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On a linear recurrence relation of the
divide-and-conquer type

Daniele Parisse

Abstract
We study the six-parameter linear recurrence relation defined by

f(1) = ζ, f(2n) = αf(n) + β, f(2n + 1) = γf(n) + δf(n + 1) + ε, n ≥ 1,

with α, β, γ, δ, ε, ζ ∈ Z. We determine its ordinary generating function which
shows that the sequence is of the divide-and-conquer type. Then we discuss
some interesting special cases such as the Josephus problem, the number of 1’s
in the binary expression of n ∈ N, the Gros sequence in the Tower of Hanoi
with 3 pegs and n disks, n ∈ N, the Prouhet-Thue-Morse sequence, Stern’s
diatomic sequence and others. We give its solution at first for the special case
δ = 0 and then for δ ̸= 0. Moreover, for δ ̸= 0, β = 0 = ε and α ̸= 0, we
conjecture that it satisfies a second-order recurrence relation. We prove this
conjecture for three special cases and give the solution by means of continued
fractions. Then, we generalize the recurrence relation by considering both β
and ε as integer functions of n and discuss in detail the case δ = 0 and a special
case of this class. Finally, for δ ̸= 0, we only mention two known special cases.
Key words: Sequences of the divide-and-conquer type; Ordinary generating
function; Stern’s diatomic sequence; Prouhet-Thue-Morse sequence; Tower of
Hanoi;
AMS subject classification (2010): Primary 05A10 ; Secondary 05A19.

1 Introduction
There are some problems such as the Tower of Hanoi puzzle, the Josephus problem,
Stern’s diatomic sequence, "the infinity sequence" of Per Nørgård, the Prouhet-Thue-
Morse sequence and many others, which have apparently no connections among each
other. However, they are all defined by the same six-parameter linear recurrence
relation

f(1) = ζ, f(2n) = αf(n) + β, f(2n+ 1) = γf(n) + δf(n+ 1) + ε, n ≥ 1 (1)

(Daniele Parisse) Airbus Defence and Space GmbH, Manching, Germany, daniele.parisse@t-
online.de
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with α, β, γ, δ, ε, ζ,∈ Z. (Note that we begin the sequence by n = 1, although some
of the sequences are also well-defined for all n ∈ N0. If possible, we shall define
f(0) := η ∈ Z so that this value is consistent with (1), otherwise we set f(0) := 0.)
Eq.(1) can also be written as follows:

f(1) = ζ, f(n) = a(n)f
(
⌊n/2⌋

)
+ b(n)f

(
⌈n/2⌉

)
+ c(n), n ≥ 2, (2)

where

a(n) := α + γ

2 + (−1)nα− γ

2 , b(n) := 1 − (−1)n

2 δ, c(n) := β + ε

2 + (−1)nβ − ε

2 .

Recurrence relations of this form are called (binary) divide-and-conquer recurrences
and appear often in computer science, because algorithms based on the technique
of divide et impera (divide and conquer) often reduce a problem of size n to the
solution of two problems of approximately equal sizes ⌊n/2⌋ and ⌈n/2⌉, where n =
⌊n/2⌋ + ⌈n/2⌉, n ∈ N0. The solutions of the two subproblems are then used to solve
the original problem.
In this paper we shall study the linear recurrence relation (1) and its ordinary
generating function. We shall at first consider some known special cases of (1) and
then we shall derive its general solution, first for δ = 0 and then for δ ̸= 0. It will
turn out that for δ = 0 (1) is equivalent to a first-order linear recurrence relation
with variable coefficients and that for δ ̸= 0, β = 0 = ε and α ̸= 0 it seems to be
equivalent to a second-order linear recurrence relation with variable coefficients. We
prove this conjecture for three special cases. The solutions in both cases rely on
the binary expansion of n. In the last chapter we study a generalization of (1) by
considering instead of the constants β and ε the integer functions g(n) and h(n).
Then, we give a solution for δ = 0 and investigate in detail a special case. Finally,
for δ ̸= 0, we only mention two known sequences.

2 Definitions and Examples
Definition 1. A formal series φ(s) is said to be of the divide-and-conquer (DC)
type (see [31]), if it satisfies a functional equation of the form

c0(s)φ(s) + c1(s)φ(s2) + · · · + cn(s)φ(s2n) = b(s), (3)

in which b(s) is a formal series and ck(s), k ∈ [n + 1]0 := {0, 1, . . . , n}, are polyno-
mials not all zero. If b(s) = 0, then the series φ(s) is said to be Mahlerian.
A sequence is of the divide-and-conquer type, if its ordinary generating function, de-
fined by the power series ∑∞

n=0 f(n)sn, is of the divide-and-conquer type and Mahle-
rian, if its generating function is Mahlerian.

We shall now prove that the generating function for the sequence
(
f(n)

)
n∈N0

defined
by (1) is of the DC type and, for some special values of the six parameters, even
Mahlerian.
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Proposition 1. The generating function φ(s) for the sequence
(
f(n)

)
n∈N0

is of the
DC type, since it satisfies the functional equation

sφ(s) = (δ+αs+ γs2)φ(s2) − δη+ η(1 −α)s+
(
ζ(1 − δ) − ηγ

)
s2 + (β + εs)s3

1 − s2 (4)

Proof. Let φ(s) := ∑∞
n=0 f(n)sn and f(0) := η, then by (1)

φ(s) = f(0) +
∞∑

n=1
f(2n)s2n +

∞∑
n=0

f(2n+ 1)s2n+1

= η + α
∞∑

n=1
f(n)s2n + β

∞∑
n=1

s2n + f(1)s+ γ
∞∑

n=1
f(n)s2n+1+

+ δ
∞∑

n=1
f(n+ 1)s2n+1 + ε

∞∑
n=1

s2n+1

= η + α
(
φ(s2) − η

)
+ β

s2

1 − s2 + ζs+ γs
(
φ(s2) − η

)
+

+ δ

s

(
φ(s2) − η − ζs2

)
+ εs

s2

1 − s2 ,

since ∑∞
n=1 f(n+ 1)s2n+1 = 1

s

(
φ(s2) − η − ζs2

)
and ∑∞

n=1 s
2n =

(
1

1−s2 − 1
)

= s2

1−s2 .
Simplifying and multiplying both sides by s we obtain formula (4), which shows
that f(n) is of the DC type.

We shall now discuss some examples (see also [2, 4]).

• E1 The Josephus problem ( [13, pp. 8–13]).
Let n ∈ N people, numbered 1 to n, stand around a circle and eliminate
every second remaining person until one survives. The problem consists in
determining the survivor’s number J(n). (The original and more difficult
problem (for n = 41) was to eliminate every third remaining person.) It
follows (see [13, p. 10])

J(1) = 1, J(2n) = 2J(n) − 1, J(2n+ 1) = 2J(n) + 1, n ≥ 1 (5)

This is the special case α = 2 = γ, β = −1, δ = 0, ε = 1, ζ = 1 and η := 0
of (1). The generating function φ(s) satisfies, by Proposition 1, the functional
equation

φ(s) = 2(1 + s)φ(s2) + s

1 + s

and it is given by

φ(s) = 1
1 − s

∞∑
k=0

2k · s2k
(
1 − s2k

)
1 + s2k , (6)
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since

2(1 + s)φ(s2) + s

1 + s
= 2(1 + s)

1 − s2

∞∑
k=0

2k · s2k+1
(
1 − s2k+1

)
1 + s2k+1 + s

1 − s

= 1
1 − s

∞∑
k=0

2k+1 · s2k+1
(
1 − s2k+1

)
1 + s2k+1 + s

1 + s

= 1
1 − s

 ∞∑
k=0

2k+1 · s2k+1
(
1 − s2k+1

)
1 + s2k+1 + s(1 − s)

1 + s


= φ(s).

The solution of E1 can be given in several equivalent formulas in binary form.

1. Let n = (bm . . . b0)2 := ∑m
k=0 bk ·2k, bk ∈ {0, 1}, k ∈ [m+1]0, (bm = 1), be

the binary expansion of n ∈ N. Then (see [13, formula (1.10) at p. 11])

J
(
(bm . . . b0)2

)
= (bm−1bm−2 . . . b1b0bm)2 (7)

Since (bm−1bm−2 . . . b1b0bm)2 = ∑m
k=1 bk−12k + bm, we have

J
(
(bm . . . b0)2

)
=

m∑
k=1

bk−12k +bm = 2·
(

m∑
k=0

bk2k −2m

)
+1 = 2n−2m+1 +1,

where m = ⌊log2 n⌋. Further, since −2m+1 +1 = −∑m
k=0 2k and 2bk −1 =

(−1)1−bk , we get

J
(
(bm . . . b0)2

)
= (bm−1bm−2 . . . b1b0bm)2 = 2

m∑
k=0

bk2k −
m∑

k=0
2k

=
m∑

k=0
(2bk − 1)2k =

m∑
k=0

(−1)1−bk · 2k.

(8)

2. Let n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0, then

J(2a0+2a1+· · ·+2aℓ) = 1+
ℓ−1∑
k=0

2aℓ−k+1 = 2a1+1+2a2+1+· · ·+2aℓ+1+20 (9)

The first few values of J(n) (the sequence A006257 in the On-Line Encyclo-
pedia of Integer Sequences (OEIS ®) [24]) are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
J(n) 0 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1

Table 1: J(n), 0 ≤ n ≤ 16

• E2 Number of 1’s in the binary expansion of n ∈ N.
For n = (bm . . . b0)2 we define the sum of the bits in the binary expansion of
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n to be s2(n) := ∑m
k=0 bk. Since bk ∈ {0, 1}, k ∈ [m + 1]0, this sum gives the

number of 1’s in the binary expansion of n and satisfies the recurrence relation

s2(1) = 1, s2(2n) = s2(n), s2(2n+ 1) = s2(n) + 1, n ≥ 1 (10)

This is the special case α = 1 = γ, β = 0, δ = 0, ε = 1, ζ = 1 and η = 0 of
(1), since 0 has no 1’s in the binary expansion. The generating function φ(s)
satisfies, by Proposition 1, the functional equation

φ(s) = (1 + s)φ(s2) + s

1 − s2

and it is given by

φ(s) = 1
1 − s

∞∑
k=0

s2k

1 + s2k , (11)

since

(1 + s)φ(s2) + s

1 − s2 = 1 + s

1 − s2

∞∑
k=0

s2k+1

1 + s2k+1 + s

1 − s2

= 1
1 − s

( ∞∑
k=0

s2k+1

1 + s2k+1 + s

1 + s

)
= φ(s).

