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Preface

Writing a preface is always a pleasure to me. At the risk of repeating myself – it is
my third CroCoDays Proceedings preface starting with the same sentence – there
is no better way to describe my feelings at presenting you yet another volume of
CroCoDays Proceedings. As in the previous three cases, this volume is a result
of concerted efforts of our authors, referees and sponsors, and it is my pleasure to
thank them all – to thank you all – for helping to prepare a nice publication and
thus bring the story of our fourth CroCoDays meeting to its successful conclusion.
First and foremost, I thank all participants for sharing with us their latest results.
Then, I thank the authors who contributed to this volume. My special thanks go to
our referees – you know who you are – for their constructive and timely reports. Last,
but not the least, I thank the members of the Organizing and program committee
and my colleagues co-editors for all their help.
The conference and this volume would not be possible without generosity of our
sponsors. It is a pleasant duty to acknowledge the financial, logistical and technical
support of the Faculty of Civil Engineering. The publication of the Proceedings
was partially supported by the grant of the Foundation of the Croatian Academy of
Science and Arts. The Zagreb Tourist Board kindly provided promotional material
for participants.
The present volume is freely available at the conference website. Please spread a
word and forward it to any colleagues who might be interested in participating in
our future meetings. I am looking forward to meeting you all, and many others, at
the next, semi-jubilary, fifth CroCoDays, scheduled for September 2024.

Zagreb, May 19, 2023 Tomislav Došlić
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Balanced simplicial complex associated with 1 × p
polyomino

Ðorđe Baralić and Edin Liđan

Abstract
Balanced simplicial complexes are important objects in combinatorics and
commutative algebra. A d-dimensional simplicial complex is balanced if its
vertices can be coloured into d+1 colors, so there is no monochromatic edge. In
this article, we establish two results concerning balanced simplicial complexes
assigned to tilings of m × n board in a plane and a torus by I p-omino tile.

1 Introduction
Simplicial complexes are abstract objects that acquire most topological, geometri-
cal, logical, combinatorial and algebraic features of spaces. It permits us to study
complex spaces, and their application in topological data analysis, neural networks
and modern physics is irreplaceable. A particular class of simplicial complexes, bal-
anced complexes, is significant in combinatorics, commutative algebra and computer
science. They are intensively studied since their introduction by Richard Stanley
in [10]. Among the researchers who made significant progress in understanding these
complexes in the last twenty years are Izmestiev, Klee, Juhnke-Kubitzke, Novik,
Juhnke-Kubitzke and Murai (see [5], [2], [6], [3] and [4]).
Recreational mathematics often pays the way for establishing new mathematical
disciplines. One of the most exciting puzzles is those with polyominoes. A polyomino
is a polyform whose cells are squares. Solomon Golomb, who wrote the first book
on polyominoes [1], gave them this name in 1953. In combinatorics, challenges are
often posed for tiling a prescribed region, or the entire plane, with polyominoes;
see [8] for some problems investigated in mathematics and computer science.
Recently, Baralić and Liđan come out with the idea to assign a simplicial complex to
a polyomino tiling problem. Their work is related to studying simplicial complexes
of graph hereditary properties that were investigated in topological combinatorics.

(Ðorđe Baralić) Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade,
Serbia, djbaralic@mi.sanu.ac.rs

(Edin Liđan) International Burch University, Sarajevo, Bosnia and Herzegovina,
edin.lidan@ibu.edu.ba
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Some results were published in Liđan’s PhD thesis [7] from 2022. Their approach
open the way for applying topological and commutative algebra methods to study
these questions. In this article, we present two exciting results regarding the tiling
of the board m× n in a plane and on a torus by 1 × p polyomino and the balanced
property of the corresponding simplicial complexes.

2 Preliminaries
This section reviews basic facts about simplicial complexes associated with poly-
omino tilings.
Definition 1. An abstract simplicial complex K on a vertex set [m] = {1, 2, . . . ,m}
is a collection of subsets of [m] such that

(i) for each i ∈ [m], {i} ∈ K,

(ii) for every σ ∈ K, if τ ⊂ σ then τ ∈ K.
We assume that ∅ ∈ K.
The elements of K are called faces. The dimension of a face σ of a simplicial complex
K is defined as dim σ : = |σ| − 1, where |σ| denotes the cardinality of σ. Faces of
dimension 0 are called vertices while faces of dimension one are called edges. The
dimension of K, denoted by dimK, is the maximal dimension of a face of K.
A face of K is called maximal or a facet if it is not a face of any other face of K.
A subset τ of [m] is called a missing face of K if τ ̸∈ K. A missing face τ is called
minimal if any proper set σ ⊂ τ is a face K. A simplicial complex is completely
determined by the list of its facets or minimal missing faces. Softwares like SAGE
and Macaulay 2 take advantage of both approaches.
Let K be a simplicial complex and d its dimension.
Definition 2. K is called balanced if there exists a function k : V 7→ [d + 1] such
that, if for every edge {x, y} ∈ K holds k(x) ̸= k(y).
In other words, Definition 2 says that a d-dimensional simplicial complex if its
vertices can be colored into d + 1 colors so that there is no monochromatic edge.
Balanced simplicial complexes were introduced by Stanley in [10]. Notable examples
are Coxeter complexes, Tits buildings, and the order complex of a graded poset, with
the vertex set partition given by the rank function.
Simplicial complexes arise in many exciting ways. They are essential for applications
of topology, commutative algebra and combinatorics. Baralić and Liđan studied a
class of simplicial complexes arising from polyomino tilings. Recall that a polyomino
is a plane geometric figure formed by joining one or more equal squares edge to edge.
Some of their results are available in Liđan’s PhD thesis [7].
Let M be a given finite subset of a plane or a torus square grid and T be a given
finite set of polyomino tiles. Polyomino tiling problem asks whether M can be tiled
using the tiles from T without overlapping or placing a tile so that it covers a cell
outside of M . The problem that originated from recreational mathematics is an NP
problem; it motivated further research in combinatorics and computer science. We
assign a simplicial complex to the situation in the following way.
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Definition 3. K(M ; T ) is a simplicial complex whose i-faces correspond to a place-
ment of i+ 1 polyomino tiles from T onto M without overlapping.

Definition of K(M ; T ) implies the next property.

Proposition 1. dim(K(M ; T )) + 1 is maximal number of polyomino tiles from T
that may be placed on M without overlapping.

Geometrical features of simplicial complexes K(M ; T ) can be visualized only in a
handful of cases, such as the following example.

Figure 1: A geometrical realization of K(M, T ) when M is 2 × 3 plane board and
T consists of dominoes.

Example 1. If M is 2 × 3 plane board and T contains only dominoes, then a
geometrical realization of the corresponding simplicial complex is presented in Figure
1.

In the next section, we establish two results about balanced simplicial complexes
associated with polyomino tilings.

3 Balanced simplicial complex associated with
polyomino tilings

Let T consist of only I p-omino tile. Recall that I p-omino is 1×p tile. Let K(p;m,n)
and T (p;m,n) be the simplicial complexes of polyomino tilings for planar m × n
board and torus m× n board, respectively.
I-omino tiles are sensitive to diagonal colorings of square grids. Indeed, if we label
the cells by the numbers 1, 2, . . . , p as in Figure 2, I p-omino will always cover p
different numbers, regardless of its placement. Therefore, we cannot put more than
di tiles on the m× n board, where di is the number of cells labeled with i in Figure
2.

3



Ð. Baralić and E. Liđan

1 2 3 4 5 6 7 8 9 · · · p 1 2 3 4 5 · · ·

p 1 2 3 4 5 6 7 8 · · · p−1 p 1 2 3 4 · · ·

p−1 p 1 2 3 4 5 6 7 · · · p−2 p−1 p 1 2 3 · · ·

p−2 p−1 p 1 2 3 4 5 6 · · · p−3 p−2 p−1 p 1 2 · · ·

p−3 p−2 p−1 p 1 2 3 4 5 · · · p−4 p−3 p−2 p−1 p 1 · · ·

p−4 p−3 p−2 p−1 p 1 2 3 4 · · · p−5 p−4 p−3 p−2 p−1 p · · ·

1 2 3 4 5 6 7 8 9 · · · p 1 2 3 4 5 · · ·

p 1 2 3 4 5 6 7 8 · · · p−1 p 1 2 3 4 · · ·
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Figure 2: Labeling of the cells in m× n board.

Lemma 1. dimK(p;m,n) = da+1 − 1 for integers m = m1p + a and n = n1p + b
such that m1, n1 ≥ 1 and 0 ≤ a, b ≤ p− 1.

Proof: If p | m or p | n, the corresponding horizontal or vertical side can be tiled
by I p-omino in an obvious way. Therefore, the board can be tiled with mn

p
tiles,

and each number in Figure 2 appears the same number of times. In this case, the
statement is valid.
Let us analyze a challenging situation when a, b > 0. We will distinguish two cases:
a+ b ≤ p− 1 and a+ b ≥ p.
If a + b ≤ p − 1 we can conclude that da+1 = m1n1p + an1 + bm1, since there is no
square labeled by a + 1 in the shaded region in Figure 3. The same figure depicts
the positioning of m1n1p+ an1 + bm1 I p-ominoes in the board in this case.
Let us now consider the case a+ b ≥ p. We already know that a+ b ≤ 2p− 2.
In this case, from Figure 4, we can find that da+1 = m1n1p+ an1 + bm1 + a+ b− p
and that there is a tiling covering all squares labeled by a + 1. Similarly, as in the
previous case, the critical argument is that in the shaded region in Figure 4, there
is no a+ 1 cell. It finishes our proof.

Theorem 1. Simplicial complex K(p;m,n), m,n ≥ p is balanced.

Proof: Consider the cells labeled by a + 1 in Figure 2 and denote them by x1,
x2, . . . , xda+1 as in Figure 5. Each I p-omino tile has to cover exactly one of these
cells. Indeed, this induces coloring of the vertices of K(p;m,n) in da+1 colors since
two vertices are colored by the same color exactly when they cover the same square
denoted by xi for some i. By definition of K(p;m,n), they do not span an edge.
Because of Lemma 1, it follows that K(p;m,n) is balanced.

The following theorem establishes the analogues result for the simplicial complex
T (p;m,n) associated with the tiling of torus m× n board by I p-ominoes.
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p−b+2 p−b+3 · · · p−b+
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p

b

n1
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p p a

Figure 3: A placement of the maximal number of I p-ominoes in the board m × n
in the case a+ b ≤ p− 1.

Theorem 2. Simplicial complex T (p;m,n) is a balanced complex if and only if p | m
and p | n.

Proof: We can place at most ⌊mn
p

⌋ p-omino tiles on any m × n board so
dimT (p;m,n) ≤ ⌊mn

p
⌋−1. Observe that we can place mn vertical and mn horizontal

I p-ominoes on torus m× n board, so T (p;m,n) has 2mn vertices.
Assume that the vertices of T (p;m,n) are properly colored. Two vertices can be
colored in same way if the corresponding I p-omino placements overlap. Moreover,
three vertices sharing the color correspond to the placements of tiles that cover a
common square thanks to the tile of I-omino, which is convex. Celebrated Helly’s
theorem [9] implies that all vertices colored by the same color correspond to the tile
placements having a joint cell. This implies that there are at most 2p vertices of
T (p;m,n) having same color.
We will examine the following cases separately.
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1 2 3 · · · p 1

p

p−1

...

