elements of a diagonal walk in the grid of the
characteristic s. Adding numbers in different directions of a number grid is an old
idea. For example, it is known that the shallow diagonal sums of Pascal’s triangle
give Fibonacci numbers:
Some equidistant grids, like the (1) from above, are obtained by a specific construc-
tion method. It is the method of alternating columns of two equidistant walks of
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 Figure 1: Sums in a Pascal triangle

the same steps’ length, with each column shifted up by some fixed shift k in every
new appearance. Some conditions on dc, dr, and k ensure the grid is equidistant.
Define an (R, D)-walk across the grid: for a pair of integers R and D, R gives a
move to the right and D a move down that leads from one number of the walk
to another. Here the negative value of R indicates a move to the left by |R|, and
the negative value of D is a move up by |D|. Figure 1 illustrates directions of
(R, D)-walks starting from the position A for different signs of R and D.

 

 

 Figure 2: Directions of (R,D)-walks

Walks may start at any point in a grid. Observe that (R, 0)-walks are horizontal
walks and (0, D)-walks are vertical walks. We call all other (R, D)-walks diagonal,
not just the walk in the direction of the main diagonal for which R = D. Negative
R and/or D results in a finite (R, D)-walk. Among infinite walks, we distinguish
diagonal walks of the steep incline down for which R < D and diagonal walks of the
slight incline down if opposite.
Observe that each walk across the grid is an equidistant walk. We call such grid
an equidistant grid. Being equidistant does not mean all walks through a grid
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have the same step length. In the grid (1) any horizontal (R, 0)-walk has the steps’
length 2R, for vertical (0, D)-walk it is 2D, while a diagonal (R, D)-walk has the
steps’ length 2(R + D).
Notice that in a grid of odd numbers (1) any (R, D)-walk that starts with some
number a1 can be identified simply to an (0, R + D)-walk over the first column of
the grid, i. e. a walk in which, starting from a1, one steps on every (R + D)th
number of the walk.
Observe that all the data necessary for the construction of the grid, (1) in particular,
or any other equidistant grid in general, are given in the upper-left triangle of the
grid, namely

1 3
3 .

To an equidistant grid given by a1, dc and dr a grid characteristic s is s =
2a1 + dc + dr. This is the sum of elements a1 + dc, a1 + dr of the first non-trivial
(1, −1)-walk in an equidistant grid

a1 a1 + dr

a1 + dc .

Example 2. Next grids have grid characteristics 13 and 8, respectively

1 7 13 19 · · ·
6 12 18 24 · · ·
11 17 23 29 · · ·
... ... ... ... . . .

,

1 7 13 19 · · ·
1 7 13 19 · · ·
1 7 13 19 · · · .
... ... ... ... . . .

Notice that above, sums of elements of (1, −1)-walks give tridecagonal and octagonal
numbers, respectively:

1 = 1
13 = 6 + 7
36 = 11 + 12 + 13 ,
...

1 = 1
8 = 1 + 7
21 = 1 + 7 + 13 .
...

It happens by no chance: as we shall see, an equidistant grid with a1 = 1 and a
characteristic s = 2 + dc + dr generates s-gonal numbers as sums of members of
(1, −1)-walks. In addition, observe that the first grid gives a non-standard decom-
position of tridecagonal numbers; the standard one that describes the geometrical
formation of 13-gonal numbers is:

1 = 1
13 = 1 + 12
36 = 1 + 12 + 23 .
...
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2 Equidistant grids and polygonal numbers
Polygonal numbers are numbers that, represented by dots, form a usual polygonal
pattern. So, triangular numbers 1, 3, 6, . . . form triangles, square numbers 1, 4, 9, . . .
form squares, and so.
Let s denote the number of polygon sides. There is a formula for the nth s-gonal
number [2]

Pn
(s) = n

2
(
2 + (n − 1)(s − 2)

)
.

Notice that the list of s-gonal numbers starts with 1 and then proceeds with s, since
the second s-gonal number equals exactly s.

 

 

 

 

 

 

 

 

Figure 3: s-gonal numbers for s = 3, 4, 5, 6 (retrieved from Wikipedia.)

There are natural decompositions of nth s-gonal number to a sum of n members
of an arithmetical sequence. These decompositions testify geometrical formation of
s-gonal numbers. Namely, for triangular numbers, the list starts with 1, proceeds
with 3 = 1 + 2 because to one dot we must add two more dots to get the smallest
non-trivial triangle, continues with 6 = 1 + 2 + 3 because one has to add three more
dots to get the third triangular number, and so on. In general, one enlarges the
sides of an s-gon by the next member of an arithmetical sequence:

• for s = 3 addends are . . . (((1 + 2) + 3) + 4) . . .