The solution of E2 is by definition s2
(
(bm . . . b0)2

)
= ∑m

k=0 bk or, alternatively,
for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0,

s2(2a0 + 2a1 + · · · + 2al) = l + 1. (12)

Closely related to s2(n) is the sequence E2’, denoted by e0(n), giving the num-
ber of nonleading 0’s in the binary expansion of n. It satisfies the recurrence
relation

e0(1) = 0, e0(2n) = e0(n) + 1, e0(2n+ 1) = e0(n), n ≥ 1 (13)

This is the special case α = 1 = γ, β = 1, δ = 0, ε = 0, ζ = 0 and η = 0 of
(1). The generating function φ0(s) satisfies, by Proposition 1, the functional
equation

φ0(s) = (1 + s)φ0(s2) + s2

1 − s2

and it is given by

φ0(s) = 1
1 − s

∞∑
k=0

s2k+1

1 + s2k , (14)

since

(1 + s)φ0(s2) + s2

1 − s2 = 1 + s

1 − s2 ·
∞∑

k=0

s2k+2

1 + s2k+1 + s2

1 − s2

= 1
1 − s

( ∞∑
k=0

s2k+2

1 + s2k+1 + s2

1 + s

)
= φ0(s).
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The solution of E2’ for n = (bm . . . b0)2 is given by

e0(n) = m+ 1 −
m∑

k=0
bk = ⌊log2 n⌋ + 1 − s2(n). (15)

The first few values of s2(n) (the sequence A000120 in [24]) and e0(n) (the
sequence A080791 in [24]) are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s2(n) 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 1
e0(n) 0 0 1 0 2 1 1 0 3 2 2 1 2 1 1 0 4

Table 2: s2(n), e0(n), 0 ≤ n ≤ 16

• E3 The Tower of Hanoi with 3 pegs and n disks, n ∈ N.
This puzzle has been invented in 1883 by the French mathematician Édouard
Lucas (1842-1891). It consists of n disks, n ∈ N, of different sizes and three
vertical pegs. At the beginning, all disks are stacked in decreasing order on
one of the three pegs (this is called a tower). The objective is to transfer
the entire tower to another peg using the minimum number of legal moves,
where a legal move is to move one topmost disk at a time and never moving a
larger one onto a smaller one (this is the divine rule). For more details on the
Tower of Hanoi with 3 or more pegs and on some variations of this puzzle we
refer to the comprehensive monograph [19]. It can be shown (see [17, p. 281]
and [19, Theorem 2.1, pp. 79–83]) that the number d2(n) of the disk to be
moved at the nth step of the optimal solution of the Tower of Hanoi puzzle
satisfies the recurrence relation

d2(1) = 1, d2(2n) = d2(n) + 1, d2(2n+ 1) = 1, n ≥ 1 (16)

This is the special case α = 1, β = 1 = ε, γ = 0, δ = 0, ζ = 1 and η := 0
of (1). This sequence is also known as the Gros sequence (see [19, pp. 79–
83]). The generating function φ(s) satisfies, by Proposition 1, the functional
equation

φ(s) = φ(s2) + s

1 − s

and it is given by

φ(s) =
∞∑

k=0

s2k

1 − s2k , (17)

since

φ(s2) + s

1 − s
=

∞∑
k=0

s2k+1

1 − s2k+1 + s

1 − s
=

∞∑
k=0

s2k

1 − s2k = φ(s).

The solution of E3 for n = 2r(2k + 1), r, k ∈ N0, is given by

d2(n) = r + 1, (18)
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or, for n = (bm . . . b0)2 (cf. (74))

d2
(
(bm . . . b0)2

)
=

m∑
k=0

( k−1∏
j=0

(1 − bj)
)
. (19)

Alternatively, for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0,

d2(n) = aℓ + 1. (20)

Other interpretations of this sequence based on (18) and (20) are

1. d2(n) gives the exponent of highest power of 2 dividing 2n.
2. d2(n) gives the position of the first 1 (counting from right to left and

beginning with 1) of the binary representation of n, e.g., 12 = (1100)2 ⇒
d2(12) = 3.

3. d2(n) gives the position of the bit (counting from right to left and begin-
ning with 1) to be changed in the Gray-code (see Table 3).

Therefore, the sequence d̃2(n) := d2(n)−1 for all n ∈ N (called the binary carry
sequence) gives the exponent of highest power of 2 dividing n or, equivalently,
the index of the right-most non-zero bit in the binary representation of n. It
is the sequence A007814 in [24].

n decimal n binary Gray-code d2(n)
1 1 0001 1
2 10 0011 2
3 11 0010 1
4 100 0110 3
5 101 0111 1
6 110 0101 2
7 111 0100 1
8 1000 1100 4
9 1001 1101 1

10 1010 1111 2
11 1011 1110 1
12 1100 1010 3
13 1101 1011 1
14 1110 1001 2
15 1111 1000 1

Table 3: Position of the nth bit to be changed in the Gray-code, 1 ≤ n ≤ 15

Remark 1. The sequence pf (n) of the changed bit in the Gray-code above is
the so-called regular paper-folding (or dragon curve sequence). pf (n) is the
one’s complement of the bit to the left of the least significant ”1” in the binary
expansion of n, e.g., n = 7 = 1112, that is pf (7) = 0. This sequence is defined
recursively by the recurrence relation

pf (1) = 1, pf (4n) = 1, pf (4n+2) = 0, pf (2n+1) = pf (n), n ≥ 1 (21)
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The first few values of d2(n) (the sequence A001511 in [24]) and pf (n) (the
sequence A014577 in [24]) are

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
d2(n) 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5
pf (n) 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1

Table 4: d2(n), pf (n), 1 ≤ n ≤ 16

Eq.(17) can be written in the form

φ(s) =
∞∑

n=1
ρ(n) · sn

1 − sn
, (22)

where ρ(n) is the characteristic function of the powers of 2, that is ρ(n) = 1,
if n is a power of 2 and zero otherwise. It shows that φ(s) is a Lambert series
(cf. (114)). Moreover, since d2(n) is the number of 2’s that divides 2n, or,
equivalently, the number of the positive powers of 2 which divides n, we have

d2(n) =
∑
t|n
ρ(t), n ∈ N. (23)

There is a relation between d2(n) and s2(n).

Proposition 2. For all n ∈ N it is

d2(n) = 2 − ∆s2(n) (24)

and, conversely,
s2(n) = 2n−D2(n) (25)

where ∆s2(n) := s2(n) − s2(n− 1) is the difference sequence of s2(n) and

D2(n) :=
n∑

k=1
d2(k) (26)

is the sequence of the partial sums of d2(n).

Proof. Let α(n) := 2−s2(n)+s2(n−1), then α(1) = 2−s2(1)+s2(0) = 2−1+
0 = 1 = d2(1). Further, by (16) and noting that s2(2n−1) = s2(2(n−1)+1) =
s2(n−1)+1 we have α(2n) = 2−s2(2n)+s2(2n−1) = 2−s2(n)+s2(n−1)+1 =
α(n)+1 and α(2n+1) = 2−s2(2n+1)+s2(2n) = 2− (s2(n)+1)+s2(n) = 1.
For all n ≥ 1 the sequence α(n) satisfies the same recurrence relation as d2(n)
and has the same initial value, therefore the two sequences are equal and this
proves (24).
Conversely, by repeated iteration we obtain s2(n) = s2(n − 1) + 2 − d2(n) =
s2(n−2)+2·2−(d2(n−1)+d2(n)) = . . . = s2(0)+2n−∑n

k=1 d2(k) = 2n−D2(n)
and this is (25), since s2(0) = 0.
Note that since s2(n) ≥ 1 for all n ∈ N it follows that D2(n) ≤ 2n.
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E4 Number of odd binomial coefficients in the nth row of Pascal’s triangle.
This sequence (also known as Gould’s sequence) is given recursively by

G(1) = 2, G(2n) = G(n), G(2n+ 1) = 2G(n), n ≥ 1 (27)

G(n) gives the number of odd binomial coefficients in the nth row (n ≥ 0) of
Pascal’s triangle. Since Pascal’s triangle with 2n rows modulo 2 is isomorphic
to the graph of the Tower of Hanoi with 3 pegs and n disks [16], G(n) gives
also the number of regular states for which the distance to a given perfect
state is equal to n. It is the special case α = 1, β = 0 = ε, γ = 2, δ = 0, ζ = 2
and η := 1 of (1). The generating function φ(s) satisfies, by Proposition 1,
the functional equation

φ(s) = (1 + 2s)φ(s2)
which shows that φ(s) is Mahlerian. It is given by the infinite product

φ(s) =
∞∏

k=0
(1 + 2s2k), (28)

since

(1 + 2s)φ(s2) = (1 + 2s) ·
∞∏

k=0
(1 + 2s2k+1) =

∞∏
k=0

(1 + 2s2k) = φ(s).

The solution of E4 for n = (bm . . . b0)2 has been given by Glaisher [12, p. 10]

G((bm . . . b0)2) = 2
∑m

k=0 bk = 2s2(n) (29)

Alternatively, for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0,

G(2a0 + 2a1 + · · · + 2aℓ) = 2ℓ+1. (30)

A slight modification of E4 is the sequence E4’ defined recursively by

G1(1) = 1, G1(2n) = G1(n), G1(2n+ 1) = 2G1(n) + 1, n ≥ 1 (31)

G1(n) is the smallest number with the same number of 1’s in its binary repre-
sentation as n. It is the special case α = 1, β = 0, γ = 2, δ = 0, ε = 1, ζ = 1
and η = 0 of (1) and it is G1(n) = G(n) − 1 for all n ∈ N0. Its generating
function φ1(s) satisfies, by Proposition 1, the functional equation

φ1(s) = (1 + 2s)φ1(s2) + s

1 − s2

and it is given by

φ1(s) = φ(s) −
∞∑

n=0
sn =

∞∏
k=0

(1 + 2s2k) − 1
1 − s

, (32)

since

(1 + 2s)φ1(s2) + s

1 − s2 = (1 + 2s)
( ∞∏

k=0
(1 + 2s2k+1) − 1

1 − s2

)
+ s

1 − s2

=
∞∏

k=0
(1 + 2s2k) − 1 + 2s

1 − s2 + s

1 − s2 = φ1(s).
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The solution of (31) for n = (bm . . . b0)2 is given by (cf. (74))

G1((bm . . . b0)2) = 2
∑m

k=0 bk − 1 = 2s2(n) − 1 =
m∑

k=0
bk · 2

∑k−1
j=0 bj (33)

or, for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0,

G1(2a0 + 2a1 + · · · + 2aℓ) = 2ℓ+1 − 1. (34)

The first few values of G(n) (the sequence A001316 in [24]) and G1(n) (the
sequence A038573 in [24]) are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
G(n) 1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16 2
G1(n) 0 1 1 3 1 3 3 7 1 3 3 7 3 7 7 15 1

Table 5: G(n), G1(n), 0 ≤ n ≤ 16

E5 Base 3 representation of n contains no 2’s.
This sequence is given recursively by

f2(1) = 1, f2(2n) = 3f2(n), f2(2n+ 1) = 3f2(n) + 1, n ≥ 1 (35)

f2(n) gives the nth number that can be written as a sum of distinct powers
of 3. It is the special case α = 3 = γ, β = 0, δ = 0, ε = 1, ζ = 1 and η = 0
of (1). Its generating function φ2(s) satisfies, by Proposition 1, the functional
equation

φ2(s) = 3(1 + s)φ2(s2) + s

1 − s2

and it is given by

φ2(s) = 1
1 − s

∞∑
k=0

3k · s2k

1 + s2k , (36)

since

3(1 + s)φ2(s2) + s

1 − s2 = 3(1 + s)
1 − s2

∞∑
k=0

3k · s2k+1

1 + s2k+1 + s

1 − s2

= 1
1 − s

∞∑
k=0

3k+1 · s2k+1

1 + s2k+1 + s

1 − s2

= 1
1 − s

( ∞∑
k=0

3k+1 · s2k+1

1 + s2k+1 + s

1 + s

)
= φ2(s).

