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On divisibility properties of some binomial sums
connected with the Catalan and Fibonacci

numbers

Jovan Mikić

Abstract
We show that an alternating binomial sum which is connected with the Catalan
numbers is divisible by n. A natural generalization of this sum is connected
with the generalized Catalan numbers and also divisible by n. A new class of
binomial sum is used. In Appendix A, we consider a positive binomial sum
connected with Fibonacci and Lucas numbers. In Appendix B, we consider an
alternating binomial sum which is also connected with Catalan numbers and
divisible by (a + 1)n + 1. Similar reasoning was already used by the author to
reprove more simply Calkin’s result for divisibility of the alternating sum of
powers of binomials coefficients by the central binomial coefficient.
Key words: Catalan number, generalized Catalan number, Fibonacci num-
ber, Lucas number, M sum, alternating binomial sum.
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1 Introduction
Let us consider the following alternating binomial sum:

S1(n, m) =
n∑

k=0
(−1)k

(
n

k

)m(2n + k

2n + 1

)
; (1)

where n and m are natural numbers.
Let x and y be non-negative numbers. It is well-known [5, Eq. (10.15), p. 47] that

n∑
k=0

(−1)k

(
n

k

)(
x + k

y

)
= (−1)n

(
x

y − n

)
. (2)

The Vandermonde convolution formula [4, Eq. (5.24)] is equivalent to Eq. (2). Also
there are, at least, two combinatorial proofs of Eq. (2) by using sign-reversing invo-
lutions [2].
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Let Cn denote [7, Section 5, p. 103] the n-th Catalan number. For m = 1, by the
Eq. (2), it follows that

S1(n, 1) = (−1)nnCn. (3)
We assert that:

Theorem 1. The sum S1(n, m) is always divisible by n for all natural numbers n
and m.

The sum S1(n, m) has a natural generalization:

S1(n, m; a) =
n∑

k=0
(−1)k

(
n

k

)m(
an + k

an + 1

)
; (4)

where a is a natural number.
Obviously, for a = 2, S1(n, m; 2) = S1(n, m).
For m = 1, by the Eq. (2), it can be shown that

S1(n, 1; a) = (−1)n n

(a − 1)n + 1

(
an

n

)
. (5)

Due to gcd(n, (a − 1)n + 1) = 1, by the Eq. (5), it follows that S1(n, 1; a) is di-
visible by n. Note that the number C(n, a) = 1

(a−1)n+1

(
an
n

)
is known [7, Section

17, Eq. (17.1), p. 375] as generalized Catalan number or Fuss-Catalan number. See
also [1, Eq. (2.2)]. For a = 2, C(n, 2) = Cn.
We assert that:

Theorem 2. Let a be a fixed natural number. The sum S1(n, m; a) is always divisible
by n for all natural numbers n and m.

Furthermore, let us consider the following alternating binomial sum:

S2(n, m) =
n∑

k=0
(−1)k

(
n

k

)m(2n + 1 + k

2n

)
; (6)

where n and m are natural numbers.
For m = 1, by the Eq. (2), it follows that

S2(n, 1) = (−1)n(2n + 1)Cn. (7)

We assert that:

Theorem 3. The sum S2(n, m) is always divisible by 2n+1 for all natural numbers
n and m.

The sum S2(n, m) has a natural generalization:

S2(n, m; a) =
n∑

k=0
(−1)k

(
n

k

)m(
an + 1 + k

an

)
; (8)

where a is a natural number.
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For m = 1, by the Eq. (2), it can be shown that

S2(n, 1; a) = (−1)n an + 1
n + 1

(
an

n

)
. (9)

Note that the integers an + 1 and n + 1 are not relatively prime in general.
We assert that:
Theorem 4. Let a be a fixed natural number. The sum S2(n, m; a) is always divisible
by an+1

gcd(a−1,n+1) for all natural numbers n and m.