2

...
...

· · ·

· · ·

a

a−1

a−2

...

a−1

p−b+2 p−b+3 p−b+4 · · · p−b+1

p−b+1

p−b

p−b−1

...

p−b+2

· · ·

· · ·

p−b+

+a+1

p−b+a

p−b+

+a−1

...

a−b+1

a+1 a+2 a+3 · · · a

...
...

a−b+2 a−b+3 a−b+4 · · · a−b+1

p−b+

+a+2
p−b+

+a+3 p−b

p−b+

+a+1
p−b+

+a+2
p−b−1

a+2 a+3 1

. . .

b

p

p a

Figure 4: A placement of the maximal number I p-ominoes in the board m × n in
the case a+ b ≥ p.

x1 x2 x3

xi+1 xi+2 xi+3

xj+1 xj+2 xj+3

...
...

...
...

...
...

...
...

... . . .

· · ·

· · ·

· · ·

m

n

Figure 5: Coloring of vertices in simplicial complex K(p;m,n).

1) Let p|m and p|n. We can use the coloring used in the proof of Theorem 1 and
verify that the complex is balanced.

2) Without loss of generality let assume that p ∤ m and p|n. Obviously, p|m ·
n. Then we used m·n

p
colors, and there must be 2p vertices of T (p;m,n) of

each color. For each of m·n
p

colors take a common cell for the corresponding
placements of I p–omino tiles. Assume that these m·n

p
cells are marked on the

torus board.
By placing one I p-omino tile on the board, we precisely cover one of the
marked cells, so the coloring of each vertex is determined by the marked cell
and the corresponding tile covers. On the other hand, in a row, we can have
at most ⌊m

p
⌋ marked squares. We can show this in the following way. Between

two consecutive marked cells in a row, we have to have precisely p− 1 empty
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cells to achieve that each vertex has its color and that I-omino cannot cover two
marked squares. Since we have the torus board, we have at most k+ k(p− 1)
squares in each row, where k is the number of the marked cell in the row. The
inequality is now proven.
However, it implies that the total number of marked cells in the board is at
most n · ⌊m

p
⌋ < n · m

p
= mn

p
and that is the contradiction. Therefore, T (p;m,n)

is not balanced in this case.

3) Let p ∤ m and p ∤ n. Then on the board we can put at most
⌊

mn
p

⌋
− 1 I

p–ominoes, implying that⌊
mn

p

⌋
− 1 ≥ dimT (p;m,n).

If we used
⌊

mn
p

⌋
colors for a proper coloring , then we would have at most

2p ·
⌊

mn
p

⌋
< 2p · mn

p
= 2mn vertices colored. But, this contradicts the fact that

T (p;m,n) has 2mn colored vertices.

Based on the considered cases, the statement has been proved.
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Solving the dimer problem on Apollonian gasket

Tomislav Došlić and Luka Podrug

Abstract
For any three circles in the plane where each circle is tangent to the other
two, the Descartes’ theorem yields the existence of a fourth circle tangent to
the starting three. Continuing this process by adding a new circle between
any three tangent circles leads to Apollonian packings. The fractal structures
resulting from infinite continuation of such processes are known as Apollo-
nian gaskets. Close-packed dimer configurations on such structures are well
modeled by perfect matchings in the corresponding graphs. We consider Apol-
lonian gaskets for several types of initial configurations and present explicit
expressions for the number of perfect matchings in such graphs.

1 Introduction
Configurations of close-packed dimers are among the most important objects of study
in statistical physics. Also called Kekulé structures in chemical, and perfect match-
ings in mathematical literature, they serve as useful and (in may cases) tractable
models of, among other things, adsorption processes of diatomic molecules on various
types of substrates. In that context, the most interesting cases are two-dimensional
surfaces with regular structure which are best described by finite portions of two-
dimensional infinite lattices. For the simplest case of the square lattice, the exact
solution has been known since the early works of Kasteleyn [5] and Temperley and
Fisher [4, 12]. (Here by exact solution we mean explicit expressions for all quanti-
ties of interest in such problems, such as their growth-rate, entropy, and per-dimer
molecular freedom.) For a brief survey of results for some other 2D lattices we refer
the reader to [13].
In recent years much attention has been given to another class of lattices or net-
works, answering thus a need to model processes on fractal-like substrates. The best
known example of such lattices is, certainly, the Serpiński gasket. For an accessible

(Tomislav Došlić) University of Zagreb Faculty od Civil Engineering, Croatia, tomis-
lav.doslic@grad.unizg.hr

(Luka Podrug) University of Zagreb Faculty od Civil Engineering, Croatia,
luka.podrug@grad.unizg.hr
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introduction we refer the reader to [2] and references therein. In this paper we are
concerned with related structures which arise from Apollonian packings of circles in
the plane and which are known as Apollonian gaskets. Apollonian gaskets are fas-
cinating objects; see, for example, [10] for some beautiful illustrations and for their
geometric and number-theoretic properties. They have already attracted significant
attention of researchers both in graph theory and in statistical physics. For example,
their Tutte polynomials and spanning trees were investigated in [8, 14], while Ising
and magnetic models on them were studied in [1,11] by employing transfer matrices
and numerical methods. In this paper we study them from the graph-theoretical
point of view and present explicit formulas for the number of close-packed dimer
configurations by computing the number of perfect matchings in the corresponding
graphs.
In the next section we start from Apollonian packings and introduce the Apollonian
gaskets as fractals arising from iterating the packings. Along the way we introduce
the necessary graph-theoretic terminology and state some preliminary results. In
Section 3 we use those results to present explicit formula for the number of close-
packed dimer configurations in a given stage of one particular Apollonian gasket
which is, in a sense, canonical. In Section 4 we generalize our findings to some
other Apollonian gaskets. The paper is concluded by a short section in which we
establish universality of entropy in all Apollonian gaskets and indicate some possible
directions for future research.

2 Definitions and preliminary results
Apollonian gasket is a fractal that starts with a number of circles, usually arranged
so that each circle is tangent to at least three, but sometimes more, other circles.
Construction of the nth level, or the nth iteration, of an Apollonian gasket consists
of adding more circles so that every new circle touches exactly three circles in the
(n − 1)st level. The number of circles inscribed depends on the number of starting
circles and their initial configuration. Radius of each new circle is determined by
Descartes’ theorem which states that four circles that are tangent to each other at
six distinct points with curvatures k1, k2, k3 and k4 satisfy the following relation:

(k1 + k2 + k3 + k4)2 = 2(k2
1 + k2

2 + k2
3 + k2

4). (1)

Here the curvature of a circle is the reciprocal value of its radius, i.e., k = 1
r
. Note

that equation (1) has two solutions. If one of them is negative, then the correspond-
ing circle touches the other three from inside, otherwise, from outside of a circle. As
an example, Figure 1 demonstrates one possible starting configuration of an Apol-
lonian gasket. The curvatures of starting circles uniquely determine curvatures of
circles in all subsequent iterations.
Graphs are one of the most fundamental mathematical objects. They naturally
appear in many mathematical models, and in this paper we present one such model.
More precisely, we consider close-packed dimer configurations on Apollonian gaskets
and model them by perfect matching in the corresponding graphs. For the reader’s
convenience, we state some basic definitions. A graph is an ordered pair G = (V,E),

10
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Figure 1: Initial configuration of an Apollonian gasket with circle curvatures −1, 2
and 3.

where V = V (G) stands for a non-empty set of vertices, and E = E(G) is the set
of edges. We say that vertices u and v are adjacent if there is an edge connecting
them, i.e., edge uv ∈ E(G). For a given vertex v, the number of other vertices
adjacent to it is called the degree of v. The largest degree in G is denoted by ∆(G).
If all vertices of a graph G have the same degree k, we say that G is k-regular. A
perfect matching in a graph G is a subset M ⊂ E(G) such that every vertex of G is
end-point of exactly one edge in M . The number of perfect matchings of graph G is
denoted by Φ(G). Clearly, a necessary condition for G to have a perfect matching
is that the number of vertices must be even. We refer the reader to the classical
monograph by Lovász and Plummer [9] for a comprehensive introduction to almost
all aspects of matching theory.
Perfect matchings are perfect models for close-packed dimer configurations: The fact
that each dimer covers exactly two neighboring sites on the considered substrate
is reflected in the fact that each edge of a perfect matching covers two adjacent
vertices in the corresponding graph. Further, the non-overlapping requirement for
dimers corresponds to the fact that each vertex is incident to exactly one edge of
the perfect matching. Finally, the fact that the matching covers every vertex of the
graph describes the condition that dimers cover all sites on the substrate, i.e., that
they are no empty sites. So the configuration is close-packed.
In order to study dimer configurations on Apollonian gaskets, to each level of an
Apollonian gasket we associate a graph obtained in the following manner: each point
of tangency is a vertex of the graph and two vertices are adjacent if there is an arc
connecting them, provided there are no other tangent points between them. One
should note that not every Apollonian gasket produces a graph which has a perfect
matching: The graph obtained from Apollonian gasket in Figure 1 has 9 vertices,
and thus cannot have a perfect matching. All Apollonian gaskets considered from
now on give rise to graphs with perfect matchings. Also, throughout this paper, we
will assume that the outside circle in our starting configurations has radius 1.
The line graph of a graph G is defined as the graph L(G), where V (L(G)) = E(G),
and two edges in V (L(G)) are adjacent if they have a common end-vertex in G.
The line graph of a cycle is another cycle of the same length, while the line graph
of a path is a path with one vertex less. Figures 2 and 3 show two polyhedra, the
tetrahedron and the four-sided prism, respectively, and their respective line graphs.
Here the edge a in G corresponds to vertex A in L(G), etc.

11



T. Došlić and L. Podrug

a

bc

d e

f

C B

A

D E

F

Figure 2: Tetrahedron and its line graph.
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Figure 3: Four-sided prism and its line graph.

To determine a line graph of a given graph is quite straightforward, but the opposite
task, to find a graph H such that a given graph G is the line graph of H, can be
challenging. It is well-known that not all graphs are line graphs of other graphs.
For more details we refer the reader to any textbook on graph theory.
It turns out that in some cases there is a simple relationship between the number
of vertices and edges of a given graph G and the number of perfect matchings in
its line graph L(G). In particular, Dong, Yan and Zhang [3] proved the following
result:

Theorem 1. Let G be connected graph with n vertices and m edges, where m is
even. If ∆(G) ≤ 3, then Φ(L(G)) = 2m−n+1.

We will use this result to obtain the number of perfect matchings of graphs obtained
from some configurations of Apollonian gaskets. We start from the case that is, in
a way, canonical.

3 Tetrahedron - the canonical case
Let An denote an Apollonian gasket after n iterations and |An| the number of its
circles. We denote the initial state of an Apollonian gasket A by A1.