The solution of E5 for n = (bm . . . b0)2 is given by

f2((bm . . . b0)2) = (bm . . . b0)3 =
m∑

k=0
bk · 3k. (37)

Alternatively, for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0,

f2(2a0 + 2a1 + · · · + 2aℓ) = 3a0 + 3a1 + · · · + 3aℓ . (38)

The first few values of f2(n) (the sequence A005836(n+ 1) in [24]) are
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f2(n) 0 1 3 4 9 10 12 13 27 28 30 31 36 37 39 40 81

Table 6: f2(n), 0 ≤ n ≤ 16

Remark 2. An interesting property of this sequence has been noted by D.
Tseng in 2009, namely that f2(n) ≡ s2(n) (mod 2), since 3k ≡ 1 (mod 2) for
all k ∈ [m + 1]0. By (37) it follows f2(n) ≡ ∑m

k=0 bk = s2(n) (mod 2). This is
the Prouhet-Thue-Morse sequence m(n) on {0, 1} which we shall now present
as Example E6.

E6 The Prouhet-Thue-Morse sequence on {0, 1} (see [3, 14,26]).
This famous sequence can be obtained in several ways:

1. consider the sequence of the natural num-
bers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 . . .) in binary form
(0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, . . .) and build the
sum of the digits of these numbers modulo 2, so we obtain the
Prouhet-Thue-Morse sequence (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, . . .), that is
m(n) = s2(n) mod 2.

2. recursively, starting with m(0) = 0 and for all k ∈ N0,
m(0),m(1), . . . ,m(2k − 1) is followed by its one’s comple-
ment, i.e., m(2k) = m(0), . . . ,m(2k+1) = m(2k − 1). Hence,
0, 01, 0110, 01101001, 0110100110010110, . . .

3. by iteration according to the rules 0 → 01, 1 → 10,
that is 0 → 01 → 0110 → 01101001 → 0110100110010110 → · · · .

4. by the logical function XOR (exclusive or) (see Table 7 for n = 2)

x y xXORy

0 0 0
0 1 1
1 0 1
1 1 0

Table 7: Truth table for XOR, x, y propositions, 1 = T (rue), 0 = F (alse)

It satisfies the recurrence relation:

m(1) = 1, m(2n) = m(n), m(2n+ 1) = −m(n) + 1, n ≥ 1 (39)

This is the special case α = 1, β = 0, γ = −1, δ = 0, ε = 1, ζ = 1 and η := 0
of (1). Its generating function φ(s) satisfies, by Proposition 1, the functional
equation

φ(s) = (1 − s)φ(s2) + s

1 − s2 .
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In order to get a simple expression for the generating function φ(s) of m(n)
we use the transformation

m1(n) := −2m(n) + 1 (40)

which gives the Prouhet-Thue-Morse sequence on {−1,+1} instead of {0, 1}.
Note that by (40) we have 0 → 1 and 1 → −1, that is

m1(n) = (−1)m(n). (41)

This sequence E6’ satisfies the recurrence relation:

m1(1) = −1, m1(2n) = m1(n), m1(2n+ 1) = −m1(n), n ≥ 1 (42)

This is the special case α = 1, β = 0 = ε, γ = −1, δ = 0, ζ = −1 and η = 1
of (1). Its generating function ψ(s) satisfies, by Proposition 1, the functional
equation

ψ(s) = (1 − s)ψ(s2).
ψ(s) is Mahlerian and it is given by the infinite product

ψ(s) =
∞∏

k=0
(1 − s2k) (43)

known as Euler’s product, since

(1 − s)ψ(s2) = (1 − s)
∞∏

k=0
(1 − s2k+1) =

∞∏
k=0

(1 − s2k) = ψ(s).

By (41) and (43) we have
∞∑

n=0
(−1)m(n)sn =

∞∏
k=0

(1 − s2k). (44)

Using (40) and (43) we obtain the generating function φ(s) of m(n). Indeed,
we have

φ(s) =
∞∑

n=0
m(n)sn =

∞∑
n=0

1 −m1(n)
2 sn

= 1
2 ·
( ∞∑

n=0
sn −

∞∑
n=0

m1(n)sn
)

= 1
2 ·
( 1

1 − s
− ψ(s)

)

= 1
2 ·
( 1

1 − s
−

∞∏
k=0

(1 − s2k)
)

The solution of E6’ for n = (bm . . . b0)2 is given by

m1(n) = (−1)
∑m

k=0 bk = (−1)s2(n) (45)

or, for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0, by

m1(2a0 + 2a1 + · · · + 2aℓ) = (−1)ℓ+1 (46)
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and that of E6 is given by

m(n) = 1
2 ·
(
1 − (−1)s2(n)

)
(47)

or, for n = (bm . . . b0)2, by

m((bm . . . b0)2) =
m∑

k=0
bk(−1)

∑k−1
j=0 bj (48)

or, for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0, by

m(2a0 + 2a1 + · · · + 2aℓ) =
ℓ∑

k=0
(−1)k = 1

2 ·
(
1 + (−1)ℓ

)
(49)

Note that by (49) we obtain |m(n)| =
∣∣∣∑ℓ

k=0(−1)k
∣∣∣ ≤ ∑ℓ

k=0 |(−1)k| =∑ℓ
k=0 1 = ℓ+ 1 = s2(n), for all n ∈ N.

The first few values of m(n) (the sequence A010060 in [24]) and m1(n) (the
sequence A106400 in [24]) are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
m(n) 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1
m1(n) 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1

Table 8: m(n),m1(n), 0 ≤ n ≤ 16

E7 The infinite sequence of Per Nørgård (see [4, Example 23, pp. 21–22] and
[5]).
This sequence is given recursively by

a(1) = 1, a(2n) = −a(n), a(2n+ 1) = a(n) + 1, n ≥ 1 (50)

It is the special case α = −1, β = 0, γ = 1, δ = 0, ε = 1, ζ = 1 and η := 0 of
(1). It is the infinite sequence of the Danish composer Per Nørgård (1932–),
who invented it in an attempt to unify in a perfect way repetition and variation.
Its generating function φ(s) satisfies, by Proposition 1, the functional equation

φ(s) = −(1 − s)φ(s2) + s

1 − s2

and it is given by

φ(s) =
∞∑

k=0
(−1)k s

2k ∏k−1
j=0(1 − s2j )

1 − s2k+1 , (51)

since

−(1 − s)φ(s2) + s

1 − s2 = −(1 − s)
∞∑

k=0
(−1)k s

2k+1 ∏k−1
j=0(1 − s2j+1)

1 − s2k+2 + s

1 − s2

=
∞∑

k=0
(−1)k+1 s

2k+1 ∏k
j=0(1 − s2j )

1 − s2k+2 + s

1 − s2 = φ(s).
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The solution of E7 for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0,
is given by

a(2a0 + 2a1 + · · · + 2aℓ) =
ℓ∑

k=0
(−1)k · (−1)aℓ−k . (52)

It is possible to generate this sequence by a procedure given by J. Mortensen:
write n in binary form and read from left to right starting with 0 and
interpreting 1 as "add 1" and 0 as "change sign". For example 23 = (10111)2
gives 0 → 1 → −1 → 0 → 1 → 2, so a(23) = 2. Note that by (52) we obtain
|a(n)| =

∣∣∣∑ℓ
k=0(−1)k · (−1)aℓ−k

∣∣∣ ≤ ∑ℓ
k=0 |(−1)k| · |(−1)aℓ−k | = ∑ℓ

k=0 1 = ℓ+1 =
s2(n), for all n ∈ N.

A variation of E7, E2 and E6 is the sequence E7’ defined by

a′(1) = 1, a′(2n) = −a′(n), a′(2n+ 1) = −a′(n) + 1, n ≥ 1 (53)

It is the special case α = −1 = γ, β = 0, δ = 0, ε = 1, ζ = 1 and η := 0
of (1). It can be defined as the alternating bit sum (adding from right to left
and starting with a positive sign) of the binary expansion of n. For example:
n = 13 = (1101)2, hence a′(13) = 1 − 0 + 1 − 1 = 1. Its generating function
φ1(s) satisfies, by Proposition 1, the functional equation

φ1(s) = −(1 + s)φ1(s2) + s

1 − s2

and it is given by

φ1(s) = 1
1 − s

∞∑
k=0

(−1)k s2k

1 + s2k , (54)

since

−(1 + s)φ1(s2) + s

1 − s2 = − 1 + s

1 − s2

∞∑
k=0

(−1)k s2k+1

1 + s2k+1 + s

1 − s2

= 1
1 − s

( ∞∑
k=0

(−1)k+1 s2k+1

1 + s2k+1 + s

1 + s

)
= φ1(s).

The solution of E7’ for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥
0, ℓ ≥ 0, is given by

a′(2a0 + 2a1 + · · · + 2aℓ) =
ℓ∑

k=0
(−1)ak (55)

This formula can be interpreted as follows: replace in the representation n =
2a0 + 2a1 + · · · + 2aℓ the terms 2ak by (−1)ak , 0 ≤ k ≤ ℓ. As in the case of a(n)
we have by (55) |a′(n)| =

∣∣∣∑ℓ
k=0(−1)ak

∣∣∣ ≤ ∑ℓ
k=0 |(−1)ak | = ∑ℓ

k=0 1 = ℓ + 1 =
s2(n), for all n ∈ N.
The first few values of a(n) (the sequence A004718 in [24]) and a′(n) (the
sequence A065359 in [24]) are
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
a(n) 0 1 -1 2 1 0 -2 3 -1 2 0 1 2 -1 -3 4 1
a′(n) 0 1 -1 0 1 2 0 1 -1 0 -2 -1 0 1 -1 0 1

Table 9: a(n), a′(n), 0 ≤ n ≤ 16

Up to now all sequences were with δ = 0. We shall now consider some example of
(1) with δ ̸= 0. Perhaps the most simple sequence is

• E8 Arithmetic progression
An arithmetic progression is defined recursively for all n ∈ N0 by

a(0) = a0, (⇒ a(1) = a0 + d), a(n+ 1) = a(n) + d (56)

The solution of (56) is given by

a(n) = a0 + nd, n ≥ 0. (57)

This solution satisfies also the recurrence relation

a(1) = a0 + d, (⇒ a(0) = a0)
a(2n) = 2a(n) − a0, a(2n+ 1) = a(n) + a(n+ 1) − a0

(58)

It is the special case α = 2, β = −a0, γ = 1, δ = 1, ε = −a0, ζ = a0 + d and
η = a0 of (1). Conversely, the difference between two consecutive terms of (58)
is a constant, since for d(n) := a(n+ 1) − a(n) we have

d(1) = d, (⇒ d(0) = d), d(2n) = d(n), d(2n+ 1) = d(n) (59)

It is the special case α = 1 = γ, β = 0 = ε, δ = 0, ζ = d and η = d of (1) with
the solution d(n) = d, n ∈ N0 (the constant sequence).
The solution of (59) is given by (57) for a0 = −β and d = β + ζ.