• for s = 4 one has . . . (((1 + 3) + 5) + 7) . . .

• for s = 5, . . . (((1 + 4) + 7) + 10) . . .

These decompositions are justified geometrically: one can construct the (n + 1)st
s-gonal number from the nth s-gonal number. Indeed, there is an initial point from
which the s-gons begin to grow. Each of the two sides that meet in the initial point
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contains n points, so one adds n − 2 points to each of the other s − 2 sides to form
the next s-gon. Since (n − 2)(s − 2) = (n − 1)(s − 2) + (s − 2) we see that the new
s-gonal formation originates from the old one enlarged by s − 2. Therefore s − 2
is the difference of an arithmetical sequence whose consecutive sums give s-gonal
numbers.
Besides the natural decomposition of s-gonal numbers as sums of members of equidis-
tant walks, we can read others in the equidistant grids of a characteristic s. The
total number of such decompositions is

⌊
s
2

⌋
. The following theorem holds.

Theorem 1. For a given integer s, s ≥ 2 there are exactly
⌊

s
2

⌋
decompositions

of s-gonal numbers as sums of members of (1, −1)-walks in equidistant grids of
characteristic s.
Proof. We claim that in every equidistant grid of the characteristics s sums of ele-
ments of (1, −1)-walks generate s-gonal numbers. Let p ∈ {1, 2, . . . ,

⌊
s
2

⌋
}. Look at

the equidistant grid of characteristics s:
1 s − p
p .

An equidistant walk in the first column starts with a1 = 1 and has a step length
equal to p−1. The one in the first row starts with b1 = 1; its step length is s−p−1.
So, an = 1 + (n − 1)(p − 1) and bn = 1 + (n − 1)(s − p − 1). The sum of elements of
a (1, −1)-walk is

sn = n

2 (an + bn) = n

2
(
2 + (n − 1)(s − 2)

)
and this is exactly the nth s-gonal number.
Corollary 1. For s even, every nth s-gonal number can be represented as the sum
of n equal numbers.
Proof. The decomposition follows from the equidistant grid of the characteristics s:

1 s
2

s
2 .

Remark 1. Observe that s-gonal numbers are partial sums of elements of (1, 1)-
walk on the main diagonal of an equidistant grid of characteristic s. That is so
because differences of consecutive s-gonal numbers form an equidistant walk with
the step length s − 2. Every (1, 1)-walk has this step length, particularly the main
diagonal walk. Thus, in the grid (2) from Example 3, nonagonal numbers are sums
of elements of an (1, −1)-walk, but also partial sums of elements of an (1, 1)-walk.
Generally, the main diagonal is an invariant of all

⌊
s
2

⌋
different equidistant grids of

characteristic s. Indeed, for p ∈ {1, 2, . . . ,
⌊

s
2

⌋
} one has

1 s − p
p s − 1 .

(The element s − 1 in this grid is: p + (s − p − 1), in the horizontal direction, or
s − p +(p − 1), in the vertical direction.) So, regardless of p, on the main diagonal is
the walk 1, s − 1, 2s − 3, . . . whose nth partial sum equals the nth s-gonal number.
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3 Equidistant grids made by alternating and
shifting columns

Example 3. Look at the next equidistant grid in which a1 = 1, dr = 5 and dc = 2

1 6 11 16 · · ·
3 8 13 18 · · ·
5 10 15 20 · · ·
7 12 17 22 · · ·
9 14 19 23 · · ·
11 16 21 26 · · · .
... ... ... ... . . .

(2)

The grid (2) is of a specific construction interest. Namely, we can start its construc-
tion with two equidistant walks having the same length of the step (dc = 2) given in
the first two columns. We add additional columns by alternating existing columns
and shifting them up by five in each new appearance. Indeed, the shift by five, and
only by five, of each column ensures that all horizontal walks are equidistant. (Five
is the difference of the first elements in given columns or dr).

We are interested in just-described equidistant grid construction. It starts by putting
two walks of the same step length to the first two columns and then alternating
columns shifted up by some fixed shift k. The grid (2) shows that not every shift
size will result in an equidistant grid. The question is: how can one choose k to get
it?
Assume there are equidistant walks with initial terms a1 and a1 + dr and the steps’
lengths equal to dc in the first two columns of a grid. Then add new columns in a
way to alternate given walks shifted up by some k, k > 0 in each new appearance
to obtain the grid

a1 a1 + dr a1 + kdc a1 + dr + kdc · · ·
a1 + dc a1 + dr + dc a1 + (k + 1)dc a1 + dr + (k + 1)dc · · ·
a1 + 2dc a1 + dr + 2dc a1 + (k + 2)dc a1 + dr + (k + 2)dc · · ·
a1 + 3dc a1 + dr + 3dc a1 + (k + 3)dc a1 + dr + (k + 3)dc · · · .