12
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Our canonical configuration consists of three starting circles having equal radii 2
√

3−
3 and one outside circle with radius 1. Figure 4 shows the initial state and the first
two iterations of the corresponding Apollonian gasket. They have 4, 8 and 20 circles,
respectively. Since the nth iteration adds 4 · 3n−2 new circles, for n ≥ 2, the overall
number of circles in An is given by

|An| = 4 + 4
(
30 + · · · + 3n−2

)
= 2 ·

(
3n−1 + 1

)
.

Figure 4: Apollonian gaskets An for n = 1, 2, 3.

Now we consider the graphs obtained from this Apollonian gasket. Let An denote a
graph produced by the nth level of An. Then A1 is a 4-regular graph with 6 vertices
and 12 edges. In the second iteration there are 18 vertices, 36 edges, and the graph
is again 4-regular. Since the nth iteration adds 4 ·3n−2 circles and every new circle is
tangent to three previously added circles, the nth iteration adds 4 ·3n−1 new vertices.
So,

|V (An)| = 6 + 4
n−1∑
i=1

3i = 2 · 3n.

Graphs An are shown in Figure 5 for n = 1, 2, 3. In is not hard to see that An is a 4-

Figure 5: Graphs A1, A2 and A3.

regular graph for every n. Addition of a new circle results in inscribing a new triangle
in an already existing one. As shown in Figure 6, after inscribing new triangle shown
in red, all new and old vertices have four neighbors. Thus, 4-regularity is preserved.
It follows that the number of edges is |E(An)| = 4 · 3n.
One can see that A1 is the octahedron, the line graph of tetrahedron, so we are
motivated to ask whether other An also appear as line graphs of some related graphs.

13
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Figure 6: Inscribing a new triangle preserves 4-regularity.

We turn our attention to tetrahedron and start truncating it at its vertices. In every
iteration we truncate every vertex of the graph constructed so far (Fig. 7). (Here
we do not make distinction between a polyhedron and its graph, but there is no
danger of confusion.) Let Tn denotes the graph obtained from the tetrahedron after
n − 1 iterations. Graph T1 is non-truncated tetrahedron and has 4 vertices. To
obtain T2, we truncate every vertex and every vertex produces 3 vertices. Hence,
|V (Tn)| = 4 ·3n−1. There are 6 edges in graph T1 and nth iteration brings 3|V (Tn−1)|
new edges. Hence,

|E(Tn)| =6 + 4 · 31 + · · · + 4 · 3n−1

=2 · 3n

Figure 7: Graphs T1, T2 and T3.

In the next lemma we establish the crucial connection between graphs An and Tn.

Lemma 1. L(Tn) = An.

Proof. The proof is by induction. The base of induction is true, as demonstrated in
Figure 2. Graphs isomorphic to A1, A2 and A3 are shown in Figure 8, where their
fractal nature is more clear. As we stated, adding new circle results in a subdivision
of graph An. More precisely, a new triangle is inscribed in an already existing one,
thus producing four new triangles. The middle one of those four triangles is not
further divided, but the other three are. The triangles that are to be divided are
not hard to determine. The leftmost and the rightmost triangle with vertex at the
top are divided in every iteration because the middle triangle with top vertex denotes
the uppermost of the three original circles, and left and right of that circle is where
we add new circles in every iteration. Since some triangles presents circles and other
present blank spaces between them, no two divided triangles can share an edge. In
that manner, all triangles that will be divided in next iteration are determined. The
triangles that will be divided in the next iteration are the colored ones in Figure 8.
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Figure 8: Graphs A1, A2 and A3 with colored triangles that will be divided in the
next iteration.

On the other hand, Tn is a 3-regular graph, and every triplet of edges that share
a vertex forms a triangle in the corresponding line graph. We say that the vertex
is represented by this triangle. Is is not hard to see that graphs shown in Figure 8
are also line graphs of T1, T2 and T3, respectively, as truncating a common vertex
inscribes a new triangle in the triangle that represents that vertex. The operation
of truncating a vertex and inscribing a triangle in the line graph is shown in Figure
9. The left panel of Figure 9 shows newly-added edges, and the right part shows the
corresponding vertices in the line graph, both marked red. We just need to show
that triangles which represent vertices of Tn are precisely those colored triangles in
Figure 8. First note that two triangles that share an edge in the line graph L(Tn)
cannot both represent a vertex. We consider three triangles in line graph that share
top vertex. Since |V (Tn)| = 4 · 3n−1, there are at least 4 · 3n−1 triangles in L(Tn).
The middle triangle can not represent a vertex, otherwise some vertices would have
triangles with shared edge. Thus, alignment of triangles corresponds to Figure 8,
and that concludes our proof.

Figure 9: Truncation of a vertex in Tn and its effect in the line graph.

Figure 10 demonstrates the connection between graphs T2 and A2, more precisely,
the fact that L(T2) = A2.
Now, by Lemma 1 we have L(Tn) = An and ∆(Tn) = 3, thus Theorem 1 is applicable
to our graphs. Hence we can state the main result of this section.

Theorem 2.

Φ(An) = 2 · 4 · 3n−1.
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Figure 10: L(T2) = A2.

4 Other Apollonian gaskets
As we stated above, the initial number and the alignment of circles can vary. There
are many different Apollonian packings yielding graphs with perfect matchings, and
we here consider some possible simple alignments. Our first example starts with five
circles, four with radius

√
2 − 1 and central one with radius 3 − 2

√
2. As before, in

each iteration we add circles in blank spaces between them. First three iterations
of this gasket are shown in Figure 11. Similar as before, by Bn we denote a graph

Figure 11: An Apollonian gasket starting with 5 circles.

obtained after (n−1)st iteration. Graph B1 is 4-regular, it has 12 vertices and hence,
24 edges. There are 8 · 3n−2 new circles in the nth iteration that produce 8 · 3n−1

new vertices. So graph Bn has

|V (Bn)| = 12 + 8 · 3 + · · · + 6 · 3n−1 = 4 · 3n

vertices. Thus, it has |E(Bn)| = 8 · 3n edges. Graphs isomorphic tor B1, B2 and
B3 are shown in Figure 12. Again, their fractal nature is clearly visible, because in
each iteration, adding new circles in Apollonian gasket produces inscribed triangles
in the corresponding graph. As before, Bn is 4-regular for every n.
As in the previous section, we want to identify a family of graphs Pn whose line
graphs are graphs Bn. We start with a four-sided prism P1, shown in Figure 3.
Graph P1 is 3-regular, it has 8 vertices and 12 edges. Furthermore, let Pn denote
the starting prism which is truncated n − 1 times. Every iteration has 8 · 3n−1

vertices, and since truncation preserves 3-regularity, we have |E(G)| = 4 ·3n. Figure
3 shows the mapping E(P1) → V (L(P1)) where edge a on the left corresponds to
vertex A on the right, etc. So, L(P1) = B1. Since truncating a vertex produces
same result as it did with tetrahedron, same arguments can be applied to prove that
L(Pn) = An.
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Figure 12: Graphs of initial levels of an Apollonian gasket starting with 5 circles.

Since graphs Pn satisfy assumptions of Theorem 1, we can compute the number of
perfect matchings for this class of Apollonian gaskets:

Corollary 1.

Φ(Bn) = 2 · 163n−1
.

The Apollonian gasket we have just considered, the one defined by circle curvatures
−1 and 1 +

√
2, can be generalized in a straightforward way. Instead of four circles

whose centers are vertices of a square, we can start with m circles whose centers
are vertices of regular polygon with m vertices, where m ≥ 4 is an even integer.
As before, let the radius of the outside circle be 1, and let R denote the radius
of m circles. The central circle of radius r touches each of those m circles. Since
sin

(
π
m

)
= R

R+r
and r + 2R = 1, we have

R =
sin

(
π
m

)
1 + sin

(
π
m

) .

R

r π
n

Figure 13: Graph of an Apollonian gasket starting with 9 circles.

We denote the nth iteration of this Apollonian gasket configuration by Am
n and the

corresponding graph by Am
n . The graph Am

1 has 3m vertices and since it is 4-regular,
it has 6m edges. With every iteration we add 2m · 3n−2 circles, hence, 2m · 3n−1

new vertices. The overall number of vertices is now V (Am
n ) = m3n and the overall

number of edges is E(Am
n ) = 2m · 3n. As we are interested in the number of perfect

matchings of graph Am
n , we only consider cases with m even, otherwise there are no

perfect matchings.
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By applying the same reasoning as in the previous cases, one can show that Am
n is

the line graph of n − 1 times truncated m-sided prism, denoted by P n
m. Again, the

graph Pm
n is 3-regular and it has 2m·3n−1 vertices and m·3n edges. Since ∆(P n

m) = 3
and m is even, by Theorem 1, we have:

Corollary 2.

Φ(Am
n ) = 2 · 2m·3n−1

.

We notice that our results apply also to B = A4.

5 Universality of entropy
We conclude the paper with a few quick glances back to our original problem.
First, we notice that our canonical tetrahedral case could be brought within the
framework of the gaskets generated by even-sided prisms by writing its growth rate
43n−1 as 22·3n−1 and observing that it fits the pattern 2m·3n−1 followed by their growth
rates. Hence, the tetrahedron could be considered in this context as an ”honorary”
even-sided prism.
Our second glance back is toward entropies. The entropy of a lattice is defined as
the limit of the ratio of the logarithm of the number of perfect matchings and the
length of a perfect matching when the number of sites tends to infinity. Hence,

E(G) = lim
n→∞

2 ln Φ(Gn)
|V (Gn)| ,

where by Gn we denote the graph corresponding to the nth level of a gasket G. From
our results it immediately follows that the entropy of Am does not depend on m.

Corollary 3.
E(Am) = ln 4

3 .

Hence, while the growth rates depend strongly on m, the corresponding entropy
seems to be universal. This fact also implies the universality of the quantity known
as per-dimer molecular freedom, defined as

W (G) = eE(G).

When the considered dimer configurations are not close-packed, i.e., when one deals
with monomer-dimer configurations, all quantites of interest become much more
difficult to determine; see, for example, a recent paper concerned with generalized
Tower of Hanoi graphs [7]. It would be interesting to examine whether some progress
could be made by using the approach of the present paper.
Our last remark is concerned with a recent paper by Li et al. [6] which extends the
line of research of Dong et al. by looking at the dimer problem at the vertex-edge
graphs of cubic graphs. It would be interesting to find classes of fractal lattices for
which the results by Li et al. would provide compact explicit solutions of the type
presented here.

18



Solving the dimer problem on Apollonian gasket

Acknowledgements
Partial support of Slovenian ARRS (Grant no. J1-3002) is gratefully acknowledged
by T. Došlić.

References
[1] R. F. S. Andrade, H. J. Herrmann, Magnetic models on Apollonian networks, Phys.

Rev. E 71 (2005) 056131.

[2] J. A. Anema, K. Tsougkas, Counting spanning trees on fractal graphs and their
asymptotic complexity, J. Phys. A: Math. Theor. 49 (2016) 355101.