We prove Thms. (2) and (4) by using a new class of binomial sums. Theorem 1 is
a special case of a Theorem 2 for a = 2. Similarly, Theorem 3 is a special case of a
Theorem 4 for a = 2.
Let us consider the following sum:

S(n, m; a) =
n∑

k=0

(
n

k

)m

F (n, k, a); (10)

where n, m and a are natural numbers, and F (n, k, a) is an integer-valued function.
Our goal is to investigate some divisibility properties of the sum S(n, m; a). In order
to do so, we use a new class of binomial sums which we called M sums.
Definition 1. Let S(n, m; a) be a sum from the Eq. (10) . Then

MS(n, j, t; a) =
(

n − j

j

) n−2j∑
k=0

(
n − 2j

k

)(
n

j + k

)t

F (n, j + k, a); (11)

where j and t are non-negative integers such that j ≤ ⌊n
2 ⌋.

See [9, Def. 7, Eq. (28), p. 9].
Obviously, by setting j = 0 in the Eq. (11), it follows that [9, Eq. (29), p. 9]

S(n, t + 1; a) = MS(n, 0, t; a). (12)
Due to Eq. (12), we can see MS(n, j, t; a) sum as a generalization of S(n, m; a).
Furthermore, M sums satisfy [9, Thm. 8, p. 9] the following recurrence:

MS(n, j, t + 1; a) =
(

n

j

) ⌊ n−2j
2 ⌋∑

u=0

(
n − j

u

)
MS(n, j + u, t; a). (13)

Eqns. (12) and (13) have a simple consequence which is important to us. Let us
suppose that an integer q(n, a) divides MS(n, j, t0; a) for all 0 ≤ j ≤ ⌊n

2 ⌋, where t0
is a fixed non-negative integer. By using the Eq. (13) and the induction principle,
it can be shown that q(n, a) must divide MS(n, j, t; a), for all integers t such that
t ≥ t0. By the Eq. (12), it follows that q(n, a) divides S(n, t; a) for all integers t
such that t ≥ t0 + 1.
By setting t := 0 in the Eq. (11), we obtain that

MS(n, j, 0; a) =
(

n − j

j

) n−2j∑
k=0

(
n − 2j

k

)
F (n, j + k, a). (14)

The M sums give an elementary proof of Calkin result [3, Thm. 1]. See also [6,
Thm. 1.2, Thm. 1.3, p. 2]. Note that there are also another applications [10, Section
2, p. 4], [8, 9] of M sums.
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2 The Main Lemmas
We present four lemmas.
We calculate M sums for the sum S1(n, m; a) for t = 0 and t = 1.

Lemma 1.

MS1(n, j, 0; a) =
(−1)n−j(n − j)

(
an+j

j

)(
an+1
n−2j

)
an + 1 . (15)

Lemma 2.

MS1(n, j, 1; a) = n

⌊ n−2j
2 ⌋∑

u=0

(−1)n−j−u
(

n−1
j

)(
j+u

u

)(
an+j+u

j+u

)(
an+1

n−2j−2u

)
an + 1 . (16)

Also we calculate M sums for the sum S2(n, m; a) for t = 0 and t = 1.

Lemma 3.

MS2(n, j, 0; a) =
(−1)n−j(an + 1)

(
an+1+j

j

)(
an

n−2j

)
n + 1 − j

. (17)

Lemma 4.

MS2(n, j, 1; a) =
⌊ n−2j

2 ⌋∑
u=0

(−1)n−j−u(an + 1)
(

n+1
j+u

)(
j+u

j

)(
an+1+j+u

j+u

)(
an

n−2j−2u

)
n + 1 . (18)

3 A Proof of Lemma 1
Proof. Obviously, the sum S1(n, m; a) is an instance of the sum S(n, m; a) from the
Eq. (10), where F1(n, k, a) = (−1)k

(
an+k
an+1

)
.

By the Eq. (14), we have:

MS1(n, j, 0; a) =
(

n − j

j

) n−2j∑
k=0

(
n − 2j

k

)
F1(n, j + k, a)

= (−1)j

(
n − j

j

) n−2j∑
k=0

(−1)k

(
n − 2j

k

)(
an + j + k

an + 1

)
(19)

By the Eq. (2), it follows that
n−2j∑
k=0

(−1)k

(
n − 2j

k

)(
an + j + k

an + 1

)
= (−1)n−2j

(
an + j

n − j − 1

)
. (20)

By the Eq. (20), the Eq. (19) becomes

MS1(n, j, 0; a) = (−1)n−j

(
an + j

n − j − 1

)(
n − j

j

)
. (21)