... ... ... ... . . .

Since dr gives the steps’ length of equidistant walks in rows, we have the requirement
a1 + kdc − (a1 + dr) = dr. That implies dck = 2dr.
The condition kdc = 2dr relates the shift k and the steps’ lengths dc and dr of
equidistant walks in columns and rows, respectively. Notice that for dc = 2, the
condition implies k = dr and therefore justifies that for dc = 2 the only shift that
gives an equidistant grid is the shift by dr, the fact we already noticed in the grid
(2).
Given dr, each ordered pair (dc, k) that satisfies dck = 2dr gives one equidistant grid.
So, the number of all such grids equals the number of ordered pairs (dc, k) such that
dck = 2dr. To investigate the total number of equidistant grids, we consider separate
cases of prime and composite dr.
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In case of a prime dr, dr ̸= 2 the condition dck = 2dr gives four possible choices of
dc and k: dc = 1, k = 2dr; dc = 2dr, k = 1; dc = 2, k = dr and dc = dr, k = 2. For
the first two, we have the following grids:

a1 a1 + dr a1 + 2dr · · ·
a1 + 1 a1 + dr + 1 a1 + 2dr + 1 · · ·
a1 + 2 a1 + dr + 2 a1 + 2dr + 2 · · ·

... ... ... . . .

and
a1 a1 + dr a1 + 2dr · · ·

a1 + 2dr a1 + 3dr a1 + 4dr · · ·
a1 + 4dr a1 + 5dr a1 + 6dr · · · .

... ... ... . . .

.

The case dc = 2, k = dr gives already treated equidistant grids

a1 a1 + dr a1 + 2dr · · ·
a1 + 2 a1 + dr + 2 a1 + 2dr + 2 · · ·
a1 + 4 a1 + dr + 4 a1 + 2dr + 4 · · · .

... ... ... . . .

Finally, the case dc = dr, k = 2 gives the equidistant grid of a specific (symmetric)
layout

a1 a1 + dr a1 + 2dr · · ·
a1 + dr a1 + 2dr a1 + 3dr · · ·
a1 + 2dr a1 + 3dr a1 + 4dr · · · .

... ... ... . . .

If dr is a composite number, besides the preceding four, there are other choices of dc

and k such that dck = 2dr. We distinguish two cases: the case of odd and even dr.
If dr is odd, we can factorize it as dr = pn1

1 pn2
2 . . .. Here p1, p2, . . . are different (odd)

prime numbers and n1, n2, . . . their respective multiplicities. The number D(dr)
of all divisors of dr equals D(dr) = (n1 + 1)(n2 + 1) . . .. Since 2dr = 2pn1

1 pn2
2 . . .,

the number of divisors of 2dr is D(2dr) = 2D(dr). That is exactly the number of
all ordered pairs (dc, k) such that dck = 2dr and also the number of all possible
equidistant grids. Indeed, except for dr = 2, the number of divisors of 2dr is even.
We can arrange them to an increasing sequence: p1, p2, . . . , pl−1, pl with l = 2D(dr),
p1 = 1 and pl = 2dr. Then (p1, pl), (p2, pl−1), . . . and (pl, p1), (pl−1, p2), . . . give all
possible pairs of lengths of the step dc of equidistant walks in columns and shifts k
of columns that give equidistant grids.
For dr = 2 there are three divisors of 2dr = 4, namely 1, 2 and 4 as well as three
possible ordered pairs (dc, k): (1, 4), (4, 1), (2, 2).
Even dr has a prime factor decomposition dr = 2n1pn2

2 pn3
3 . . ., with different prime
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factors pj ̸= 2. Then 2s = 2n1+1pn2
2 pn3

3 . . .. Consequently,

D(2dr) = (n1 + 2)(n2 + 1)(n3 + 1) · · ·
= (n1 + 1)(n2 + 1) + · · · + (n2 + 1)(n3 + 1) · · ·

= D(dr) + D

(
dr

2n1

)
.

Similarly as in the case of odd dr, the number of all possible equidistant grids for
even dr is D(dr)+D

(
dr

2n1

)
. To summarize: up to the choice of a1 and dr, the number

of equidistant grids equals the number of all divisors of 2dr. The sequence D(n) is
in the On-Line Encyclopedia of Integer Sequences [4] with the label A000005.