• E9 Stern’s diatomic sequence and two variations on it.
The first 2n + 1, n ∈ N0, terms of this sequence form the rth row of the
so-called Stern’s diatomic array

(
(0, 1)r

)
r∈N0

defined as follows: (0, 1)0(0) :=
0, (0, 1)0(1) := 1 (0 and 1 are called the atoms or the seeds of the array)
and the next rows are obtained by successively intercalating the sum of two
neighbouring numbers. It satisfies the recurrence relation (r, n ∈ N0):

(0, 1)0(0) = 0, (0, 1)0(1) = 1,
(0, 1)r+1(2n) = (0, 1)r(n), (0, 1)r+1(2n+ 1) = (0, 1)r(n) + (0, 1)r(n+ 1)

(60)
This array (originated by G. Eisenstein) has been studied in 1858 by
M. A. Stern [32] and in 1860 (in a different form) by A. Brocot [7]. Later
has been studied, among others, by É. Lucas [22], D. H. Lehmer [20] and
D. A. Lind [21]. Stern’s diatomic sequence can be defined by

s(n) := (0, 1)∞(n), n ∈ N0. (61)
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As a sequence it has been defined for the first time in 1947 by G. de Rham [29,
p. 95] recursively as follows:

s(0) = 0, s(1) = 1, s(2n) = s(n), s(2n+ 1) = s(n) + s(n+ 1), n ≥ 1
(62)

It is the special case α = 1 = γ, β = 0 = ε, δ = 1, ζ = 1 and η = 0 of (1). Its
generating function φ(s) satisfies, by Proposition 1, the functional equation

sφ(s) = (1 + s+ s2)φ(s2)

which shows that φ(s) is Mahlerian. It is given by the infinite product

φ(s) = s ·
∞∏

k=0
(1 + s2k + s2k+1), (63)

since

(1 + s+ s2)φ(s2) = (1 + s+ s2) · s2 ·
∞∏

k=0
(1 + s2k+1 + s2k+2)

= s2 ·
∞∏

k=0
(1 + s2k + s2k+1) = sφ(s).

This sequence has been studied by many mathematicians, see for example the
recent publications by S. Northshield [23] and I. Urbiha [33], because it has
remarkable combinatorial interpretations:

1. s(n+ 1) is the third binary partition function b(3;n), i.e., s(n+ 1) is the
number of representations of n = ∑∞

k=0 ξ · 2i, ξ ∈ {0, 1, 2} (see [28]).
2. in [9, 10] L. Carlitz defined the sequences Θ0(n) as the number of odd

Stirling numbers of second kind
{

n
m

}
with even k, k ≤ n, and Θ1(n) as the

number of odd Stirling numbers of second kind
{

n
m

}
with odd k, k ≤ n,

and showed that Θ1(n+ 1) = Θ0(n) and that the generating function of
Θ0(n) is given by ∏∞

k=0(1 + s2k + s2k+1) and consequently that of Θ1(n)
is given by (63). Moreover, he showed that Θ0(n) satisfies the recurrence
relation Θ0(0) = 1, Θ0(1) = 1, Θ0(2n) = Θ0(n)+Θ0(n−1), Θ0(2n+1) =
Θ0(n), that is Θ0(n) = s(n+ 1) and consequently s(n) = Θ1(n).

3. s(n) is the number of odd binomial coefficients in the nth subdiagonal
(i.e.

(
ℓ
k

)
with ℓ+ k = n, ℓ ≥ k ≥ 0) of Pascal’s triangle.

4. s(µ) = zn(2n − µ), µ = 0, 1, . . . , 2n, where zn(µ) (see [15, p. 305]) is
the number of regular states in the graph of the Tower of Hanoi with 3
pegs and n disks, for which the difference of the distances to two distinct
perfect states is equal to µ (see [18, Formula 2, p. 700]).

The first few values of s(n) (the sequence A002487 in [24]) are given in Table
10.
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s(n) 0 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1

Table 10: s(n), 0 ≤ n ≤ 16

We consider now two variations on Stern’s diatomic sequence. The first vari-
ation E9’ has been introduced in [27] by B. Reznick and it is called Reznick’s
sequence. It is given recursively by

r(1) = 1, r(2n) = r(n), r(2n+ 1) = −r(n) + r(n+ 1), n ≥ 1 (64)

It is the special case α = 1, β = 0 = ε, γ = −1, δ = 1, ζ = 1 and η := 0
of (1). Its generating function φ(s) satisfies, by Proposition 1, the functional
equation

sφ(s) = (1 + s− s2)φ(s2)
which shows that φ(s) is Mahlerian. It is given by the infinite product

φ(s) = s
∞∏

k=0
(1 + s2k − s2k+1), (65)

since

(1 + s− s2)φ(s2) = (1 + s− s2) · s2
∞∏

k=0
(1 + s2k+1 − s2k+2)

= s2
∞∏

k=0
(1 + s2k − s2k+1) = sφ(s).

The second variation E9” called the twisted Stern sequence has been in-
troduced in [6] by R. Bacher and later studied by J. P. Allouche [1] and
M. Coons [11]. It is given recursively by

t(1) = 1, t(2n) = −t(n), t(2n+ 1) = −t(n) − t(n+ 1), n ≥ 1 (66)

It is the special case α = −1 = γ, β = 0 = ε, δ = −1, ζ = 1 and η := 0
of (1). Its generating function φ(s) satisfies, by Proposition 1, the functional
equation

sφ(s) = −(1 + s+ s2)φ(s2) + 2s2

and it is given by

φ(s) = s
∞∏

k=0
(−1)k(1 + s2k + s2k+1) + 2s

∞∑
n=0

(−1)n
( n−1∏

k=0
(1 + s2k + s2k+1)

)
, (67)
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since

−(1 + s+ s2)φ(s2) + 2s2 = (1 + s+ s2)
s2

∞∏
k=0

(−1)k+1(1 + s2k+1 + s2k+2)+

+ 2s2
∞∑

n=0
(−1)n+1

( n−1∏
k=0

(1 + s2k+1 + s2k+2)
+ 2s2

= s2
∞∏

k=0
(−1)k(1 + s2k + s2k+1)+

+ 2s2

1 +
∞∑

n=0
(−1)n+1

( n∏
k=0

(1 + s2k + s2k+1)
)

and this is exactly sφ(s), as the expression between the parentheses in the last
term of the above equation is equal to ∑∞

n=0(−1)n
(∏n−1

k=0(1 + s2k + s2k+1)
)
.

The first few values of r(n) (the sequence A005590 in [24]) and t(n) (the
sequence A213369 in [24]) are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
r(n) 0 1 1 0 1 -1 0 1 1 -2 -1 1 0 1 1 0 1
t(n) 0 1 -1 0 1 1 0 -1 -1 -2 -1 -1 0 1 1 2 1

Table 11: r(n), t(n), 0 ≤ n ≤ 16

• E10 Tennis Tournament
There are n participants to a (knock-out) tennis tournament. In the first
round, all the losers are eliminated. The winners play in pairs in the second
round, the losers are eliminated again, and so on. How many rounds T (n) do
we need to determine the winner?
This sequence is given recursively for all n ∈ N by

T (1) = 0, T (2n) = T (n) + 1, T (2n+ 1) = T (n+ 1) + 1 (68)

It is the special case α = 1, β = 1 = ε, γ = 0, δ = 1, ζ = 0 and η := 0 of (1).
Equivalently, E10 can be written as

T (1) = 0, T (n) = T
(
⌈n/2⌉

)
+ 1, n ≥ 2 (69)

Its generating function φ(s) satisfies, by Proposition 1, the functional equation

sφ(s) = (1 + s)φ(s2) + s3

1 − s

and it is given by
φ(s) = s

1 − s

∞∑
k=0

s2k

, (70)
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since

(1 + s)φ(s2) + s3

1 − s
= (1 + s) · s2

1 − s2 ·
∞∑

k=0
s2k+1 + s3

1 − s

= s2

1 − s

( ∞∑
k=0

s2k+1 + s
)

= sφ(s)

The solution of E10 for n = 2a0 +2a1 + · · ·+2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥
0, is given by

T (2a0) = a0, T (2a0 + 2a1 + · · · + 2aℓ) = a0 + 1, ℓ ≥ 1, (71)

and since a0 = ⌊log2 n⌋ we can also write

T (n) = ⌈log2 n⌉, n ≥ 1. (72)

The first few values of T (n) (the sequence A029837 in [24]) are

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T (n) 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4

Table 12: T (n), 1 ≤ n ≤ 16

3 Solution of the special case δ = 0
We shall now study the special case δ = 0 of (1), that is

f(1) = ζ, f(2n) = αf(n) + β, f(2n+ 1) = γf(n) + ε, n ≥ 1 (73)

with α, β, γ, ε, ζ ∈ Z, since the general case δ ̸= 0 can be reduced to (73).
Theorem 1. The solution of (73) for n = (bm . . . b0)2 is given by

f(n) = ζ
m−1∏
k=0

(
γbk +α(1−bk)

)
+

m−1∑
k=0

( k−1∏
j=0

(
γbj +α(1−bj)

))
·
(
εbk +β(1−bk)

)
(74)

Proof. Let n = (bm . . . b0)2. Then by (73):
if b0 = 0 we have f

(
(bm . . . b0)2

)
= αf

(
(bm . . . b1)2

)
+ β and

if b0 = 1 we have f
(
(bm . . . b0)2

)
= γf

(
(bm . . . b1)2

)
+ ε.

Hence,

f
(
(bm . . . b0)2

)
= b0 ·

(
γf
(
(bm . . . b1)2

)
+ ε

)
+ (1 − b0) ·

(
αf
(
(bm . . . b1)2

)
+ β

)
=
(
γb0 + α(1 − b0)

)
· f
(
(bm . . . b1)2

)
+
(
εb0 + β(1 − b0)

)
.
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Similarly, f
(
(bm . . . b1)2

)
=
(
γb1 + α(1 − b1)

)
· f
(
(bm . . . b2)2

)
+
(
εb1 + β(1 − b1)

)
.

Substituting this expression into the above equation gives
f
(
(bm . . . b0)2

)
=
(
γb0 + α(1 − b0)

)
·
(
γb1 + α(1 − b1)

)
· f
(
(bm . . . b2)2

)
+

+
(
γb0 + α(1 − b0)

)
·
(
εb1 + β(1 − b1)

)
+
(
εb0 + β(1 − b0)

)
By iteration and noting that f

(
(bm)2

)
= f(1) = ζ one obtains formula (74) and

this proves the theorem.

The next corollary gives the exact values of f(n) for some special numbers.
Corollary 1. We have

f(2m) = f
(
(10 . . . 0)2

)
= ζαm + β

m−1∑
k=0

αk, m ≥ 0 (75)

f(2m + 1) = f
(
(10 . . . 01)2

)
= ζγαm−1 + βγ

m−2∑
k=0

αk + ε, m ≥ 1 (76)

f(2m+1 − 1) = f
(
(11 . . . 1)2

)
= ζγm + ε

m−1∑
k=0

γk, m ≥ 0 (77)

In the next theorem we present an alternative expression of the solution of (73).
Theorem 2. Let n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0, a strictly
decreasing sequence of positive integers. Then the solution of (73) for α ̸= 0 is given
by

f(n) =
(
γ

α

)ℓ

·
(
ζαa0 +β

a0−1∑
k=0

αk
)

+
ℓ−1∑
k=0

(
γ

α

)k

·
(

(ε−β)αaℓ−k +β
(

1− γ

α

) aℓ−k∑
j=0

αj

)
(78)

and for α = 0 by

f(n) = β + γℓ(ζ − β)
ℓ∏

k=0
[aℓ−k = k] + (βγ + ε− β)

ℓ−1∑
k=0

γk

(
k∏

j=0
[aℓ−j = j]

)
, (79)

where [A] is Iverson’s convention meaning 1 if the assertion A is true and 0 if A is
false.

Proof. 1) Let α ̸= 0 and Ai := f(2a0 + · · ·+2ai), i ∈ [ℓ+1]0, a0 > a1 > · · · > aℓ ≥ 0,
a strictly decreasing sequence of positive integers. Then f(2a0+1) = α · f(2a0) + β
with the initial value f(20) = f(1) = ζ. This is an arithmetic progression with the
solution

f(2a0) = f(1) · αa0 + β
a0−1∑
k=0

αk = ζαa0 + β
a0−1∑
k=0

αk.