Due to well-known [7, Section 1, Eq. (1.3), p. 5] formula:(
n

k − 1

)
= k

n − k

(
n

k

)
,
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we have that: (
an + j

n − j − 1

)
= n − j

(a − 1)n + 2j + 1

(
an + j

n − j

)
, (22)

By the Eq. (22), the Eq. (21) becomes:

MS1(n, j, 0; a) = (−1)n−j n − j

(a − 1)n + 2j + 1

(
an + j

n − j

)(
n − j

j

)
. (23)

It is well-known [7, Section 1, Eq. (1.4), p. 5] that:(
a

b

)(
b

c

)
=
(

a

c

)(
a − c

b − c

)
; (24)

where a, b, and c are non-negative integers such that a ≥ b ≥ c.
By the Eq. (24), it follows that(

an + j

n − j

)(
n − j

j

)
=
(

an + j

j

)(
an

n − 2j

)
. (25)

By the Eq. (25), the Eq. (23) becomes

MS1(n, j, 0; a) = (−1)n−j n − j

(a − 1)n + 2j + 1

(
an + j

j

)(
an

n − 2j

)
. (26)

Due to another well-known [7, Section 1, Eq. (1.2), p. 5]formula:

1
n + 1 − k

(
n

k

)
= 1

n + 1

(
n + 1

k

)
,

it follows that:

1
(a − 1)n + 2j + 1

(
an

n − 2j

)
= 1

an + 1

(
an + 1
n − 2j

)
. (27)

By using Eqns. (26) and (27), we obtain that

MS1(n, j, 0; a) = (−1)n−j n − j

an + 1

(
an + j

j

)(
an + 1
n − 2j

)
. (28)

The Eq. (28) completes the proof of Lemma 1.

Note that that Eq. (21) leads directly to Eq. (28) by expressing binomial coefficients
in terms of factorials and cancellation of equal factors.
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4 A Proof of Lemma 2
Proof. We use the Eq. (13) and Lemma 1.
By setting t := 0 in the Eq. (13), we have that:

MS1(n, j, 1; a) =
(

n

j

) ⌊ n−2j
2 ⌋∑

u=0

(
n − j

u

)
MS1(n, j + u, 0; a). (29)

By Lemma 1, it follows that:

MS1(n, j + u, 0; a) = (−1)n−j−u n − j − u

an + 1

(
an + j + u

j + u

)(
an + 1

n − 2j − 2u

)
. (30)

By the Eq. (24), it follows that(
n

j

)(
n − j

u

)
=
(

n

j + u

)(
j + u

u

)
. (31)

By using Eqns. (30) and (31) in the Eq. (29), we obtain that MS1(n, j, 1; a) is equal
to the following sum:

⌊ n−2j
2 ⌋∑

u=0
(−1)n−j−u

(
n

j + u

)(
j + u

u

)
n − j − u

an + 1

(
an + j + u

j + u

)(
an + 1

n − 2j − 2u

)
. (32)

It is readily verified that:

(n − j − u)
(

n

j + u

)
= n

(
n − 1
j + u

)
. (33)

By using the Eq. (33) in the Eq. (32), we obtain that MS1(n, j, 1; a) is equal to

(−1)n−j

⌊ n−2j
2 ⌋∑

u=0
(−1)u

n
(

n−1
j+u

)(
j+u

u

)(
an+j+u

j+u

)(
an+1

n−2j−2u

)
an + 1 . (34)

This completes the proof of Lemma 2.

5 A Proof of Theorem 2
Proof. Let n and a be fixed natural numbers.
By the Eq. (5), we know that S1(n, m; a) is divisible by n for m = 1.
Due to fact that F1(n, m, a) is an integer-valued function, we know that
MS1(n, j, 0; a) is an integer. Also, see the Eq. (21).
The number

(
n
j

)(
n−j

u

)
MS1(n, j + u, 0; a) is also an integer; and, by the Eq. (34), it

is equal to the number n(n−1
j+u)(j+u

u )(an+j+u
j+u )( an+1

n−2j−2u)
an+1
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By Lemma 2 and the fact that gcd(n, an + 1) = 1, it follows that the sum
MS1(n, j, 1; a) is divisible by n for all non-negative integers j such that j ≤ ⌊n

2 ⌋.
Therefore, we can take q1(n, a) = n. By the Eq. (13) and the induction principle on
t, it follows that MS1(n, j, t; a) is divisible by n for all natural numbers t. By the
Eq. (12), it follows that S1(n, t + 1; a) is divisible by n for all natural numbers t.
Hence, S1(n, m; a) is divisible by n for all natural numbers m such that m ≥ 2.
This completes the proof of Theorem 2.