Example 4. Let us look at some concrete examples of equidistant grids.
Case dr = 5
There are four divisors of 2dr = 10: 1, 2, 5, 10. There are also four possible choices
for (dc, k): (1, 10), (10, 1), (2, 5) and (5, 2). If we take a1 = 1, there are four equidis-
tant grids

1 6 11 16 · · ·
2 7 12 17 · · ·
3 8 13 18 · · ·
... ... ... ... . . .

1 6 11 16 · · ·
11 16 21 26 · · ·
21 26 31 36 · · ·
... ... ... ... . . .

1 6 11 16 · · ·
3 8 13 18 · · ·
5 10 15 20 · · ·
... ... ... ... . . .

1 6 11 16 · · ·
6 11 16 21 · · ·
11 16 21 26 · · ·
... ... ... ... . . .

In given grids, we look at characteristics s to see which s-gonal numbers they gen-
erate. We list here s-gonal numbers from the above grids together with their OEIS
labels: octagonal numbers (s = 8, A000567), heptadecagonal numbers (s = 17,
A051869), nonagonal numbers (s = 9, A001106) and dodecagonal numbers (s = 12,
A051624).
Case dr = 6
There are six divisors of 2dr = 12: 1, 2, 3, 4, 6, 12 and six possible ordered pairs
(dc, k): (1, 12), (12, 1), (2, 6), (6, 2), (3, 4) and (4, 3). For a1 = 1, we have the follow-
ing equidistant grids

1 7 13 19 · · ·
2 8 14 20 · · ·
3 9 15 21 · · ·
... ... ... ... . . .

1 7 13 19 · · ·
13 19 25 28 · · ·
25 31 37 40 · · ·
... ... ... ... . . .

1 7 13 19 · · ·
3 9 15 21 · · ·
5 11 17 23 · · ·
... ... ... ... . . .

1 7 13 19 · · ·
7 13 19 25 · · ·
13 19 25 31 · · ·
... ... ... ... . . .

1 7 13 19 · · ·
4 10 16 22 · · ·
7 13 19 25 · · ·
... ... ... ... . . .

1 7 13 19 · · ·
5 11 17 23 · · ·
9 15 21 27 · · ·
... ... ... ... . . .
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Given grids again generate s-gonal numbers: nonagonal (s = 9, A001106), icosag-
onal (s = 20, A051872), decagonal (s = 10, A001107), tetradecagonal (s = 14,
A051866), hendecagonal (s = 11, A051682) and dodecagonal (s = 12, A051624).

3.1 Zig-zag equidistant walks and bi-equidistant walks
Now we introduce zig-zag walks and investigate conditions under which they are
equidistant. Zig-zag walks involve two equidistant walks of the same step length dc

placed in a two-column grid (the members of the walk are bolded)

a1 a′
1

a1 + dc a′
1 + dc

... ...
a1 + rdc a′

1 + rdc
... ...

a1 + (r + l)dc a′
1 + (r + l)dc

... ...
a1 + (2r + l)dc a′

1 + (2r + l)dc .
... ...

The zig-zag walk starts with a1, the first term of an equidistant walk from the first
column, continues to a′

1 + rdc from the second column r places lower than its first
term, then proceeds to the first column r + l places below the first term, and so
on. So, in each right turn zig-zag walk steps to the element of the second column r
places lower than the present one, and in each left turn to the one of the first column
l places below the present one. Look at conditions that ensure that a zig-zag walk
is equidistant. Let dr = a′

1 − a1 and assume dr > 0. From

a′
1 + rdc − a1 = a1 + (r + l)dc − (a′

1 + rdc)

it follows that the zig-zag walk is equidistant if and only if 2dr = (l − r)dc. The
condition dr > 0 together with dc > 0 (as assumed so far) forces r < l. Further,
l − r = 2dr

dc
provides the condition that the steps’ length dc must be a divisor of 2dr.