[3] F. Dong, W. Yan, F. Zhang On the number of perfect matching of line graphs, Discrete
Appl. Math. 161, 794–801 (2013).

[4] M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Phys. Rev. 124 (1961)
1664–1672.

[5] P. W. Kasteleyn, The statistics of dimers on a lattice, Physica 27 (1961) 1209–1225.

[6] S. Li, D. Li, W. Yan, On the dimer problem of the vertex-edge graph of a cubic graph,
Discrete Math. 346 (2023) 113427.

[7] W.-B. Li, S.-C. Chang, Study of dimer–monomer on the generalized Hanoi graph,
Comput. Appl. Math. 39 (2020) 77.

[8] Y. Liao, Y. Hou, X. Shen, Tutte polynomials of the Apollonian networks, J. Stat.
Mech. (2014) P10043.

[9] L. Lovász, M. D. Plummer, Matching Theory, in: Ann. Discrete Math. vol. 29, North-
Holland, New York, 1986.

[10] D. Mackenzie, A tisket, a tasket, an Apollonian gasket, Amer. Sci. 98 (2010) 10–14.

[11] M. Serva, U. L. Fulco, E. L. Albuquerque, Ising models on regularized Apollonian
networks, Phys. Rev. E 88 (2013) 042823.

[12] H. N. V. Temperley, M. E. Fisher, Dimer problem in statistical mechanics – An exact
result, Phil. Mag. 6 (1961) 1061–1063.

[13] F. Y. Wu, Dimers on two-dimensional lattices, Int. J. Mod. Phys. B 20 (2006) 5357–
5371.

[14] Z. Zhang, B. Wu, F. Comellas, The number of spanning trees in Apollonian networks,
Discrete Appl. Math. 169 (2014) 206–213.

19





Proceedings of the 4th Croatian Combinatorial Days
CroCoDays 2022
September 22 – 23, 2022

ISBN: 978-953-8168-63-5
DOI: 10.5592/CO/CCD.2022.03

The Birkhoff polytope of the groups F4 and H4

Mathieu Dutour Sikirić

Abstract
We compute the set of facets of the polytope which is the convex hull of the
Coxeter groups F4 or H4:

• For the group F4 we found 2 orbits of facets which contradicts previous
results published in [19].

• For the group H4 we found 1063 orbits of facets which provides a coun-
terexample to the conjecture of [19].

1 Introduction
Given a finite group G acting linearly on a real vector space Rn, there is a strong
interest in finding the orbits of facets of the convex hull Gx of a vector x.
For a coxeter group G with its natural action on Rn, the structure is well known and
given by the Wythoff construction (See [5]). Other representations were considered
in [4] for the alternating group. Another very interesting case for a group having
a n-dimensional representation is to consider the action of the group on itself. For
the symmetric group Sn this gets us the Birkhoff polytope.
In [1, 19] the description was extended to other Coxeter groups by introducing the
Birkhoff tensors BG which are facets of conv G. In [18] the symmetry group of
conv G are determined for all the finite Coxeter groups.
The authors proved the following result:

Theorem 1. For G = An, Bn, I2(n) and H3 all facets of conv G are Birkhoff tensors.

They also proved that for D4 the result does not hold and they claim in Theorem
8.1 that this implies that the result does not hold for Dn and En. Note that the
authors also claimed that F4 satisfy the theorem but we prove that this is not true.
The authors conjectured [19, Problem 8.1] that for H4 the result does hold. As it
turns out, this is not true since while there is just one orbit of Birkhoff tensors, there
is more than one orbit of facets:

(Mathieu Dutour Sikirić) Ruđer Bošković Institute, Zagreb, Croatia, math-
ieu.dutour@gmail.com
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Theorem 2. The polytope conv H4 has 188455824000 facets in 1063 orbits.

The proof of this result is computational with the algorithms presented in Section
3 and the results presented in Section 4.

2 Definitions

2.1 Convex geometry
A set S ⊂ Rn is called convex if for all x, y ∈ S we have [x, y] ⊂ S. A convex set is
called a polytope if there exist vectors x1 . . . , xN such that

S =
{
x ∈ Rn s.t. x =

N∑
i=1

λixi, λi ≥ 0,
N∑

i=1
λi = 1

}

and S is called the convex hull Conv({x1, . . . , xN}) of x1, . . . , xN . A point x ∈ S
which cannot be expressed as the middle of two points y1, y2 ∈ S is called a vertex.
A polytope P has finitely many vertices and the vertices v1, . . . , vN allow to write
P = Conv({v1, . . . , vN}).
For a polytope P there exist a number of linear forms fi and constants Ci such that

P = {x ∈ Rn s.t. fi(x) ≤ Ci for 1 ≤ i ≤ M}

The inequalities fi which cannot be expressed as the sum of two other such inequal-
ities are called facets. Passing from the description from vertices to the description
by facets is called the dual description problem. See [21] for an introduction to the
subject. This paper is just two special cases of dual descriptions problems being
solved.

2.2 Coxeter group
A finite Coxeter group G is a finite group of isometries acting on a real space Rn

which is generated by N reflections. A Coxeter group is called irreducible if there
exist a non-trivial subspace preserved by G. Such groups were classified by Coxeter
himself and we refer to [13] for related definitions and terminology. In dimension 4
there are the A4, B4, D4, F4, H4.
Coxeter groups are tightly related to regular polytopes (see [3]). For example the
isometry group of the 24-cell is the Coxeter group F4. Also the isometry group of
the 120-cell and 600-cell is the Coxeter group H4.

3 Algorithms
The effective computation of dual description of polytopes is a classic problem in [11].
We designed software for using symmetries of polytope when computing their dual
descriptions. The initial version of the code was written in GAP with some parts in
C/C++. After several extensions, the code was completely ported into C++. As a side
product of that, we are allowed to select the numeric type of the occurring matrix
entries.
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3.1 Dual description algorithms
In order to compute the facets of the polytope, we used the recursive adjacency de-
composition technique. This method has been used for many different computations
and is explained in [2, 6, 10,20].
The idea of the adjacency decomposition technique is to compute one facet and
from this facet to compute the adjacent facets. The obtained facets are then tested
for equivalence. Computing the facets adjacent to a given facet is itself a dual
description problem, therefore one may need to apply the method recursively hence
the name recursive adjacency decomposition method.
Some early termination criterion are given in [6] and allow us to avoid having to
compute the adjacencies of all the facets.
For a long time we used the code developed in [8] which is a package of [12]. For
several reasons we have developed a new C++ implementation (see [9]) that allow us
to gain additional speed and functionality.

3.2 Fields
The commonly used numerical type is mpq_class from the GMP library which is
a multiprecision rational type. It is supported in GAP as well as C++. In order to
compute with polytopes related to the Coxeter groups H3 and H4 one needs to allow
for the ring Q[

√
5]. Implementing the arithmetic operations (+, −, ∗, /) is relatively

easy but the sign determinations require more care.
Testing if a + b

√
5 is positive can be done in the following way. If a and b are of

the same sign it is easy to conclude. Otherwise, a and b are of opposite sign and we
write

a+ b
√

5 = a− b
√

5
a2 − 5b2

The sign of a−b
√

5 can be decided and together with the sign of the rational number
a2 − 5b2 we can conclude. The same strategy allows one to decide the sign in mixed
cubic rings. For other real fields of algebraic numbers, different approaches would
have to be used.
Also, for some subroutines like lrs one needs only to use ring operations. In that
case one can reduce to the case of Z[

√
5]. For the kind of computations we are doing

here there is no need for algebraic closures or such kind of constructions.

3.3 Canonicalization strategies
In preceding works, when we had two orbits of facets in order to check isomorphism,
we used the [12] implementation of the partition backtrack. See [16,17] and [15] for
accounts of this class of algorithms. That is we encode facets by the subset of their
incident vertices and then use the partition backtrack for set equivalence.
However, in [14] an algorithm for finding a canonical representative of a subset for
a permutation group action was found. This greatly simplifies the code since for
N orbits instead of having to compute N equivalences, we simply have to do one
canonicalization and one string comparison.
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4 Results

4.1 Results for F4

For the group F4 we use the following two generators:

1
2


1 −1 1 1

−1 −1 −1 1
1 1 −1 1
1 −1 −1 −1

 , 1
2


−1 1 −1 −1
1 −1 −1 −1

−1 −1 1 −1
1 1 1 −1


There are exactly two orbits of facets for conv(F4):

1. Orbit 1 of Birkhoff tensor with incidence 288. Stabilizer has order 4608. One
representative inequality is Tr(XA) ≤ 1 with

A =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 −1


2. Orbit 2 of facets with incidence 288. Stabilizer has order 48. One representa-

tive inequality is Tr(XA) ≤ 1 with

A = 1
4


1 0 1 0
0 1 0 −1
0 1 0 1
1 0 1 −2


The total number of facets is 55872.

4.2 Results for H4

For the group H4 we use the following two generators:

1
4


1 −2 −1 0
2 2 −2 2
1 −2 0 1
0 −2 −1 1

+
√

5
4


1 0 1 0
0 0 0 0

−1 0 0 1
0 0 −1 −1

 ,


−1 0 0 0
0 0 0 −1
0 −1 0 0
0 0 1 0


We found 1063 orbits of facets of conv H4. If we express such facets in the form
Tr(AX) ≤ 1 then one 1, 4, 130, 928 orbits of facets of rank 1, 2, 3 and 4.
Tables 1 and 2 give the statistics about the incidence of orbits and about the size of
their stabilizers. The full list of orbits is presented in [7]. See below one matrix of
incidence 120 with a stabilizer of size 120. This suffices to show that the conjecture
is false.

A = 1
4


−6 −11 −7 4
0 −2 3 1
0 −1 4 3
0 0 0 0

+
√

5
4


2 5 3 −2
0 0 −1 −1
0 1 −2 −1
0 0 0 0
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p Nr. p Nr. p Nr. p Nr.
16 376 17 282 18 116 19 85
20 48 21 30 22 12 23 5
24 44 25 3 26 31 28 10
30 7 32 5 36 4 38 1
48 1 100 1 120 1 480 1

Table 1: For each incidence p the number of orbits of incidence p is given.

s Nr. s Nr. s Nr. s Nr.
1 800 2 189 4 50 6 1
8 8 12 4 16 3 24 1
36 1 40 1 48 2 120 1
576 1 2880 1

Table 2: For each size s the number of orbits of orbits having a stabilizer of size s
is given.
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Abstract
We look at arithmetical progressions as equidistant walks, the difference being
the steps’ length. One can construct equidistant grids by putting equidistant
walks to rows and columns. We introduce a notion of diagonal walks across
grids. One specific diagonal walk is interesting because the sum of its ele-
ments gives polygonal numbers. We give one specific construction method
for obtaining equidistant grids. It assumes alternating two equidistant walks
placed in the first two columns, shifted up by the same shift whenever some
of them repeat. We find conditions on the steps’ lengths and the shift size
that ensure that grids obtained in this way are equidistant. Also, we define a
zig-zag pattern walks over a two-column grid. It is possible to identify them
with horizontal walks in an infinite grid made of given columns by the men-
tioned construction method. Finally, we form equidistant walks of differences
of consecutive products with overlapping odd and even factors and show that
the distance between them is constant.
Keywords: arithmetical progression, equidistant walks, equidistant grids,
polygonal numbers, products with overlapping factors

1 Introduction and preliminaries
An arithmetical progression or an arithmetical sequence is a sequence of numbers
such that the difference between consecutive numbers is constant. If a1 is the initial
term and d is the common difference of consecutive numbers, then the n-th term an

of the progression is given by: an = a1 +(n−1)d. In general an = am +(n−m)d for
natural numbers n and m, n > m. We restrict here to sequences of positive integers,
so a1, d ∈ N+.
We consider arithmetical progressions as equidistant walks to infinity with a com-
mon difference as "the step length." Indeed, starting from the first term a1 one
obtains the next term from the previous by taking the step of the length d:

a1, a1 + d, (a1 + d) + d, . . .