6 A Proof of Lemma 3
Proof. Obviously, the sum S2(n, m; a) is an instance of the sum S(n, m; a) from the
Eq. (10), where F2(n, k, a) = (−1)k

(
an+1+k

an

)
.

By the Eq. (14), we have:

MS2(n, j, 0; a) =
(

n − j

j

) n−2j∑
k=0

(
n − 2j

k

)
F2(n, j + k, a)

= (−1)j

(
n − j

j

) n−2j∑
k=0

(−1)k

(
n − 2j

k

)(
an + 1 + j + k

an

)
(35)

By the Eq. (2), it follows that

n−2j∑
k=0

(−1)k

(
n − 2j

k

)(
an + 1 + j + k

an

)
= (−1)n−2j

(
an + 1 + j

n − j + 1

)
. (36)

By the Eq. (36), the Eq. (35) becomes

MS2(n, j, 0; a) = (−1)n−j

(
an + 1 + j

n − j + 1

)(
n − j

j

)
. (37)

It is readily verified that(
an + 1 + j

n − j + 1

)
= (an + 1 + j

n − j + 1

(
an + j

n − j

)
. (38)

By the Eq. (38), the Eq. (37) becomes

MS2(n, j, 0; a) = (−1)n−j an + 1 + j

n − j + 1

(
an + j

n − j

)(
n − j

j

)
. (39)

By the Eq. (25), it follows that

MS2(n, j, 0; a) = (−1)n−j an + 1 + j

n − j + 1

(
an + j

j

)(
an

n − 2j

)
. (40)

By the Eq. (24), it follows that

(an + 1 + j)
(

an + j

j

)
=
(

an + 1 + j

j

)
(an + 1). (41)
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By the Eq. (41), the Eq. (40) becomes:

MS2(n, j, 0; a) = (−1)n−j an + 1
n − j + 1

(
an + 1 + j

j

)(
an

n − 2j

)
. (42)

The Eq. (42) completes the proof of Lemma 3.

7 A Proof of Lemma 4
Proof. We use the Eq. (13) and Lemma 3.
By setting t := 0 in the Eq. (13), we have that:

MS2(n, j, 1; a) =
(

n

j

) ⌊ n−2j
2 ⌋∑

u=0

(
n − j

u

)
MS2(n, j + u, 0; a). (43)

By Lemma 3, it follows that:

MS2(n, j + u, 0; a) = (−1)n−j−u an + 1
n − j − u + 1

(
an + 1 + j + u

j + u

)(
an

n − 2j − 2u

)
.

(44)
By using Eqns. (31) and (44) in the Eq. (43), we obtain that MS2(n, j, 1; a) is equal
to the following sum:

⌊ n−2j
2 ⌋∑

u=0
(−1)n−j−u

(
n

j + u

)
an + 1

n − j − u + 1

(
j + u

u

)(
an + 1 + j + u

j + u

)(
an

n − 2j − 2u

)
.

(45)
It is readily verified that(

n

j + u

)
1

n − j − u + 1 = 1
n + 1

(
n + 1
j + u

)
. (46)

By using the Eq. (46) in the Eq. (45), it follows that MS2(n, j, 1; a) is equal to:

an + 1
n + 1 ·

⌊ n−2j
2 ⌋∑

u=0
(−1)n−j−u

(
n + 1
j + u

)(
j + u

u

)(
an + 1 + j + u

j + u

)(
an

n − 2j − 2u

)
. (47)

The Eq. (47) proves Lemma 4.