Now let i ≥ 0, then by repeated use of (1)

Ai+1 = f(2a0 + · · · + 2ai+1) = f
(
2ai+1 · (2a0−ai+1 + · · · + 2ai−ai+1 + 1)

)
= αai+1 · f(2a0−ai+1 + · · · + 2ai−ai+1 + 1) + β

ai+1−1∑
k=0

αk

= αai+1 ·
(
γ · f(2a0−ai+1−1 + · · · + 2ai−ai+1−1) + ε

)
+ β

ai+1−1∑
k=0

αk,
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that is

Ai+1 = γαai+1 · f(2a0−ai+1−1 + · · · + 2ai−ai+1−1) + εαai+1 + β
ai+1−1∑

k=0
αk. (80)

We have

f(2a0 + · · · + 2ai) = f
(
2ai+1+1 · (2a0−ai+1−1 + · · · + 2ai−ai+1−1)

)
= αai+1+1 · f(2a0−ai+1−1 + · · · + 2ai−ai+1−1) + β

ai+1∑
k=0

αk

or solving for f(2a0−ai+1−1 + · · · + 2ai−ai+1−1) and since α ̸= 0 it follows
f(2a0−ai+1−1 + · · · + 2ai−ai+1−1) =

(
f(2a0 + · · · + 2ai) − β

∑ai+1
k=0 α

k
)
/αai+1+1.

Inserting this formula into (80) yields

Ai+1 = γ

α
Ai − βγ

α

ai+1∑
k=0

αk + εαai+1 + β
ai+1∑
k=0

αk − βαai+1 = γ

α
Ai − g(i+ 1),

where g(i+ 1) := β
(
1 − γ

α

)∑ai+1
k=0 α

k + (ε− β)αai+1 .

The solution of this arithmetic progression is given by

Aℓ = A0 ·
(
γ

α

)ℓ

+
ℓ−1∑
k=0

(
γ

α

)k

· g(ℓ− k)

=
(
γ

α

)ℓ

·
(
ζαa0 + β

a0−1∑
k=0

αk
)

+
ℓ−1∑
k=0

(
γ

α

)k

·
(

(ε− β)αaℓ−k + β
(

1 − γ

α

) aℓ−k∑
j=0

αj
)

and this is formula (78).
2) Let α = 0, then we shall prove (79) by induction on ℓ ∈ N0.
Base step: For ℓ = 0 we have by (73) : if a0 = 0 : f(20) = ζ and if a0 ̸= 0 : f(2a0) =
β or f(2a0) = (a0 = 0) · ζ + (1 − (a0 = 0)) · β = β + (ζ − β) · (a0 = 0), and this is
(79) for ℓ = 0.
Induction step: By (73) we have: f(2a0 + · · · + 2aℓ+1) = γf(2a0−1 + · · · + 2aℓ−1) + ε,
if al+1 = 0 and f(2a0 + · · · + 2aℓ+1) = β, if al+1 ̸= 0 or

f(2a0 + · · · + 2aℓ) = (aℓ+1 = 0) ·
(
γf(2a0−1 + · · · + 2aℓ−1) + ε

)
+ (1 − (aℓ+1 = 0)) · β

= β +
(
γf(2a0−1 + · · · + 2aℓ−1) + ε

)
(aℓ+1 = 0)

(81)

By induction assumption (with a0 − 1, . . . , aℓ − 1 instead of a0, . . . , aℓ) we have

f(2a0−1 + · · · + 2aℓ−1) = β + γℓ(ζ − β)∏ℓ
k=0[aℓ−k = k + 1] + (βγ + ε− β)∑ℓ−1

k=0 γ
k

(∏k
j=0[aℓ−j − 1 = j]

)
.
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Hence, inserting this equation into (81) we obtain

f(2a0 + · · · + 2aℓ+1) = β +
γ ·

(
β + γℓ(ζ − β)

ℓ∏
k=0

[aℓ−k = k]+

+ (βγ + ε− β)
ℓ−1∑
k=0

γk
( k∏

j=0
[aℓ−j = j]

))
+ ε− β

 · [aℓ+1 = 0]

= β + γℓ+1(ζ − β) · [aℓ+1 = 0] ·
ℓ∏

k=0
[aℓ−k = k + 1]+

+ (βγ + ε− β) · [aℓ+1 = 0] ·
(

1 +
ℓ−1∑
k=0

γk+1
( k∏

j=0
[aℓ−j = j + 1]

))

and this is (79) for ℓ+ 1 instead of ℓ, since

[al+1 = 0]
ℓ∏

k=0
[aℓ−k = k + 1] = [al+1 = 0] · [al = 1] · [al−1 = 2] · · · [a0 = ℓ+ 1]

=
ℓ+1∏
k=0

[aℓ+1−k = k]

and

[al+1 = 0] ·
(

1 +
ℓ−1∑
k=0

γk+1
( k∏

j=0
[aℓ−j = j + 1]

))
=

= [al+1 = 0]
(
1 + γ[al = 1] + γ2[al = 1][al−1 = 2] + · · · + γℓ[al = 1][al−1 = 2] · · · [a1 = ℓ]

)
= γ0[al+1 = 0] + γ[al+1 = 0][al = 1] + γ2[al+1 = 0][al = 1][al−1 = 2] + · · · +

+ γℓ[al+1 = 0][al = 1][al−1 = 2] · · · [a1 = ℓ] =
ℓ∑

k=0
γk
( k∏

j=0
[aℓ+1−j = j]

)
.

By induction (79) is true and this proves Theorem 2.

All sequences E1 ..... E8 considered in Chapter 2 are special cases of (73). We shall
now mention some other interesting special cases of (73).

1. Choosing α = 0, β = 1 = ε, γ = 1, ζ = 1 we obtain the recurrence relation

dc(1) = 1, dc(2n) = 1, dc(2n+ 1) = dc(n) + 1, n ≥ 1 (82)

with the solution
dc

(
(bm . . . b0)2

)
=

m∑
k=0

( k−1∏
j=0

bj

)
(83)

Note that by (19) and (83) we have dc(n) = d2(c(n)), n ≥ 1, where c(n) is the
one’s complement of n = (bm . . . b0)2.
The first few values of dc(n) (the sequence A091090 in [24]) are
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
dc(n) 1 1 2 1 2 1 3 1 2 1 3 1 2 1 4 1

Table 13: dc(n), 1 ≤ n ≤ 16

2. Choosing α = 1, β = 1 = ε, γ = 2, ζ = 1 we obtain the recurrence relation

f(1) = 1, f(2n) = f(n) + 1, f(2n+ 1) = 2f(n) + 1, n ≥ 1 (84)

with the solution given by (74)

f
(
(bm . . . b0)2

)
=

m∑
k=0

( k−1∏
j=0

(bj + 1)
)

=
m∑

k=0
2
∑k−1

k=0 bj , (85)

since bj + 1 = 2bj , bj ∈ {0, 1}.
Alternatively, by (78)

f
(
2a0 + 2a1 + · · · + 2aℓ) = 2ℓa0 + 1 −

ℓ−1∑
k=0

2kaℓ−k. (86)

The first few values of f(n) (the sequence A135533 in [24]) are

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f(n) 1 2 3 3 5 4 7 4 7 6 11 5 11 8 15 5

Table 14: f(n), 1 ≤ n ≤ 16

3. The special case α = γ leads by (74) to the solution (n = (bm . . . b0)2)

f(n) = ζαm+
m−1∑
k=0

αk
(
εbk +β(1−bk)

)
= ζαm+(ε−β)

m−1∑
k=0

αkbk +β
m−1∑
k=0

αk (87)

This formula shows that the solution of (73) for α = γ and β = ε depends
only on m = ⌊log2 n⌋. Perhaps, one of the most important of these cases is for
α = 1 = γ, β = 1 = ε and ζ = 1, that is the recurrence relation

B(1) = 1, B(2n) = B(n) + 1, B(2n+ 1) = B(n) + 1, n ≥ 1 (88)

or, equivalently,

B(1) = 1, B(n) = B
(
⌊n/2⌋

)
+ 1, n ≥ 2 (89)

with the solution
B(n) = 1 + ⌊log2 n⌋. (90)

This sequence is, for n ≥ 1, equal to the number of bits in the binary represen-
tation of n, that is B(n) = s2(n)+ e0(n), n ∈ N0, (see Examples E2 and E2’).
It gives also the number of comparisons in the worst case with binary search
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in an (ordered) list of size n (see [30, pp. 64–65]). Its generating function φ(s)
satisfies, by Proposition 1, the functional equation

φ(s) = (1 + s)φ(s2) + s

1 − s

and it is given by
φ(s) = 1

1 − s
·

∞∑
k=0

s2k

, (91)

since

(1 + s)φ(s2) + s

1 − s
= 1 + s

1 − s2 ·
∞∑

k=0
s2k+1 + s

1 − s

= 1
1 − s

( ∞∑
k=0

s2k+1 + s
)

= φ(s).

The generating function (91) is the Cauchy product of two power series, namely

1
1 − s

·
∞∑

k=0
s2k =

( ∞∑
k=0

sn
)

·
( ∞∑

k=1
ρ(n)sn

)
=

∞∑
n=0

( n∑
k=1

ρ(k)
)
sn,

that is B(n) = ∑n
k=1 ρ(k) is the sequence of the partial sums of ρ(n), where

ρ(n) is the characteristic function of the powers of 2 (cf. Example E3 at p. 8).
Note also that B(n) = T (n+ 1), n ≥ 0, where T (n) is the sequence E10.
The first few values of ρ(n) (the sequence A209229 in [24]) and B(n) (the
sequence A029837 in [24]) are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ρ(n) - 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
B(n) 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5

Table 15: ρ(n), B(n), 0 ≤ n ≤ 16

4 Solution of the general case δ ̸= 0

Let f⃗(n) :=
(

f(n)
f(n+ 1)

)
, then f⃗(1) =

(
f(1)
f(2)

)
=
(

ζ
αζ + β

)
, f⃗(2n) =

(
f(2n)

f(2n+ 1)

)
=(

α 0
γ δ

)
f⃗(n) +

(
β
ε

)
and f⃗(2n+ 1) =

(
f(2n+ 1)
f(2n+ 2)

)
=
(
γ δ
0 α

)
f⃗(n) +

(
ε
β

)
.

In this way Eq.(1) is equivalent to

f⃗(1) =
(

ζ
αζ + β

)
, f⃗(2n) = A · f⃗(n) + b⃗, f⃗(2n+ 1) = B · f⃗(n) + Cb⃗ (92)

where A :=
(
α 0
γ δ

)
, B :=

(
γ δ
0 α

)
, C :=

(
0 1
1 0

)
, b⃗ :=

(
β
ε

)
and α, β, γ, δ, ε, ζ ∈ Z.