(Biserka Kolarec) University of Zagreb, Faculty of Agriculture, Zagreb, Croatia,
bkudelic@agr.hr
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The arithmetical progression of odd numbers: 1, 3, 5, 7, 9, . . . is an equidistant walk
with the steps’ length equal to 2, the same as the arithmetical progression of even
numbers: 2, 4, 6, 8, 10, . . .. The only difference between those two equidistant walks
is in the initial term.
Equidistant walks serve as building blocks for grids. To form a grid, we put one
equidistant walk that starts with a1 and has the steps’ length dc to the first column,
and the other starting again with a1 with the step length dr to the first row. Then
we add equidistant walks with step lengths equal to dc (or dr) to columns (or rows).
So, equidistant grids are given by the first term a1 and the pair of differences (dr, dc).
There are different kinds of number grids in literature. For example, the most
well-known is the Pascal triangle based on the usual Euclidean square grid

1 1 1 1 · · ·
1 2 3 4 · · ·
1 3 6 10 · · ·
1 4 10 20 · · ·
... ... ... . . . .

and the hyperbolic Pascal triangles based on the hyperbolic square grids, see [1].
Here we consider the Euclidean grid and new number grids: equidistant grids with
equidistant walks in rows and columns.

Example 1. Having a1 = 1 and dc = dr = 2, we obtain the next grid of odd numbers

1 3 5 7 · · ·
3 5 7 9 · · ·
5 7 9 11 · · ·
7 9 11 13 · · ·
... ... ... . . . .

(1)

Notice also the other possible construction of this grid: besides odd numbers in the
first column, we add new columns by shifting the walk from the previous column up
by one and omitting the first number.

Here, we define walks over equidistant grids and a grid characteristic. We will
show that equidistant grids are means to generate polygonal numbers. There are
known problems of finding arithmetical progressions in polygonal numbers tackled
in [2] and [3]. Polygonal numbers may not contain long arithmetical sequences.
However, they constitute them. It is not new that polygonal numbers are sums of
numbers that form an arithmetical sequence. However, equidistant grids provide
more than one way to do this and give all possible ways. More precisely, we shall
prove that s-gonal numbers are sums of elements of a diagonal walk in the grid of the
characteristic s. Adding numbers in different directions of a number grid is an old
idea. For example, it is known that the shallow diagonal sums of Pascal’s triangle
give Fibonacci numbers:
Some equidistant grids, like the (1) from above, are obtained by a specific construc-
tion method. It is the method of alternating columns of two equidistant walks of
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 Figure 1: Sums in a Pascal triangle

the same steps’ length, with each column shifted up by some fixed shift k in every
new appearance. Some conditions on dc, dr, and k ensure the grid is equidistant.
Define an (R,D)-walk across the grid: for a pair of integers R and D, R gives a
move to the right and D a move down that leads from one number of the walk
to another. Here the negative value of R indicates a move to the left by |R|, and
the negative value of D is a move up by |D|. Figure 1 illustrates directions of
(R,D)-walks starting from the position A for different signs of R and D.

 

 

 Figure 2: Directions of (R,D)-walks

Walks may start at any point in a grid. Observe that (R, 0)-walks are horizontal
walks and (0, D)-walks are vertical walks. We call all other (R,D)-walks diagonal,
not just the walk in the direction of the main diagonal for which R = D. Negative
R and/or D results in a finite (R,D)-walk. Among infinite walks, we distinguish
diagonal walks of the steep incline down for which R < D and diagonal walks of the
slight incline down if opposite.
Observe that each walk across the grid is an equidistant walk. We call such grid
an equidistant grid. Being equidistant does not mean all walks through a grid
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have the same step length. In the grid (1) any horizontal (R, 0)-walk has the steps’
length 2R, for vertical (0, D)-walk it is 2D, while a diagonal (R,D)-walk has the
steps’ length 2(R +D).
Notice that in a grid of odd numbers (1) any (R,D)-walk that starts with some
number a1 can be identified simply to an (0, R + D)-walk over the first column of
the grid, i. e. a walk in which, starting from a1, one steps on every (R + D)th
number of the walk.
Observe that all the data necessary for the construction of the grid, (1) in particular,
or any other equidistant grid in general, are given in the upper-left triangle of the
grid, namely

1 3
3 .

To an equidistant grid given by a1, dc and dr a grid characteristic s is s =
2a1 + dc + dr. This is the sum of elements a1 + dc, a1 + dr of the first non-trivial
(1,−1)-walk in an equidistant grid

a1 a1 + dr

a1 + dc .

Example 2. Next grids have grid characteristics 13 and 8, respectively

1 7 13 19 · · ·
6 12 18 24 · · ·
11 17 23 29 · · ·
... ... ... ... . . .

,

1 7 13 19 · · ·
1 7 13 19 · · ·
1 7 13 19 · · · .
... ... ... ... . . .

Notice that above, sums of elements of (1,−1)-walks give tridecagonal and octagonal
numbers, respectively:

1 = 1
13 = 6 + 7
36 = 11 + 12 + 13 ,
...

1 = 1
8 = 1 + 7
21 = 1 + 7 + 13 .
...

It happens by no chance: as we shall see, an equidistant grid with a1 = 1 and a
characteristic s = 2 + dc + dr generates s-gonal numbers as sums of members of
(1,−1)-walks. In addition, observe that the first grid gives a non-standard decom-
position of tridecagonal numbers; the standard one that describes the geometrical
formation of 13-gonal numbers is:

1 = 1
13 = 1 + 12
36 = 1 + 12 + 23 .
...
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2 Equidistant grids and polygonal numbers
Polygonal numbers are numbers that, represented by dots, form a usual polygonal
pattern. So, triangular numbers 1, 3, 6, . . . form triangles, square numbers 1, 4, 9, . . .
form squares, and so.
Let s denote the number of polygon sides. There is a formula for the nth s-gonal
number [2]

Pn
(s) = n

2
(
2 + (n− 1)(s− 2)

)
.

Notice that the list of s-gonal numbers starts with 1 and then proceeds with s, since
the second s-gonal number equals exactly s.

 

 

 

 

 

 

 

 

Figure 3: s-gonal numbers for s = 3, 4, 5, 6 (retrieved from Wikipedia.)

There are natural decompositions of nth s-gonal number to a sum of n members
of an arithmetical sequence. These decompositions testify geometrical formation of
s-gonal numbers. Namely, for triangular numbers, the list starts with 1, proceeds
with 3 = 1 + 2 because to one dot we must add two more dots to get the smallest
non-trivial triangle, continues with 6 = 1 + 2 + 3 because one has to add three more
dots to get the third triangular number, and so on. In general, one enlarges the
sides of an s-gon by the next member of an arithmetical sequence:

• for s = 3 addends are . . . (((1 + 2) + 3) + 4) . . .

• for s = 4 one has . . . (((1 + 3) + 5) + 7) . . .

• for s = 5, . . . (((1 + 4) + 7) + 10) . . .

These decompositions are justified geometrically: one can construct the (n + 1)st
s-gonal number from the nth s-gonal number. Indeed, there is an initial point from
which the s-gons begin to grow. Each of the two sides that meet in the initial point
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contains n points, so one adds n− 2 points to each of the other s− 2 sides to form
the next s-gon. Since (n− 2)(s− 2) = (n− 1)(s− 2) + (s− 2) we see that the new
s-gonal formation originates from the old one enlarged by s − 2. Therefore s − 2
is the difference of an arithmetical sequence whose consecutive sums give s-gonal
numbers.
Besides the natural decomposition of s-gonal numbers as sums of members of equidis-
tant walks, we can read others in the equidistant grids of a characteristic s. The
total number of such decompositions is

⌊
s
2

⌋
. The following theorem holds.

Theorem 1. For a given integer s, s ≥ 2 there are exactly
⌊

s
2

⌋
decompositions

of s-gonal numbers as sums of members of (1,−1)-walks in equidistant grids of
characteristic s.
Proof. We claim that in every equidistant grid of the characteristics s sums of ele-
ments of (1,−1)-walks generate s-gonal numbers. Let p ∈ {1, 2, . . . ,

⌊
s
2

⌋
}. Look at

the equidistant grid of characteristics s:
1 s− p
p .

An equidistant walk in the first column starts with a1 = 1 and has a step length
equal to p−1. The one in the first row starts with b1 = 1; its step length is s−p−1.
So, an = 1 + (n− 1)(p− 1) and bn = 1 + (n− 1)(s− p− 1). The sum of elements of
a (1,−1)-walk is

sn = n

2 (an + bn) = n

2
(
2 + (n− 1)(s− 2)

)
and this is exactly the nth s-gonal number.
Corollary 1. For s even, every nth s-gonal number can be represented as the sum
of n equal numbers.
Proof. The decomposition follows from the equidistant grid of the characteristics s:

1 s
2

s
2 .

Remark 1. Observe that s-gonal numbers are partial sums of elements of (1, 1)-
walk on the main diagonal of an equidistant grid of characteristic s. That is so
because differences of consecutive s-gonal numbers form an equidistant walk with
the step length s − 2. Every (1, 1)-walk has this step length, particularly the main
diagonal walk. Thus, in the grid (2) from Example 3, nonagonal numbers are sums
of elements of an (1,−1)-walk, but also partial sums of elements of an (1, 1)-walk.
Generally, the main diagonal is an invariant of all

⌊
s
2

⌋
different equidistant grids of

characteristic s. Indeed, for p ∈ {1, 2, . . . ,
⌊

s
2

⌋
} one has

1 s− p
p s− 1 .

(The element s − 1 in this grid is: p + (s − p − 1), in the horizontal direction, or
s−p+(p− 1), in the vertical direction.) So, regardless of p, on the main diagonal is
the walk 1, s− 1, 2s− 3, . . . whose nth partial sum equals the nth s-gonal number.
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3 Equidistant grids made by alternating and
shifting columns

Example 3. Look at the next equidistant grid in which a1 = 1, dr = 5 and dc = 2

1 6 11 16 · · ·
3 8 13 18 · · ·
5 10 15 20 · · ·
7 12 17 22 · · ·
9 14 19 23 · · ·
11 16 21 26 · · · .
... ... ... ... . . .