8 A Proof of Theorem 4
Proof. Let n and a be fixed natural numbers.
By the Eq. (9), we know that S2(n, m; a) is divisible by an+1

gcd(an+1,n+1) for m = 1.
Due to fact that F2(n, m, a) is an integer-valued function, we know that
MS2(n, j, 0; a) is an integer. Also, see the Eq. (37).
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The number
(

n
j

)(
n−j

u

)
MS2(n, j + u, 0; a) is an integer; and, by the Eq. (47), it is

equal to the number (−1)n−j−u · an+1
n+1

(
n+1
j+u

)(
j+u

u

)(
an+1+j+u

j+u

)(
an

n−2j−2u

)
By Lemma 4, it follows that the sum MS2(n, j, 1; a) is divisible by an+1

gcd(an+1,n+1) for
all non-negative integers j such that j ≤ ⌊n

2 ⌋.
Therefore, we can take q2(n, a) = an+1

gcd(an+1,n+1) . By the Eq. (13) and the induction
principle on t, it follows that MS2(n, j, t; a) is divisible by q2(n, a) for all natural
numbers t. By the Eq. (12), it follows that S1(n, t + 1; a) is divisible by q2(n, a) for
all natural numbers t. Hence, S1(n, m; a) is divisible by an+1

gcd(an+1,n+1) for all natural
numbers m such that m ≥ 2.
Note that gcd(an+1, n+1) = gcd(a−1, n+1). This completes the proof of Theorem
4.

Remark 1. By setting a := 2 in Theorem 4 and by using the fact gcd(2n+1, n+1) =
1, we obtain the proof of Theorem 3.

9 Concluding Remarks
Let us consider the following alternating sum:

S1(n, m; a, b) =
n∑

k=0
(−1)k

(
n

k

)m(
an + k

an + b

)
; (48)

where n, m, a, and b are natural numbers.
Obviously, S1(n, m; a, 1) = S1(n, m; a). Furthermore, by using M sums, it can be
shown that:

MS1(n, j, 0; a, b) =
(−1)n−j

(
an+j

j

)(
n−j

b

)(
an+b
n−2j

)
(

an+b
b

) , (49)

MS1(n, j, 1; a, b) =
⌊ n−2j

2 ⌋∑
u=0

(−1)n−j−u
(

n
b

)(
n−b
j+u

)(
j+u

j

)(
an+j+u

j+u

)(
an+b

n−2j−2u

)
(

an+b
b

) . (50)

The Eq. (50) suggests that q1(n, a, b) = (n
b)

gcd((n
b),(an+b

b ))
. We assert that:

Theorem 5. Let n, a, and b be fixed natural numbers. Then the sum S1(n, m; a, b)
is always divisible by (n

b)
gcd((n

b),(an+b
b ))

for all natural numbers m.

By setting b := 1 in the Eq. (49), we obtain Lemma 1. Similarly, by setting b := 1
in the Eq. (50), we obtain Lemma 2. Finally, by setting b := 1 in Theorem 5, we
obtain Theorem 2.
Let us now consider the following sum:

S2(n, m; a, b) =
n∑

k=0
(−1)k

(
n

k

)m(
an + b + k

an

)
; (51)
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where n, m, a, and b are natural numbers.
Clearly, S2(n, m; a, 1) = S2(n, m; a). Furthermore, by using M sums, it can be
shown that:

MS2(n, j, 0; a, b) =
(−1)n−j

(
an+b+j

j

)(
an

n−2j

)(
an+b

b

)
(

n−j+b
b

) , (52)

MS2(n, j, 1; a, b) =
⌊ n−2j

2 ⌋∑
u=0

(−1)n−j−u
(

an+b
b

)(
n+b
j+u

)(
j+u

j

)(
an+b+j+u

j+u

)(
an

n−2j−2u

)
(

n+b
n

) . (53)

The Eq. (53) suggests that q2(n, a, b) = (an+b
b )

gcd((an+b
b ),(n+b

n ))
. We assert that:

Theorem 6. Let n, a, and b be fixed natural numbers. Then the sum S2(n, m; a, b)
is always divisible by (an+b

b )
gcd((an+b

b ),(n+b
n ))

for all natural numbers m.

By setting b := 1 in the Eq. (52), we obtain Lemma 3. Similarly, by setting b := 1
in the Eq. (53), we obtain Lemma 4. Finally, by setting b := 1 in Theorem 6, we
obtain Theorem 4.
For the sake of brevity and clarity, we omit proofs of Thms. (5) and (6).