Before giving the general solution of (92) we shall determine the values of this
sequence for the numbers n = 2m, 2m + 1, 2m+1 − 1.
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Lemma 1. Let m ≥ 0, then

f(2m) = ζαm + β
m−1∑
k=0

αk (93)

f(2m + 1) = δm(αζ + β) +
m−1∑
k=0

δk
(
γζαm−1−k + βγ

m−2−k∑
j=0

αj + ε
)

(94)

f(2m+1 − 1) = ζγm +
m−1∑
k=0

γk
(
δζαm−k + βδ

m−1−k∑
j=0

αj + ε
)

(95)

Proof. 1) Let A(m) := f(2m), A(0) = f(1) = ζ, then by (1):
A(m) = αf(2m−1) + β = αA(m − 1) + β. This is an arithmetic progression with
constant coefficients. Its solution is given by A(m) = A(0) · αm + ∑m−1

k=0 α
kβ and

this proves (93).

2) Let B(m) := f(2m + 1), B(0) = f(2) = αζ + β, then by (1):
B(m) = γf(2m−1) + δf(2m−1 + 1) + ε = γA(m− 1) + δB(m− 1) + ε.
Inserting (93) into this equation we obtain the arithmetic progression
B(m) = δB(m − 1) + g(m − 1), where g(m − 1) := γ ·

(
ζαm−1 + β

∑m−2
k=0 α

k
)

+ ε

with the solution B(m) = B(0) · δm +∑m−1
k=0 δ

kg(m− 1 − k) and this proves (94).

3) Let C(m) := f(2m+1 − 1) = f(2m + · · · + 21 + 20), C(0) = f(1) = ζ, then by (1):
C(m) = γf(2m−1 + · · ·+20)+δf(2m−1 + · · ·+20 +1)+ε = γC(m−1)+δf(2m)+ε =
γC(m− 1) + δA(m) + ε.
Inserting (93) into this equation we obtain the arithmetic progression
C(m) = γC(m − 1) + h(m), where h(m) := δ ·

(
ζαm + β

∑m−1
j=0 αj

)
+ ε with the

solution C(m) = C(0) · γm +∑m−1
k=0 γ

kg(m− k) and this proves (95).

We shall now determine the general solution of (92).
Theorem 3. Let n = (bm . . . b0)2, then the solution of (92) is given by

f⃗
(
(bm . . . b0)2

)
= M(b0) ·M(b1) · · ·M(bm−1) ·

(
ζ

αζ + β

)
+

+
(
M(b0) · · ·M(bm−2) · Cbm−1 + · · · +M(b0) · Cb1 + Cb0

)
·
(
β
ε

)
,

(96)

where M(bk) := A1−bk ·Bbk = (1 − bk)A+ bkB, k ∈ [m]0, i.e., M(0) = A, M(1) = B

and C0 :=
(

1 0
0 1

)
is the 2 × 2 unit matrix E2.

Proof. Let n = (bm . . . b0)2. Then by (92):
if b0 = 0 we have f⃗

(
(bm . . . b0)2

)
= A · f⃗

(
(bm . . . b1)2

)
+ b⃗ and

if b0 = 1 we have f⃗
(
(bm . . . b0)2

)
= B · f⃗

(
(bm . . . b1)2

)
+ C · b⃗.

Hence,
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f⃗
(
(bm . . . b0)2

)
= (1 − b0) ·

(
A · f⃗

(
(bm . . . b1)2

)
+ b⃗

)
+ b0 ·

(
B · f⃗

(
(bm . . . b1)2

)
+ C · b⃗

)
=
(
(1 − b0)A+ b0B

)
· f⃗
(
(bm . . . b1)2

)
+
(
(1 − b0)⃗b+ b0 · Cb⃗

)
= M(b0) · f⃗

(
(bm . . . b1)2

)
+ Cb0 · b⃗.

Similarly, f⃗
(
(bm . . . b1)2

)
= M(b1) · f⃗

(
(bm . . . b2)2

)
+ Cb1 · b⃗.

Substituting this expression into the above equation gives

f⃗
(
(bm . . . b0)2

)
= M(b0) ·M(b1) · f⃗

(
(bm . . . b2)2

)
+
(
M(b0) · Cb1 + Cb0

)
· b⃗

By iteration and noting that f⃗
(
(bm)2

)
= f⃗(1) =

(
ζ

αζ + β

)
one obtains formula (96)

and this proves the theorem.
We now apply formula (96) to the sequences E9, E9’and E9”.

1. For E9 we have α = 1 = γ, β = 0 = ε, δ = 1, ζ = 1. Hence A =
(

1 0
1 1

)
, B =(

1 1
0 1

)
, b⃗ :=

(
0
0

)
, s⃗(1) =

(
1
1

)
and M(bk) =

(
1 bk

1 − bk 1

)
, k ∈ [m]0. The

solution is given by

s⃗
(
(bm . . . b0)2

)
=
(

1 b0
1 − b0 1

)
·
(

1 b1
1 − b1 1

)
· · ·

(
1 bm−1

1 − bm−1 1

)
·
(

1
1

)
(97)

For example, if n = 13 = (1101)2, then

s⃗(13) =
(
s(13)
s(14)

)
=
(

1 1
0 1

)
·
(

1 0
1 1

)
·
(

1 1
0 1

)
·
(

1
1

)
=
(

2 3
1 2

)
·
(

1
1

)
=
(

5
3

)

that is s(13) = 5 and s(14) = 3.
Remark 3. We have B = CAC and since C2 = E2 it follows BC = CA =(

1 1
1 0

)
=
(
F2 F1
F1 F0

)
=: Q, where Q is the Q-matrix that generates the Fi-

bonacci numbers Fn, since Qn =
(
Fn+1 Fn

Fn Fn−1

)
.

2. For E9’ we have α = 1, β = 0 = ε, γ = −1, δ = 1, ζ = 1. Hence A =(
1 0

−1 1

)
, B =

(
−1 1
0 1

)
, b⃗ :=

(
0
0

)
, r⃗(1) =

(
1
1

)
and M(bk) =

(
1 − 2bk bk

bk − 1 1

)
,

k ∈ [m]0. The solution is given by

r⃗
(
(bm . . . b0)2

)
=
(

1 − 2b0 b0
b0 − 1 1

)
·
(

1 − 2b1 b1
b1 − 1 1

)
· · ·

(
1 − 2bm−1 bm−1
bm−1 − 1 1

)
·
(

1
1

)
(98)
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For example, if n = 13 = (1101)2, then

r⃗(13) =
(
r(13)
r(14)

)
=
(

−1 1
0 1

)
·
(

1 0
−1 1

)
·
(

−1 1
0 1

)
·
(

1
1

)

=
(

2 −1
1 0

)
·
(

1
1

)

=
(

1
1

)

that is r(13) = 1 and r(14) = 1.

3. For E9” we have α = −1 = γ, β = 0 = ε, δ = −1, ζ = 1. Hence

A =
(

−1 0
−1 −1

)
, B =

(
−1 −1
0 −1

)
, b⃗ :=

(
0
0

)
, t⃗(1) =

(
1

−1

)
and M(bk) =(

−1 −bk

bk − 1 −1

)
, k ∈ [m]0. The solution is given by

t⃗
(
(bm . . . b0)2

)
=
(

−1 −b0
b0 − 1 −1

)
·
(

−1 −b1
b1 − 1 −1

)
· · ·

(
−1 −bm−1

bm−1 − 1 −1

)
·
(

1
−1

)
(99)

For example, if n = 13 = (1101)2, then

t⃗(13) =
(
t(13)
t(14)

)
=
(

−1 −1
0 −1

)
·
(

−1 0
−1 −1

)
·
(

−1 −1
0 −1

)
·
(

1
−1

)

=
(

−2 −3
−1 −2

)
·
(

1
−1

)
=
(

1
1

)

that is t(13) = 1 and t(14) = 1.

For β = 0 = ε and α ̸= 0 the sequence (92) seems to satisfy a second-order linear
recurrence relation with variable coefficients. We conjecture the following statement.
Conjecture 1. Let β = 0 = ε, α ̸= 0 in (92) and n = 2a0 + 2a1 + · · · + 2aℓ , a0 >
a1 > · · · > aℓ ≥ 0, ℓ ≥ 0, be a strictly decreasing sequence of positive integers. Then

f(2a0) = ζ · αa0 , f(2a0 + 2a1) = ζ · αa0

(
α
(
δ

α

)a0−a1

+ γ

α

a0−a1−1∑
k=0

(
δ

α

)k
)

f(2a0 + · · · + 2aℓ) = A · f(2a0 + · · · + 2aℓ−1) +B · f(2a0 + · · · + 2aℓ−2), ℓ ≥ 2
(100)

where A :=
(

δ
α

)aℓ−1−aℓ + γ
α

·∑aℓ−1−aℓ−1
k=0

(
δ
α

)k
and B := (α− δ − γ

α
) ·
(

δ
α

)aℓ−2−aℓ−1
.

Indeed, for the cases discussed in Section 2, namely E9 (Stern’s diatomic sequence
s(n)), E9’ (Reznick sequence r(n)), and E9” (twisted Stern sequence t(n)) we can
prove three special cases of this Conjecture.
Theorem 4. Let β = 0 = ε in (92) and n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · >
aℓ ≥ 0, ℓ ≥ 0, be a strictly decreasing sequence of positive integers. Then
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1. For α = 1, γ = 1, δ = 1 we have for ℓ ≥ 2

s(2a0) = 1, s(2a0 + 2a1) = a0 − a1 + 1,
s(2a0 + · · · + 2aℓ) = (aℓ−1 − aℓ + 1) · s(2a0 + · · · + 2aℓ−1) − s(2a0 + · · · + 2aℓ−2)

(101)

2. For α = 1, γ = −1, δ = 1 we have for ℓ ≥ 2

r(2a0) = 1, r(2a0 + 2a1) = −a0 + a1 + 1,
r(2a0 + · · · + 2aℓ) = (−aℓ−1 + aℓ + 1) · r(2a0 + · · · + 2aℓ−1) + r(2a0 + · · · + 2aℓ−2)

(102)

3. For α = −1, γ = −1, δ = −1 we have for ℓ ≥ 2

t(2a0) = (−1)a0 , t(2a0 + 2a1) = (−1)a0(a0 − a1 − 1),
t(2a0 + · · · + 2aℓ) = (aℓ−1 − aℓ + 1) · t(2a0 + · · · + 2aℓ−1) − t(2a0 + · · · + 2aℓ−2)

(103)

Proof. By induction on ℓ ∈ N0.
1) Case ℓ = 0: the first initial value of (101) follows from (93) for m = a0 and ζ = 1.
2) Case ℓ = 1: Since s(2a0 + 2a1) = s

(
2a1 · (2a0−a1 + 1)

)
= s(2a0−a1 + 1), we obtain

from (94) for m = a0 − a1 and ζ = 1 the second initial value of (101).
Let now ℓ ≥ 1 and Aℓ+1 := s(2a0 + · · · + 2aℓ+1), then by definition
Aℓ+1 = s

(
2aℓ+1 · (2a0−aℓ+1 + · · · + 2aℓ−aℓ+1 + 1)

)
= s(2a0−aℓ+1 + · · · + 2aℓ−aℓ+1 + 1).

Let bi := ai − aℓ+1, i ∈ [ℓ + 2]0, then b0 > b1 > · · · > bℓ > bℓ+1 = 0. Hence, by
definition

Aℓ+1 = s(2b0 + · · · + 2bℓ + 1) = s(2 · (2b0−1 + · · · + 2bℓ−1) + 1)
= s(2b0−1 + · · · + 2bℓ−1) + s(2b0−1 + · · · + 2bℓ−1 + 1)
= s(2b0 + · · · + 2bℓ) + s(2b0−1 + · · · + 2bℓ−1 + 1).