(2)

The grid (2) is of a specific construction interest. Namely, we can start its construc-
tion with two equidistant walks having the same length of the step (dc = 2) given in
the first two columns. We add additional columns by alternating existing columns
and shifting them up by five in each new appearance. Indeed, the shift by five, and
only by five, of each column ensures that all horizontal walks are equidistant. (Five
is the difference of the first elements in given columns or dr).

We are interested in just-described equidistant grid construction. It starts by putting
two walks of the same step length to the first two columns and then alternating
columns shifted up by some fixed shift k. The grid (2) shows that not every shift
size will result in an equidistant grid. The question is: how can one choose k to get
it?
Assume there are equidistant walks with initial terms a1 and a1 + dr and the steps’
lengths equal to dc in the first two columns of a grid. Then add new columns in a
way to alternate given walks shifted up by some k, k > 0 in each new appearance
to obtain the grid

a1 a1 + dr a1 + kdc a1 + dr + kdc · · ·
a1 + dc a1 + dr + dc a1 + (k + 1)dc a1 + dr + (k + 1)dc · · ·
a1 + 2dc a1 + dr + 2dc a1 + (k + 2)dc a1 + dr + (k + 2)dc · · ·
a1 + 3dc a1 + dr + 3dc a1 + (k + 3)dc a1 + dr + (k + 3)dc · · · .

... ... ... ... . . .

Since dr gives the steps’ length of equidistant walks in rows, we have the requirement
a1 + kdc − (a1 + dr) = dr. That implies dck = 2dr.
The condition kdc = 2dr relates the shift k and the steps’ lengths dc and dr of
equidistant walks in columns and rows, respectively. Notice that for dc = 2, the
condition implies k = dr and therefore justifies that for dc = 2 the only shift that
gives an equidistant grid is the shift by dr, the fact we already noticed in the grid
(2).
Given dr, each ordered pair (dc, k) that satisfies dck = 2dr gives one equidistant grid.
So, the number of all such grids equals the number of ordered pairs (dc, k) such that
dck = 2dr. To investigate the total number of equidistant grids, we consider separate
cases of prime and composite dr.
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In case of a prime dr, dr ̸= 2 the condition dck = 2dr gives four possible choices of
dc and k: dc = 1, k = 2dr; dc = 2dr, k = 1; dc = 2, k = dr and dc = dr, k = 2. For
the first two, we have the following grids:

a1 a1 + dr a1 + 2dr · · ·
a1 + 1 a1 + dr + 1 a1 + 2dr + 1 · · ·
a1 + 2 a1 + dr + 2 a1 + 2dr + 2 · · ·

... ... ... . . .

and
a1 a1 + dr a1 + 2dr · · ·

a1 + 2dr a1 + 3dr a1 + 4dr · · ·
a1 + 4dr a1 + 5dr a1 + 6dr · · · .

... ... ... . . .

.

The case dc = 2, k = dr gives already treated equidistant grids

a1 a1 + dr a1 + 2dr · · ·
a1 + 2 a1 + dr + 2 a1 + 2dr + 2 · · ·
a1 + 4 a1 + dr + 4 a1 + 2dr + 4 · · · .

... ... ... . . .

Finally, the case dc = dr, k = 2 gives the equidistant grid of a specific (symmetric)
layout

a1 a1 + dr a1 + 2dr · · ·
a1 + dr a1 + 2dr a1 + 3dr · · ·
a1 + 2dr a1 + 3dr a1 + 4dr · · · .

... ... ... . . .

If dr is a composite number, besides the preceding four, there are other choices of dc

and k such that dck = 2dr. We distinguish two cases: the case of odd and even dr.
If dr is odd, we can factorize it as dr = pn1

1 p
n2
2 . . .. Here p1, p2, . . . are different (odd)

prime numbers and n1, n2, . . . their respective multiplicities. The number D(dr)
of all divisors of dr equals D(dr) = (n1 + 1)(n2 + 1) . . .. Since 2dr = 2pn1

1 p
n2
2 . . .,

the number of divisors of 2dr is D(2dr) = 2D(dr). That is exactly the number of
all ordered pairs (dc, k) such that dck = 2dr and also the number of all possible
equidistant grids. Indeed, except for dr = 2, the number of divisors of 2dr is even.
We can arrange them to an increasing sequence: p1, p2, . . . , pl−1, pl with l = 2D(dr),
p1 = 1 and pl = 2dr. Then (p1, pl), (p2, pl−1), . . . and (pl, p1), (pl−1, p2), . . . give all
possible pairs of lengths of the step dc of equidistant walks in columns and shifts k
of columns that give equidistant grids.
For dr = 2 there are three divisors of 2dr = 4, namely 1, 2 and 4 as well as three
possible ordered pairs (dc, k): (1, 4), (4, 1), (2, 2).
Even dr has a prime factor decomposition dr = 2n1pn2

2 p
n3
3 . . ., with different prime
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factors pj ̸= 2. Then 2s = 2n1+1pn2
2 p

n3
3 . . .. Consequently,

D(2dr) = (n1 + 2)(n2 + 1)(n3 + 1) · · ·
= (n1 + 1)(n2 + 1) + · · · + (n2 + 1)(n3 + 1) · · ·

= D(dr) +D

(
dr

2n1

)
.

Similarly as in the case of odd dr, the number of all possible equidistant grids for
even dr is D(dr)+D

(
dr

2n1

)
. To summarize: up to the choice of a1 and dr, the number

of equidistant grids equals the number of all divisors of 2dr. The sequence D(n) is
in the On-Line Encyclopedia of Integer Sequences [4] with the label A000005.

Example 4. Let us look at some concrete examples of equidistant grids.
Case dr = 5
There are four divisors of 2dr = 10: 1, 2, 5, 10. There are also four possible choices
for (dc, k): (1, 10), (10, 1), (2, 5) and (5, 2). If we take a1 = 1, there are four equidis-
tant grids

1 6 11 16 · · ·
2 7 12 17 · · ·
3 8 13 18 · · ·
... ... ... ... . . .

1 6 11 16 · · ·
11 16 21 26 · · ·
21 26 31 36 · · ·
... ... ... ... . . .

1 6 11 16 · · ·
3 8 13 18 · · ·
5 10 15 20 · · ·
... ... ... ... . . .

1 6 11 16 · · ·
6 11 16 21 · · ·
11 16 21 26 · · ·
... ... ... ... . . .

In given grids, we look at characteristics s to see which s-gonal numbers they gen-
erate. We list here s-gonal numbers from the above grids together with their OEIS
labels: octagonal numbers (s = 8, A000567), heptadecagonal numbers (s = 17,
A051869), nonagonal numbers (s = 9, A001106) and dodecagonal numbers (s = 12,
A051624).
Case dr = 6
There are six divisors of 2dr = 12: 1, 2, 3, 4, 6, 12 and six possible ordered pairs
(dc, k): (1, 12), (12, 1), (2, 6), (6, 2), (3, 4) and (4, 3). For a1 = 1, we have the follow-
ing equidistant grids

1 7 13 19 · · ·
2 8 14 20 · · ·
3 9 15 21 · · ·
... ... ... ... . . .

1 7 13 19 · · ·
13 19 25 28 · · ·
25 31 37 40 · · ·
... ... ... ... . . .

1 7 13 19 · · ·
3 9 15 21 · · ·
5 11 17 23 · · ·
... ... ... ... . . .

1 7 13 19 · · ·
7 13 19 25 · · ·
13 19 25 31 · · ·
... ... ... ... . . .

1 7 13 19 · · ·
4 10 16 22 · · ·
7 13 19 25 · · ·
... ... ... ... . . .

1 7 13 19 · · ·
5 11 17 23 · · ·
9 15 21 27 · · ·
... ... ... ... . . .
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Given grids again generate s-gonal numbers: nonagonal (s = 9, A001106), icosag-
onal (s = 20, A051872), decagonal (s = 10, A001107), tetradecagonal (s = 14,
A051866), hendecagonal (s = 11, A051682) and dodecagonal (s = 12, A051624).

3.1 Zig-zag equidistant walks and bi-equidistant walks
Now we introduce zig-zag walks and investigate conditions under which they are
equidistant. Zig-zag walks involve two equidistant walks of the same step length dc

placed in a two-column grid (the members of the walk are bolded)

a1 a′
1

a1 + dc a′
1 + dc

... ...
a1 + rdc a′

1 + rdc
... ...

a1 + (r + l)dc a′
1 + (r + l)dc

... ...
a1 + (2r + l)dc a′

1 + (2r + l)dc .
... ...

The zig-zag walk starts with a1, the first term of an equidistant walk from the first
column, continues to a′

1 + rdc from the second column r places lower than its first
term, then proceeds to the first column r + l places below the first term, and so
on. So, in each right turn zig-zag walk steps to the element of the second column r
places lower than the present one, and in each left turn to the one of the first column
l places below the present one. Look at conditions that ensure that a zig-zag walk
is equidistant. Let dr = a′

1 − a1 and assume dr > 0. From

a′
1 + rdc − a1 = a1 + (r + l)dc − (a′

1 + rdc)

it follows that the zig-zag walk is equidistant if and only if 2dr = (l − r)dc. The
condition dr > 0 together with dc > 0 (as assumed so far) forces r < l. Further,
l− r = 2dr

dc
provides the condition that the steps’ length dc must be a divisor of 2dr.

There is a finite number of possible step lengths, but an infinite number of choices
of l and r satisfying r < l.
Zig-zag walks can become horizontal walks through an infinite grid of given walks.
Like above, we can construct an equidistant grid by alternating shifted column walks.
Namely, the one from the first column stays as it is, and we shift the second up by
r. After this, we alternate columns shifted up by l+ r in each new appearance. The
original zig-zag walk now appears in the first row

a1 a′
1 + rdc a1 + (r + l)dc a′

1 + (2r + l)dc a1 + (2r + 2l)dc · · ·

Example 5. In a special case when a1 = a′
1 (or dr = 0) and dc = 1, the previous

horizontal walk turns into a walk we call a bi-equidistant walk

a1 a1 + r a1 + r + l a1 + 2r + l a1 + 2r + 2l · · ·
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It starts with a1 with the first step length r and the second step length l and continues
to infinity by alternating those two steps. There is also a bi-equidistant walk

a1 a1 + l a1 + l + r a1 + 2l + r a1 + 2l + 2r · · ·

that starts with a1, and then alternates steps of lengths l and r to infinity. Notice that
odd members of given two bi-equidistant walks coincide, while the distance between
even members is constant and equals |r − l|.

3.2 Equidistant walks over progressions of products with
overlapping odd and even factors

The sum and the difference of corresponding members of two arithmetical progres-
sions is again an arithmetical progression. The same does not hold for a Hadamard
product of two arithmetical progressions unless one is constant. For given n let us
look at equidistant walks over odd and even numbers

2n− 1 2n
2n+ 1 2n+ 2
2n+ 3 2n+ 4

... ...

.