10 Appendix A
We give an example with the positive binomial sum with Fibonacci numbers.
Let Fn denote the n-th Fibonacci number, where n is a non-negative integer.
Let us consider the following binomial identity:

n∑
k=0

(
n

k

)
5⌊ k

2 ⌋ = 2nFn+1. (54)

It is well-known that the Binet formula for Fibonacci numbers states:

Fn = (1 +
√

5)n − (1 −
√

5)n

2n
√

5
. (55)

The Binet formula is equivalent with the following binomial identity:
n∑

k=0

(
n

2k + 1

)
5k = 2n−1Fn. (56)

Let Ln denote the n-th Lucas number. Formula for Lucas numbers is also well-
known:

Ln = (1 +
√

5)n + (1 −
√

5)n

2n
. (57)

The formula for Lucas numbers is equivalent with the following binomial identity:
n∑

k=0

(
n

2k

)
5k = 2n−1Ln. (58)
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Note that Eq. (54) follows by Eqns. (56) and (58), and the fact that Ln = Fn+1 −
Fn−1.
Let us consider the following sum:

S3(n, m) =
n∑

k=0

(
n

k

)m

5⌊ k
2 ⌋. (59)

Obviously the sum S3(n, m) is an instance of the sum S from the Eq. (10), where
F3(n, k) = 5⌊ k

2 ⌋.
By the Eq. (54), for m = 1, we have that

S3(n, 1) = 2nFn+1.

By using Eqns. (13), (56), and (58), it can be shown that:

MS3(n, j, 0) =


(

n−j
j

)
5 j

2 · 2n−2j · Fn−2j+1, if j is even;(
n−j

j

)
5 j−1

2 · 2n−2j · Ln−2j+1, if j is odd.
(60)

We see that the formula for the MS3(n, j, 0) sum appear both Fibonacci and Lucas
numbers. Since the sum MS3(n, j, 0) is a slight generalization of the sum S3(n, 1),
this is expected, due to Eqns. (56) and (58).
Remark 2. By setting t = 0 in the Eq. (11), and by using Eqns. (12) and (60), we
can calculate the sum S3(n, 2). It can be shown that S3(n, 2) is equal to:

⌊ n
2 ⌋∑

u=0
u is even

(
n

u

)(
n − u

u

)
5u

2 2n−2uFn−2u+1 +
⌊ n

2 ⌋∑
u=0

u is odd

(
n

u

)(
n − u

u

)
5u−1

2 2n−2uLn−2u+1. (61)

11 Appendix B
Let S4(n, m; a) denote the following alternating binomial sum:

n∑
k=0

(−1)k

(
n

k

)m

(
(

an + k

an

)
+ 2

(
an + k

an + 1

)
); (62)

where n, m, and a are natural numbers.
Obviously the sum S4(n, m; a) is an instance of the sum S from the Eq. (10), where
F4(n, k, a) = (−1)k(

(
an+k

an

)
+ 2

(
an+k
an+1

)
).

By the Eq. (13) and the Eq. (2), it can be shown that:

MS4(n, j, 0; a) = (−1)n−j

(
an + j

j

)(
an + 1
n − 2j

)
(a + 1)n + 1

an + 1 . (63)

Note that the integers (a + 1)n + 1 and an + 1 are relatively prime. By the Eq. (63),
it follows that the sum MS4(n, j, 0; a) is always divisible by (a + 1)n + 1. Hence, we
can take q4(n, a) = (a + 1)n + 1.
By using M sums, we can prove the following theorem:
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Theorem 7. Let n and a be fixed natural numbers. Then the sum S4(n, m; a) is
always divisible by (a + 1)n + 1 for all natural integers m.

Remark 3. By the Eq. (63), it follows that an integer T (n, j, a) =
(

an+j
j

)(
an+1
n−2j

)
is

always divisible by an + 1 for all non-negative integers j such that j ≤ ⌊n
2 ⌋. These

numbers also appear in Lemma 1 and Lemma 2. Note that the Eq. (15) can be also
written as

MS1(n, j, 0; a) = (−1)n−j(n − j)T (n, j, a). (64)

Similarly, the Eq. (16) can be written as

MS1(n, j, 1; a) = n

⌊ n−2j
2 ⌋∑

u=0
(−1)n−j−u

(
n − 1

j

)(
j + u

u

)
T (n, j + u, a). (65)

Obviously,
MS4(n, j, 0; a) = (−1)n−j((a + 1)n + 1)T (n, j, a). (66)

It would be interesting to find a combinatorial interpretation for numbers T (n, j, a).
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