Repeating this procedure bℓ times we obtain by induction

Aℓ+1 = bℓ · s(2b0 + · · · + 2bℓ) + s(2b0−bℓ + · · · + 2bℓ−1−bℓ + 2bℓ−bℓ + 1)
= bℓ · s(2b0 + · · · + 2bℓ) + s(2b0−bℓ−1 + · · · + 2bℓ−1−bℓ−1 + 1)
= (aℓ − aℓ−1) · s(2a0−aℓ+1 + · · · + 2aℓ−aℓ+1) + s(2a0−aℓ−1 + · · · + 2aℓ−1−aℓ−1 + 1)

and this is by definition and since bi −bℓ −1 = ai −aℓ+1 −(aℓ −aℓ+1)−1 = ai −aℓ −1
equal to

Aℓ+1 = (aℓ − aℓ−1) · Aℓ + s(2a0−aℓ−1 + · · · + 2aℓ−1−aℓ−1 + 1) (104)

We distinguish now two cases: 1.) aℓ−1 − aℓ − 1 > 0 and 2.) aℓ−1 − aℓ − 1 = 0.
First case: aℓ−1 − aℓ − 1 > 0.
Applying by assumption the assertion to the sequence of ℓ+ 1 integers a0 −aℓ − 1 >
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a1−aℓ−1 > . . . > aℓ−1−aℓ−1 > 0 and by definition we obtain for ci := ai−aℓ−1, i ∈
[ℓ]0, cℓ := 0,
s(2c0 + · · · + 2cℓ−1 + 1) = (cℓ−1 − cℓ + 1) · s(2c0 + · · · + 2cℓ−1) − s(2c0 + · · · + 2cℓ−2)

= (aℓ−1 − aℓ) · s(2a0 + · · · + 2aℓ−1) − s(2a0 + · · · + 2aℓ−2)
= (aℓ−1 − aℓ) · Aℓ−1 − Aℓ−2,

since s(2c0 +· · ·+2cℓ−1) = s(2a0−aℓ−1+· · ·+2aℓ−1−aℓ−1) = s(2a0 +· · ·+2aℓ−1). Inserting
the above expression into (104) we obtain

Aℓ+1 = (aℓ − aℓ−1) · Aℓ + (aℓ−1 − aℓ) · Aℓ−1 − Aℓ−2

= (aℓ − aℓ−1 + 1 − 1) · Aℓ + (aℓ−1 − aℓ + 1 − 1) · Aℓ−1 − Aℓ−2

= (aℓ − aℓ−1 + 1) · Aℓ − Aℓ + (aℓ−1 − aℓ + 1) · Aℓ−1 − Aℓ−1 − Aℓ−2

= (aℓ − aℓ−1 + 1) · Aℓ − Aℓ−1

and this is the assertion for ℓ + 1 instead of ℓ, since by assumption −Aℓ + (aℓ−1 −
aℓ + 1) · Aℓ−1 − Aℓ−2 = 0.
Second case: aℓ−1 − aℓ − 1 = 0.
In this case the sequence ci := ai − aℓ − 1, i ∈ [ℓ]0, cℓ := 0 is no longer strictly
decreasing, since cℓ−1 − cℓ = aℓ−1 − aℓ − 1 = 0. We define n := 2c0 + · · · + 2cℓ−1

and using the rule s(n+ 1) = s(2n+ 1) − s(n) we obtain s(2c0 + · · · + 2cℓ−1 + 1) =
s(2c0+1 + · · · + 2cℓ−1+1 + 1) − s(2c0 + · · · + 2cℓ−1) or
s(2c0 + · · · + 2cℓ−1 + 1) = s(2a0−aℓ + · · · + 2aℓ−1−aℓ + 1) − s(2a0−aℓ−1 + · · · + 2aℓ−1−aℓ−1)

= s(2a0 + · · · + 2aℓ) − s(2a0 + · · · + 2aℓ−1)
= Aℓ − Aℓ−1.

Inserting this expression into (104) we get
Aℓ+1 = (aℓ − aℓ−1) · s(2a0 + · · · + 2aℓ) + s(2a0 + · · · + 2aℓ) − s(2a0 + · · · + 2aℓ−1)

= (aℓ − aℓ−1 + 1) · Aℓ − Aℓ−1

and this is again the assertion for ℓ+ 1 instead of ℓ. This proves (101).
The proofs of (102) and (103) are similar and will be omitted.
By means of Theorem 4 (and using the Euler-Wallis relations) the solution of Stern’s
diatomic sequence can be given by the numerator of the finite continued fraction

Aℓ

Bℓ

= a0 − a1 + 1 − 1
a1 − a2 + 1 − · · · − 1

aℓ−1 − aℓ + 1 , for ℓ > 0

and s(2a0) = 1 for ℓ = 0, that is s(n) = Aℓ for ℓ > 0 and s(2a0) = 1 for ℓ = 0.

We recall that b0 + a1
b1

+ a2
b2

+ · · · + an−1
bn−1

+ an

bn
is the notation of Pringsheim

of a finite generalized continued fraction

b0 +
a1

b1 +
a2

b2 + .. . an−1

bn−1 +
an

bn
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If some or all ak, k ∈ [n], are provided with minus signs, then these are also written in

front of the ak instead of the plus signs; thus instead of b0+ −a1
b1

+ a2
b2

+· · ·+ −an

bn

we will write b0 − a1
b1

+ a2
b2

+ · · · − an

bn
.

If ak = 1 and bk ∈ N for all k ∈ [n], then the continued fraction is said to be simple.
Remark 4. Other equivalent solutions of Stern’s diatomic sequence have been given
in [29, pp. 95–96], in [13, Exercise 6.50 at p. 300 and its solution at p. 531] and
in [20] by different representations of n.
Similarly, the solution of Reznick’s sequence can be given by the numerator of the
finite simple continued fraction

Aℓ

Bℓ

= −a0 + a1 + 1 + 1
−a1 + a2 + 1 + · · · + 1

−aℓ−1 + aℓ + 1 , for ℓ > 0

and r(2a0) = 1 for ℓ = 0, that is r(n) = Aℓ for ℓ > 0 and r(2a0) = 1 for ℓ = 0.

Finally, the solution of the twisted Stern sequence can be given by the numerator
of the finite continued fraction

Aℓ

Bℓ

= (−1)a0 ·
(
a0 − a1 − 1 − 1

a1 − a2 + 1 − · · · − 1
aℓ−1 − aℓ + 1

)
, for ℓ > 0

and t(2a0) = (−1)a0 for ℓ = 0, that is t(n) = Aℓ for ℓ > 0 and t(2a0) = (−1)a0 for
ℓ = 0.

5 Generalization
An obvious generalization of (1) is given by

f(1) = ζ, f(2n) = αf(n) + g(n), f(2n+ 1) = γf(n) + δf(n+ 1) +h(n), n ≥ 2,
(105)

with α, γ, δ, ζ ∈ Z and g, h : N −→ Z two arbitrary integer functions.

5.1 The case δ = 0
At first we shall give the general solution of (105) for the case δ = 0.
Theorem 5. The solution of (105) for δ = 0 and for n = (bm . . . b0)2 is given by

f(n) = ζ ·
m−1∏
k=0

(
γbk + α(1 − bk)

)
+

+
m−1∑
k=0

( k−1∏
j=0

(
γbj + α(1 − bj)

))
·
(
bk · h

(
(bm . . . bk+1)2

)
+ (1 − bk) · g

(
(bm . . . bk+1)2

))
(106)
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Proof. Let n = (bm . . . b0)2. Then by (105):
if b0 = 0 we have f

(
(bm . . . b0)2

)
= αf

(
(bm . . . b1)2

)
+ g

(
(bm . . . b1)2

)
and

if b0 = 1 we have f
(
(bm . . . b0)2

)
= γf

(
(bm . . . b1)2

)
+ h

(
(bm . . . b1)2

)
.

Hence,

f
(
(bm . . . b0)2

)
= b0 ·

(
γf
(
(bm . . . b1)2

)
+ h

(
(bm . . . b1)2

))
+

+ (1 − b0) ·
(
αf
(
(bm . . . b1)2

)
+ g

(
(bm . . . b1)2

))
=
(
γb0 + α(1 − b0)

)
· f
(
(bm . . . b1)2

)
+
(
b0 · h

(
(bm . . . b1)2

)
+

+ (1 − b0) · g
(
(bm . . . b1)2

))
.

Similarly, f
(
(bm . . . b1)2

)
=
(
γb1 +α(1− b1)

)
·f
(
(bm . . . b2)2

)
+
(
b1 ·h

(
(bm . . . b2)2

)
+

(1 − b1) · g
(
(bm . . . b2)2

))
.

Substituting this expression into the above equation gives

f
(
(bm . . . b0)2

)
=
(
γb0 + α(1 − b0)

)
·
(
γb1 + α(1 − b1)

)
· f
(
(bm . . . b2)2

)
+

+
(
γb0 + α(1 − b0)

)
·
(
b1 · h

(
(bm . . . b2)2

)
+ (1 − b1) · g

(
(bm . . . b2)2

))
+

+
(
b0 · h

(
(bm . . . b1)2

)
+ (1 − b0) · g

(
(bm . . . b1)2

))
By iteration and noting that f(bm) = f(1) = ζ one obtains formula (106) and this
proves the theorem.

An interesting special case of (105) is for γ = α and g(n) := 2n, h(n) := 2n + 1,
that is the recurrence relation

f(1) = ζ, f(2n) = αf(n) + 2n, f(2n+ 1) = αf(n) + 2n+ 1, n ≥ 1 (107)

or, equivalently,

f(1) = ζ, f(n) = αf
(
⌊n/2⌋

)
+ n, n ≥ 2 (108)

Proposition 3. The solution of (107) for n = (bm . . . b0)2 is given by

f
(
(bm . . . b0)2

)
=
(ζ − 1) · 2m +∑m

k=1 k · bk · 2k + (bm . . . b0)2, if α = 2
(ζ − 1) · αm + α

α−2(bm . . . b0)α − 2
α−2(bm . . . b0)2, if α ̸= 2

(109)
where (bm . . . b0)α := ∑m

k=0 bk · αk.

Proof. By (106) with

h
(
(bm . . . bk+1)2

)
= 2 · (bm . . . bk+1)2 + 1 = (bm . . . bk+11)2,

g
(
(bm . . . bk+1)2

)
= 2 · (bm . . . bk+1)2 = (bm . . . bk+10)2
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and
bk · (bm . . . bk+1)2 + (1 − bk) · (bm . . . bk+1)2 = (bm . . . bk+1bk)2

we obtain
f
(
(bm . . . b0)2

)
= ζ · αm +

m−1∑
k=0

αk · (bm . . . bk+1bk)2.

Since (bm . . . bk−1bk)2 = ∑m
j=k bj2j−k it follows

m−1∑
k=0

αk · (bm . . . bk+1bk)2 =
m−1∑
k=0

αk
( m∑

j=k

bj2j−k
)

= α0 · (b020 + b121 + b222 + · · · + bm−12m−1 + bm2m)+
+ α1 · ( b120 + b221 + · · · + bm−12m−2 + bm2m−1)+
+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · +
+ αm−1 · ( bm−120 + bm21)
= b0(α020) + b1(α021 + α120) + b2(α021 + α121 + α220)+
+ · · · + bm(α02m + α12m−1 + · · · + αm−121 + αm20 − αm20)

=
m∑

k=0
bk · 2k ·

( k∑
j=0

(α/2)j
)

− bmα
m

Substituting the value of the finite geometric series
k∑

j=0
(α/2)j =

k + 1, if α = 2
1

2k
αk+1−2k+1

α−2 , if α ̸= 2

into the last formula and simplifying one obtains the formula (109) and this proves
the proposition.