By a progression of products with overlapping factors of odd numbers we mean
the sequence (2n− 1)(2n+ 1), (2n+ 1)(2n+ 3), (2n+ 3)(2n+ 5), . . ..
Let us further observe the progressions of products with overlapping factors starting
with the odd number (2n− 1)(2n+ 1) and even number 2n(2n+ 2), respectively

(2n− 1)(2n+ 1) 2n(2n+ 2)
(2n+ 1)(2n+ 3) (2n+ 2)(2n+ 4)
(2n+ 3)(2n+ 5) (2n+ 4)(2n+ 6)

... ...

.

Since differences of consecutive members are not constant, none of the progressions
is arithmetical. However, differences in products of consecutive elements do form
arithmetical progressions. Indeed, look at progressions of differences of products of
consecutive numbers

(2n+ 1)(2n+ 3) − (2n− 1)(2n+ 1) (2n+ 2)(2n+ 4) − 2n(2n+ 2)
(2n+ 3)(2n+ 5) − (2n+ 1)(2n+ 3) (2n+ 4)(2n+ 6) − (2n+ 2)(2n+ 4)

... ...
.

They are both equidistant walks with a step length of 8

8n+ 4 8n+ 8
8n+ 12 8n+ 16
8n+ 20 8n+ 24

... ...

.
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Further, the second walk is ahead of the first walk by 4 all the time. Namely, the
difference of the corresponding numbers in sequences is constant and equals 4(

(2n+ 2)(2n+ 4) − 2n(2n+ 2)
)

−
(
(2n+ 1)(2n+ 3) − (2n− 1)(2n+ 1)

)
= 4.

If we further shift the progression of even numbers up by one
2n

2n− 1 2n+ 2
2n+ 1 2n+ 4
2n+ 3 2n+ 6

... ...

.

we may look at the progressions of respective products with overlapping factors as
before

(2n− 1)(2n+ 1) (2n+ 2)(2n+ 4)
(2n+ 1)(2n+ 3) (2n+ 4)(2n+ 6)

... ...
.

Distance between the corresponding differences is again constant; now it equals
12 = 2 · 3!. (

(2n+ 4)(2n+ 6) − (2n+ 2)(2n+ 4)
)
−

−
(
(2n+ 1)(2n+ 3) − (2n− 1)(2n+ 1)

)
= 12.

In general, we may fix a natural number n and the progression of products with
overlapping odd factors. Further, we shift the progression of products with over-
lapping even factors by k. Here k > 0 and k < 0 denote the shift up or down by
|k|, respectively. Because k = 1 − n is the maximal possible shift down, there is a
condition k ≥ 1 − n. After we shift the second sequence by k, we get

... ...
(2n− 1)(2n+ 1) (2n+ 2k)(2n+ 2(k + 1))
(2n+ 1)(2n+ 3)

(
2n+ 2(k + 1)

)(
2n+ 2(k + 2)

)
... ...

.

The following holds for the distance of differences between two consecutive products
of numbers in sequences.
Proposition 1. For a natural number n and an integer k ≥ 1 − n,((

2n+ 2(k + 1)
)(

2n+ 2(k + 2)
))

− (2n+ 2k)
(
2n+ 2(k + 1)

))
−

−
(

(2n+ 1)(2n+ 3) − (2n− 1)(2n+ 1)
)

= 8k + 4.

Remark 2. Products of overlapping factors can include more than two numbers that
overlap in more than one factor. So we can speak of products of n consecutive odd or
even numbers that overlap inm factors, m < n, i.e., ofm-overlapping n-products.
In this notation, the above overlapping products are 1-overlapping 2-products. As
above, the distance between differences of two consecutive m-overlapping n-products
of even numbers and odd numbers is constant.
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1 Introduction
Let us consider the following alternating binomial sum:

S1(n,m) =
n∑

k=0
(−1)k

(
n

k

)m(2n+ k

2n+ 1

)
; (1)

where n and m are natural numbers.
Let x and y be non-negative numbers. It is well-known [5, Eq. (10.15), p. 47] that

n∑
k=0

(−1)k

(
n

k

)(
x+ k

y

)
= (−1)n

(
x

y − n

)
. (2)

(Jovan Mikić) University of Banja Luka, Faculty of Technology, Bosnia and Herzegovina,
jovan.mikic@tf.unibl.org
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The Vandermonde convolution formula [4, Eq. (5.24)] is equivalent to Eq. (2). Also
there are, at least, two combinatorial proofs of Eq. (2) by using sign-reversing invo-
lutions [2].
Let Cn denote [7, Section 5, p. 103] the n-th Catalan number. For m = 1, by the
Eq. (2), it follows that

S1(n, 1) = (−1)nnCn. (3)
We assert that:

Theorem 1. The sum S1(n,m) is always divisible by n for all natural numbers n
and m.

The sum S1(n,m) has a natural generalization:

S1(n,m; a) =
n∑

k=0
(−1)k

(
n

k

)m(
an+ k

an+ 1

)
; (4)

where a is a natural number.
Obviously, for a = 2, S1(n,m; 2) = S1(n,m).
For m = 1, by the Eq. (2), it can be shown that

S1(n, 1; a) = (−1)n n

(a− 1)n+ 1

(
an

n

)
. (5)

Due to gcd(n, (a − 1)n + 1) = 1, by the Eq. (5), it follows that S1(n, 1; a) is di-
visible by n. Note that the number C(n, a) = 1

(a−1)n+1

(
an
n

)
is known [7, Section

17, Eq. (17.1), p. 375] as generalized Catalan number or Fuss-Catalan number. See
also [1, Eq. (2.2)]. For a = 2, C(n, 2) = Cn.
We assert that:

Theorem 2. Let a be a fixed natural number. The sum S1(n,m; a) is always divisible
by n for all natural numbers n and m.

Furthermore, let us consider the following alternating binomial sum:

S2(n,m) =
n∑

k=0
(−1)k

(
n

k

)m(2n+ 1 + k

2n

)
; (6)

where n and m are natural numbers.
For m = 1, by the Eq. (2), it follows that

S2(n, 1) = (−1)n(2n+ 1)Cn. (7)

We assert that:

Theorem 3. The sum S2(n,m) is always divisible by 2n+1 for all natural numbers
n and m.
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The sum S2(n,m) has a natural generalization:

S2(n,m; a) =
n∑

k=0
(−1)k

(
n

k

)m(
an+ 1 + k

an

)
; (8)

where a is a natural number.
For m = 1, by the Eq. (2), it can be shown that

S2(n, 1; a) = (−1)nan+ 1
n+ 1

(
an

n

)
. (9)

Note that the integers an+ 1 and n+ 1 are not relatively prime in general.
We assert that:

Theorem 4. Let a be a fixed natural number. The sum S2(n,m; a) is always divisible
by an+1

gcd(a−1,n+1) for all natural numbers n and m.

We prove Thms. (2) and (4) by using a new class of binomial sums. Theorem 1 is
a special case of a Theorem 2 for a = 2. Similarly, Theorem 3 is a special case of a
Theorem 4 for a = 2.
Let us consider the following sum:

S(n,m; a) =
n∑

k=0

(
n

k

)m

F (n, k, a); (10)

where n, m and a are natural numbers, and F (n, k, a) is an integer-valued function.
Our goal is to investigate some divisibility properties of the sum S(n,m; a). In order
to do so, we use a new class of binomial sums which we called M sums.

Definition 1. Let S(n,m; a) be a sum from the Eq. (10) . Then

MS(n, j, t; a) =
(
n− j

j

) n−2j∑
k=0

(
n− 2j
k

)(
n

j + k

)t

F (n, j + k, a); (11)

where j and t are non-negative integers such that j ≤ ⌊n
2 ⌋.

See [9, Def. 7, Eq. (28), p. 9].
Obviously, by setting j = 0 in the Eq. (11), it follows that [9, Eq. (29), p. 9]

S(n, t+ 1; a) = MS(n, 0, t; a). (12)

Due to Eq. (12), we can see MS(n, j, t; a) sum as a generalization of S(n,m; a).
Furthermore, M sums satisfy [9, Thm. 8, p. 9] the following recurrence:

MS(n, j, t+ 1; a) =
(
n

j

) ⌊ n−2j
2 ⌋∑

u=0

(
n− j

u

)
MS(n, j + u, t; a). (13)

Eqns. (12) and (13) have a simple consequence which is important to us. Let us
suppose that an integer q(n, a) divides MS(n, j, t0; a) for all 0 ≤ j ≤ ⌊n

2 ⌋, where t0
is a fixed non-negative integer. By using the Eq. (13) and the induction principle,
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it can be shown that q(n, a) must divide MS(n, j, t; a), for all integers t such that
t ≥ t0. By the Eq. (12), it follows that q(n, a) divides S(n, t; a) for all integers t
such that t ≥ t0 + 1.
By setting t := 0 in the Eq. (11), we obtain that

MS(n, j, 0; a) =
(
n− j

j

) n−2j∑
k=0

(
n− 2j
k

)
F (n, j + k, a). (14)

The M sums give an elementary proof of Calkin result [3, Thm. 1]. See also [6,
Thm. 1.2, Thm. 1.3, p. 2]. Note that there are also another applications [10, Section
2, p. 4], [8, 9] of M sums.

2 The Main Lemmas
We present four lemmas.
We calculate M sums for the sum S1(n,m; a) for t = 0 and t = 1.

Lemma 1.

MS1(n, j, 0; a) =
(−1)n−j(n− j)

(
an+j

j

)(
an+1
n−2j

)
an+ 1 . (15)

Lemma 2.

MS1(n, j, 1; a) = n

⌊ n−2j
2 ⌋∑

u=0

(−1)n−j−u
(

n−1
j

)(
j+u

u

)(
an+j+u

j+u

)(
an+1

n−2j−2u

)
an+ 1 . (16)

Also we calculate M sums for the sum S2(n,m; a) for t = 0 and t = 1.

Lemma 3.

MS2(n, j, 0; a) =
(−1)n−j(an+ 1)

(
an+1+j

j

)(
an

n−2j

)
n+ 1 − j

. (17)

Lemma 4.

MS2(n, j, 1; a) =
⌊ n−2j

2 ⌋∑
u=0

(−1)n−j−u(an+ 1)
(

n+1
j+u

)(
j+u

j

)(
an+1+j+u

j+u

)(
an

n−2j−2u

)
n+ 1 . (18)

3 A Proof of Lemma 1
Proof. Obviously, the sum S1(n,m; a) is an instance of the sum S(n,m; a) from the
Eq. (10), where F1(n, k, a) = (−1)k

(
an+k
an+1

)
.