There is a finite number of possible step lengths, but an infinite number of choices
of l and r satisfying r < l.
Zig-zag walks can become horizontal walks through an infinite grid of given walks.
Like above, we can construct an equidistant grid by alternating shifted column walks.
Namely, the one from the first column stays as it is, and we shift the second up by
r. After this, we alternate columns shifted up by l + r in each new appearance. The
original zig-zag walk now appears in the first row

a1 a′
1 + rdc a1 + (r + l)dc a′

1 + (2r + l)dc a1 + (2r + 2l)dc · · ·

Example 5. In a special case when a1 = a′
1 (or dr = 0) and dc = 1, the previous

horizontal walk turns into a walk we call a bi-equidistant walk

a1 a1 + r a1 + r + l a1 + 2r + l a1 + 2r + 2l · · ·
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It starts with a1 with the first step length r and the second step length l and continues
to infinity by alternating those two steps. There is also a bi-equidistant walk

a1 a1 + l a1 + l + r a1 + 2l + r a1 + 2l + 2r · · ·

that starts with a1, and then alternates steps of lengths l and r to infinity. Notice that
odd members of given two bi-equidistant walks coincide, while the distance between
even members is constant and equals |r − l|.

3.2 Equidistant walks over progressions of products with
overlapping odd and even factors

The sum and the difference of corresponding members of two arithmetical progres-
sions is again an arithmetical progression. The same does not hold for a Hadamard
product of two arithmetical progressions unless one is constant. For given n let us
look at equidistant walks over odd and even numbers

2n − 1 2n
2n + 1 2n + 2
2n + 3 2n + 4

... ...

.

By a progression of products with overlapping factors of odd numbers we mean
the sequence (2n − 1)(2n + 1), (2n + 1)(2n + 3), (2n + 3)(2n + 5), . . ..
Let us further observe the progressions of products with overlapping factors starting
with the odd number (2n − 1)(2n + 1) and even number 2n(2n + 2), respectively

(2n − 1)(2n + 1) 2n(2n + 2)
(2n + 1)(2n + 3) (2n + 2)(2n + 4)
(2n + 3)(2n + 5) (2n + 4)(2n + 6)

... ...

.

Since differences of consecutive members are not constant, none of the progressions
is arithmetical. However, differences in products of consecutive elements do form
arithmetical progressions. Indeed, look at progressions of differences of products of
consecutive numbers

(2n + 1)(2n + 3) − (2n − 1)(2n + 1) (2n + 2)(2n + 4) − 2n(2n + 2)
(2n + 3)(2n + 5) − (2n + 1)(2n + 3) (2n + 4)(2n + 6) − (2n + 2)(2n + 4)

... ...
.

They are both equidistant walks with a step length of 8

8n + 4 8n + 8
8n + 12 8n + 16
8n + 20 8n + 24

... ...

.
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Further, the second walk is ahead of the first walk by 4 all the time. Namely, the
difference of the corresponding numbers in sequences is constant and equals 4(

(2n + 2)(2n + 4) − 2n(2n + 2)
)

−
(
(2n + 1)(2n + 3) − (2n − 1)(2n + 1)

)
= 4.

If we further shift the progression of even numbers up by one
2n

2n − 1 2n + 2
2n + 1 2n + 4
2n + 3 2n + 6

... ...

.

we may look at the progressions of respective products with overlapping factors as
before

(2n − 1)(2n + 1) (2n + 2)(2n + 4)
(2n + 1)(2n + 3) (2n + 4)(2n + 6)

... ...
.

Distance between the corresponding differences is again constant; now it equals
12 = 2 · 3!. (

(2n + 4)(2n + 6) − (2n + 2)(2n + 4)
)
−

−
(
(2n + 1)(2n + 3) − (2n − 1)(2n + 1)

)
= 12.

In general, we may fix a natural number n and the progression of products with
overlapping odd factors. Further, we shift the progression of products with over-
lapping even factors by k. Here k > 0 and k < 0 denote the shift up or down by
|k|, respectively. Because k = 1 − n is the maximal possible shift down, there is a
condition k ≥ 1 − n. After we shift the second sequence by k, we get

... ...
(2n − 1)(2n + 1) (2n + 2k)(2n + 2(k + 1))
(2n + 1)(2n + 3)

(
2n + 2(k + 1)

)(
2n + 2(k + 2)

)
... ...

.

The following holds for the distance of differences between two consecutive products
of numbers in sequences.
Proposition 1. For a natural number n and an integer k ≥ 1 − n,((

2n + 2(k + 1)
)(

2n + 2(k + 2)
))

− (2n + 2k)
(
2n + 2(k + 1)

))
−

−
(

(2n + 1)(2n + 3) − (2n − 1)(2n + 1)
)

= 8k + 4.

Remark 2. Products of overlapping factors can include more than two numbers that
overlap in more than one factor. So we can speak of products of n consecutive odd or
even numbers that overlap in m factors, m < n, i.e., of m-overlapping n-products.
In this notation, the above overlapping products are 1-overlapping 2-products. As
above, the distance between differences of two consecutive m-overlapping n-products
of even numbers and odd numbers is constant.
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