An important example of (107) is for α = 1, ζ = 1. Its solution f(n) = 2n −∑n
k=0 bk = 2n − s2(n) shows, that this is the sequence

(
D2(n)

)
n∈N

defined in (26).
Besides, it is not difficult to show directly that by (16) this sequence satisfies the
recurrence relation

D2(1) = 1, D2(2n) = D2(n) + 2n, D2(2n+ 1) = D2(n) + 2n+ 1, n ≥ 1 (110)

We now derive some properties of this sequence.
Proposition 4. 1. The solution of (110) is given by

D2(n) =
⌊log2 n⌋∑

k=0
⌊n/2k⌋, (111)

that is, D2(n) is the number of positive powers of 2 which divide numbers ≤ n.

2. The generating function φ(s) := ∑∞
n=1 D2(n)sn satisfies the functional equation

φ(s) = (1 + s)φ(s2) + s

(1 − s)2 , (112)

which shows that D2(n) is of the DC type.
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3. The solution of (112) is given either by

φ(s) = 1
1 − s

∞∑
k=0

s2k

1 − s2k (113)

or by the Lambert series

φ(s) =
∞∑

n=1
an

sn

1 − sn
(114)

where an := 2ϕ(n) −∑
t|n µ(n/t)s2(t), µ(n) is the Möbius function and ϕ(n) is

Euler’s totient function.

Proof. By (23) we have d2(n) = ∑
t|n ρ(t), where ρ(n) = 1, if n is a power of 2 and

zero otherwise. Hence,

D2(n) =
n∑

k=1
d2(k) =

n∑
k=1

(∑
t|k
ρ(t)

)
(115)

We collect terms with equal values of ρ(t) in the above double sum. For every
j ≤ n, ρ(j) appears in ∑

t|k ρ(t) if and only if j | k. Since each integer has itself
as a divisor, the right-hand side of (115) includes ρ(j) at least once. Furthermore,
there are exactly ⌊n/j⌋ integers among 1, 2, . . . , n which are divisible by j, namely:
j, 2j, 3j, . . . , ⌊n/j⌋j. Hence, ∑n

k=1

(∑
t|k ρ(t)

)
= ∑n

j=1 ρ(j) · ⌊n/j⌋ = ∑⌊log2 n⌋
k=0 ⌊n/2k⌋

and this proves (111) (see [8, Theorem 6-11, pp. 119–120]).

Let φ(s) := ∑∞
n=1 D2(n)sn, then by (110)

φ(s) =
∞∑

n=1
D2(2n)s2n +

∞∑
n=0

D2(2n+ 1)s2n+1

=
∞∑

n=1
D2(n)s2n +

∞∑
n=1

(2n)s2n + s
∞∑

n=1
D2(n)s2n +

∞∑
n=0

(2n+ 1)s2n+1

= (1 + s)φ(s2) +
∞∑

n=1
(2n)s2n +

∞∑
n=0

(2n+ 1)s2n+1

and this is (112), since ∑∞
n=1(2n)s2n +∑∞

n=0(2n+ 1)s2n+1 = ∑∞
n=1 ns

n = s
(1−s)2 .

It is well-known that the generating function for the sequence of the partial sums of
a sequence a(n) is equal to the generating function of a(n) divided by 1 − s. Hence,

∞∑
n=1

D2(n)sn = 1
1 − s

∞∑
n=1

d2(n)sn (116)

Substituting (17) into this equation gives immediately (113).
By (22) the generating function for d2(n) is given by a Lambert series. Therefore, it
is reasonable to assume that the generating function of D2(n) is given by a Lambert
series, too. Let φ(s) = ∑∞

n=1 an
sn

1−sn , where (an) is an unknown sequence to be
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determined. Since sn

1−sn = sn(1 + sn + s2n + · · · ) = sn + s2n + s3n + · · · = ∑∞
m=1 s

m·n

we obtain ∑∞
n=1 an

sn

1−sn = ∑∞
n=1 an

(∑∞
m=1 s

m·n
)
. Summing by rows we obtain

∞∑
n=1

an
sn

1 − sn
=

∞∑
n=1

(∑
t|n
at

)
sn,

that is ∑t|n at = D2(n). By the Möbius Inversion Formula (see [8, Theorem 6-7,
pp. 113–114]) it follows an = ∑

t|n µ(n/t) ·D2(t), where

µ(n) =


1, if n = 1
(−1)k, if n = ∏k

j=1 pj, p1, . . . , pk distinct primes
0, otherwise

is the Möbius function. Since by (25) D2(t) = 2t− s2(t) we obtain

an = 2
∑
t|n
µ(n/t)t−

∑
t|n
µ(n/t)s2(t) = 2ϕ(n) −

∑
t|n
µ(n/t)s2(t)

(see [8, Theorem 7-8, pp. 138–139]), where ϕ(n) is Euler’s totient function giving
the number of positive integers not exceeding n that are relative prime to n, and
this proves (114).
The first few values of D2(n) (the sequence A005187 in [24]) and an (the sequence
A035532 in [24]) are

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
D2(n) 1 3 4 7 8 10 11 15 16 18 19 22 23 25 26 31
an 1 2 3 4 7 4 10 8 12 8 18 8 22 12 15 16

Table 16: D2(n), an, 1 ≤ n ≤ 16

Note that for all primes p we have

D2(p) − ap = 1, (117)

since ap = 2ϕ(p) − ∑
t|p µ(p/t)s2(t) = 2(p − 1) − µ(p)s2(1) − µ(1)s2(p) = 2p − 2 −

(−1) · 1 − 1 · s2(p) = D2(p) − 1.
The next proposition lists some more properties of the sequences (d2(n)), (s2(n))
and (D2(n)).
Proposition 5. Let n ∈ N, then

1. (Highest power of 2 that divides n!)

D2(n) − n = n− s2(n) =
⌊log2 n⌋∑

k=1
⌊n/2k⌋ (118)

is the highest power of 2 dividing n!, that is

n! = 2n−s2(n) · (2k + 1), for a k ∈ N0 (119)
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2. (Asymptotic behavior)

lim
n→∞

D2(n)
n

= 2, (120)

consequently,
lim

n→∞

s2(n)
n

= 0 (121)

3. (Another representation of the generating function of s2(n))
∞∑

n=1
s2(n)sn = 2s

(1 − s)2 − 1
1 − s

∞∑
k=0

s2k

1 − s2k (122)

4. (Another representation of the generating function of d2(n))
∞∑

n=1
d2(n)sn = 2s

1 − s
−

∞∑
k=0

s2k

1 + s2k (123)

5. (Another representation of the generating function of D2(n))
∞∑

n=1
D2(n)sn = 2s

(1 − s)2 − 1
1 − s

∞∑
k=0

s2k

1 + s2k (124)

Proof. By (2) and (111) one obtains the formula (118). The right-hand side of this
(double) equation gives the exponent of the highest power of 2 that divides n!, since
there are ⌊n/2⌋ numbers (namely, 2, 2 · 2, 3 · 2, . . . , ⌊n/2⌋ · 2) which are divisible by
2, ⌊n/22⌋ numbers which are divisible by 22, etc. This proves (119).
By definition it holds that x − 1 < ⌊x⌋ ≤ x for all x ∈ R. Choosing x := n/2k we
obtain n/2k − 1 < ⌊n/2k⌋ ≤ 2/nk. Summing up for k = 0, 1, . . . , ⌊log2 n⌋ it follows

⌊log2 n⌋∑
k=0

(
n/2k − 1

)
<

⌊log2 n⌋∑
k=0

⌊n/2k⌋ ≤
⌊log2 n⌋∑

k=0
n/2k

or by (111) and using the formula for finite geometric series we obtain

2n
(

1 − 1/2⌊log2 n⌋+1
)

− (⌊log2 n⌋ + 1) < D2(n) ≤ 2n
(

1 − 1/2⌊log2 n⌋+1
)

or dividing by n

2
(

1 − 1
2⌊log2 n⌋+1

)
− ⌊log2 n⌋ + 1

n
<
D2(n)
n

≤ 2
(

1 − 1
2⌊log2 n⌋+1

)
Assertion (120) follows by noting that 1/2⌊log2 n⌋+1 → 0 and (⌊log2 n⌋ + 1)/n → 0
for n → ∞.
Since s2(n) = 2n−D2(n) we conclude by (120) that s2(n)

n
= 2− D2(n)

n
→ 0 for n → ∞

and this proves (121).
By (25) we have

∞∑
n=1

s2(n)sn =
∞∑

n=1
(2n−D2(n))sn = 2

∞∑
n=1

nsn −
∞∑

n=1
D2(n)sn
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and this is formula (122) by (118) and noting that ∑∞
n=1 ns

n = s
(1−s)2 .

By (24) and noting that the generating function for a difference sequence ∆a(n) is
equal to 1 − s times the generating function for the sequence a(n) we have

∞∑
n=1

d2(n)sn =
∞∑

n=1

(
2 − ∆s2(n)

)
sn

= 2
∞∑

n=1
sn −

∞∑
n=1

∆s2(n)sn

= 2s
1 − s

− (1 − s)
∞∑

n=1
s2(n)sn

and this is formula (123) by (11) and noting that ∑∞
n=1 s

n = s
1−s

.
Substituting (123) into (116) gives immediately the formula (124).
Note that formula (118) has been obtained for the first time in 1808 by A. M. Leg-
endre in the form (cf. Example E3 at p. 7)

n∑
k=1

d̃2(k) =
n∑

k=1

(
d2(k) − 1

)
= D2(n) − n = n− s2(n).

By equating the two representations (11) and (122) of the generating function for
s2(n) and simplifying one obtains the identities
Corollary 2.

∞∑
k=0

s2k

1 + s2k = 2s
1 − s

−
∞∑

k=0

s2k

1 − s2k (125)

∞∑
k=0

s2k

1 − s2k+1 = s

1 − s
. (126)

5.2 The case δ ̸= 0
In this subsection we just mention two known sequences, namely

1. The Bodlaender sequence, that is the special case α = 1, γ = 0, δ = 1, ζ =
−1, g(n) = 0, h(n) = n of (105)

f(1) = −1, f(2n) = f(n), f(2n+ 1) = f(n+ 1) + n, n ≥ 1 (127)

already studied in [25] with the solution

f
(
(bm . . . b0)2 + 1

)
= −1 +

m−1∑
k=0

(1 − bk)(bm . . . bk+1)2 (128)

2. Merge sort (see [13, p. 79, Exercise 34 at p. 98])
The total number of comparisons for merge sort of n records is at most C(n),
where

C(1) = 0, C(n) = C
(
⌊n/2⌋

)
+ C

(
⌈n/2⌉

)
+ n− 1, n ≥ 2, (129)
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or, equivalently, for n ≥ 1

C(1) = 0, C(2n) = 2C(n)+2n−1, C(2n+1) = C(n)+C(n+1)+2n (130)

This is the special case α = 2, γ = 1, δ = 1, ζ = 0, g(n) = 2n − 1, h(n) = 2n
of (105) with the solution (see [13, p. 496])

C(n) =
n∑

k=1
⌈log2 k⌉ = n · ⌈log2 n⌉ − 2⌈log2 n⌉ + 1. (131)
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