By the Eq. (14), we have:

MS1(n, j, 0; a) =
(
n− j

j

) n−2j∑
k=0

(
n− 2j
k

)
F1(n, j + k, a)

= (−1)j

(
n− j

j

) n−2j∑
k=0

(−1)k

(
n− 2j
k

)(
an+ j + k

an+ 1

)
(19)
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By the Eq. (2), it follows that
n−2j∑
k=0

(−1)k

(
n− 2j
k

)(
an+ j + k

an+ 1

)
= (−1)n−2j

(
an+ j

n− j − 1

)
. (20)

By the Eq. (20), the Eq. (19) becomes

MS1(n, j, 0; a) = (−1)n−j

(
an+ j

n− j − 1

)(
n− j

j

)
. (21)

Due to well-known [7, Section 1, Eq. (1.3), p. 5] formula:(
n

k − 1

)
= k

n− k

(
n

k

)
,

we have that: (
an+ j

n− j − 1

)
= n− j

(a− 1)n+ 2j + 1

(
an+ j

n− j

)
, (22)

By the Eq. (22), the Eq. (21) becomes:

MS1(n, j, 0; a) = (−1)n−j n− j

(a− 1)n+ 2j + 1

(
an+ j

n− j

)(
n− j

j

)
. (23)

It is well-known [7, Section 1, Eq. (1.4), p. 5] that:(
a

b

)(
b

c

)
=
(
a

c

)(
a− c

b− c

)
; (24)

where a, b, and c are non-negative integers such that a ≥ b ≥ c.
By the Eq. (24), it follows that(

an+ j

n− j

)(
n− j

j

)
=
(
an+ j

j

)(
an

n− 2j

)
. (25)

By the Eq. (25), the Eq. (23) becomes

MS1(n, j, 0; a) = (−1)n−j n− j

(a− 1)n+ 2j + 1

(
an+ j

j

)(
an

n− 2j

)
. (26)

Due to another well-known [7, Section 1, Eq. (1.2), p. 5]formula:
1

n+ 1 − k

(
n

k

)
= 1
n+ 1

(
n+ 1
k

)
,

it follows that:
1

(a− 1)n+ 2j + 1

(
an

n− 2j

)
= 1
an+ 1

(
an+ 1
n− 2j

)
. (27)

By using Eqns. (26) and (27), we obtain that

MS1(n, j, 0; a) = (−1)n−j n− j

an+ 1

(
an+ j

j

)(
an+ 1
n− 2j

)
. (28)

The Eq. (28) completes the proof of Lemma 1.

Note that that Eq. (21) leads directly to Eq. (28) by expressing binomial coefficients
in terms of factorials and cancellation of equal factors.
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4 A Proof of Lemma 2
Proof. We use the Eq. (13) and Lemma 1.
By setting t := 0 in the Eq. (13), we have that:

MS1(n, j, 1; a) =
(
n

j

) ⌊ n−2j
2 ⌋∑

u=0

(
n− j

u

)
MS1(n, j + u, 0; a). (29)

By Lemma 1, it follows that:

MS1(n, j + u, 0; a) = (−1)n−j−un− j − u

an+ 1

(
an+ j + u

j + u

)(
an+ 1

n− 2j − 2u

)
. (30)

By the Eq. (24), it follows that(
n

j

)(
n− j

u

)
=
(

n

j + u

)(
j + u

u

)
. (31)

By using Eqns. (30) and (31) in the Eq. (29), we obtain that MS1(n, j, 1; a) is equal
to the following sum:

⌊ n−2j
2 ⌋∑

u=0
(−1)n−j−u

(
n

j + u

)(
j + u

u

)
n− j − u

an+ 1

(
an+ j + u

j + u

)(
an+ 1

n− 2j − 2u

)
. (32)

It is readily verified that:

(n− j − u)
(

n

j + u

)
= n

(
n− 1
j + u

)
. (33)

By using the Eq. (33) in the Eq. (32), we obtain that MS1(n, j, 1; a) is equal to

(−1)n−j

⌊ n−2j
2 ⌋∑

u=0
(−1)u

n
(

n−1
j+u

)(
j+u

u

)(
an+j+u

j+u

)(
an+1

n−2j−2u

)
an+ 1 . (34)

This completes the proof of Lemma 2.

5 A Proof of Theorem 2
Proof. Let n and a be fixed natural numbers.
By the Eq. (5), we know that S1(n,m; a) is divisible by n for m = 1.
Due to fact that F1(n,m, a) is an integer-valued function, we know that
MS1(n, j, 0; a) is an integer. Also, see the Eq. (21).
The number

(
n
j

)(
n−j

u

)
MS1(n, j + u, 0; a) is also an integer; and, by the Eq. (34), it

is equal to the number n(n−1
j+u)(j+u

u )(an+j+u
j+u )( an+1

n−2j−2u)
an+1
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By Lemma 2 and the fact that gcd(n, an + 1) = 1, it follows that the sum
MS1(n, j, 1; a) is divisible by n for all non-negative integers j such that j ≤ ⌊n

2 ⌋.
Therefore, we can take q1(n, a) = n. By the Eq. (13) and the induction principle on
t, it follows that MS1(n, j, t; a) is divisible by n for all natural numbers t. By the
Eq. (12), it follows that S1(n, t + 1; a) is divisible by n for all natural numbers t.
Hence, S1(n,m; a) is divisible by n for all natural numbers m such that m ≥ 2.
This completes the proof of Theorem 2.

6 A Proof of Lemma 3
Proof. Obviously, the sum S2(n,m; a) is an instance of the sum S(n,m; a) from the
Eq. (10), where F2(n, k, a) = (−1)k

(
an+1+k

an

)
.

By the Eq. (14), we have:

MS2(n, j, 0; a) =
(
n− j

j

) n−2j∑
k=0

(
n− 2j
k

)
F2(n, j + k, a)

= (−1)j

(
n− j

j

) n−2j∑
k=0

(−1)k

(
n− 2j
k

)(
an+ 1 + j + k

an

)
(35)

By the Eq. (2), it follows that
n−2j∑
k=0

(−1)k

(
n− 2j
k

)(
an+ 1 + j + k

an

)
= (−1)n−2j

(
an+ 1 + j

n− j + 1

)
. (36)

By the Eq. (36), the Eq. (35) becomes

MS2(n, j, 0; a) = (−1)n−j

(
an+ 1 + j

n− j + 1

)(
n− j

j

)
. (37)

It is readily verified that(
an+ 1 + j

n− j + 1

)
= (an+ 1 + j

n− j + 1

(
an+ j

n− j

)
. (38)

By the Eq. (38), the Eq. (37) becomes

MS2(n, j, 0; a) = (−1)n−j an+ 1 + j

n− j + 1

(
an+ j

n− j

)(
n− j

j

)
. (39)

By the Eq. (25), it follows that

MS2(n, j, 0; a) = (−1)n−j an+ 1 + j

n− j + 1

(
an+ j

j

)(
an

n− 2j

)
. (40)

By the Eq. (24), it follows that

(an+ 1 + j)
(
an+ j

j

)
=
(
an+ 1 + j

j

)
(an+ 1). (41)
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By the Eq. (41), the Eq. (40) becomes:

MS2(n, j, 0; a) = (−1)n−j an+ 1
n− j + 1

(
an+ 1 + j

j

)(
an

n− 2j

)
. (42)

The Eq. (42) completes the proof of Lemma 3.

7 A Proof of Lemma 4
Proof. We use the Eq. (13) and Lemma 3.
By setting t := 0 in the Eq. (13), we have that:

MS2(n, j, 1; a) =
(
n

j

) ⌊ n−2j
2 ⌋∑

u=0

(
n− j

u

)
MS2(n, j + u, 0; a). (43)

By Lemma 3, it follows that:

MS2(n, j + u, 0; a) = (−1)n−j−u an+ 1
n− j − u+ 1

(
an+ 1 + j + u

j + u

)(
an

n− 2j − 2u

)
.

(44)
By using Eqns. (31) and (44) in the Eq. (43), we obtain that MS2(n, j, 1; a) is equal
to the following sum:

⌊ n−2j
2 ⌋∑

u=0
(−1)n−j−u

(
n

j + u

)
an+ 1

n− j − u+ 1

(
j + u

u

)(
an+ 1 + j + u

j + u

)(
an

n− 2j − 2u

)
.

(45)
It is readily verified that(

n

j + u

)
1

n− j − u+ 1 = 1
n+ 1

(
n+ 1
j + u

)
. (46)

By using the Eq. (46) in the Eq. (45), it follows that MS2(n, j, 1; a) is equal to:

an+ 1
n+ 1 ·

⌊ n−2j
2 ⌋∑

u=0
(−1)n−j−u

(
n+ 1
j + u

)(
j + u

u

)(
an+ 1 + j + u

j + u

)(
an

n− 2j − 2u

)
. (47)

The Eq. (47) proves Lemma 4.

8 A Proof of Theorem 4
Proof. Let n and a be fixed natural numbers.
By the Eq. (9), we know that S2(n,m; a) is divisible by an+1

gcd(an+1,n+1) for m = 1.
Due to fact that F2(n,m, a) is an integer-valued function, we know that
MS2(n, j, 0; a) is an integer. Also, see the Eq. (37).
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The number
(

n
j

)(
n−j

u

)
MS2(n, j + u, 0; a) is an integer; and, by the Eq. (47), it is

equal to the number (−1)n−j−u · an+1
n+1

(
n+1
j+u

)(
j+u

u

)(
an+1+j+u

j+u

)(
an

n−2j−2u

)
By Lemma 4, it follows that the sum MS2(n, j, 1; a) is divisible by an+1

gcd(an+1,n+1) for
all non-negative integers j such that j ≤ ⌊n

2 ⌋.
Therefore, we can take q2(n, a) = an+1

gcd(an+1,n+1) . By the Eq. (13) and the induction
principle on t, it follows that MS2(n, j, t; a) is divisible by q2(n, a) for all natural
numbers t. By the Eq. (12), it follows that S1(n, t+ 1; a) is divisible by q2(n, a) for
all natural numbers t. Hence, S1(n,m; a) is divisible by an+1

gcd(an+1,n+1) for all natural
numbers m such that m ≥ 2.
Note that gcd(an+1, n+1) = gcd(a−1, n+1). This completes the proof of Theorem
4.

Remark 1. By setting a := 2 in Theorem 4 and by using the fact gcd(2n+1, n+1) =
1, we obtain the proof of Theorem 3.

9 Concluding Remarks
Let us consider the following alternating sum:

S1(n,m; a, b) =
n∑

k=0
(−1)k

(
n

k

)m(
an+ k

an+ b

)
; (48)

where n, m, a, and b are natural numbers.
Obviously, S1(n,m; a, 1) = S1(n,m; a). Furthermore, by using M sums, it can be
shown that:

MS1(n, j, 0; a, b) =
(−1)n−j

(
an+j

j

)(
n−j

b

)(
an+b
n−2j

)
(

an+b
b

) , (49)

MS1(n, j, 1; a, b) =
⌊ n−2j

2 ⌋∑
u=0

(−1)n−j−u
(

n
b

)(
n−b
j+u

)(
j+u

j

)(
an+j+u

j+u

)(
an+b

n−2j−2u

)
(

an+b
b

) . (50)

The Eq. (50) suggests that q1(n, a, b) = (n
b)

gcd((n
b),(an+b

b )) . We assert that:

Theorem 5. Let n, a, and b be fixed natural numbers. Then the sum S1(n,m; a, b)
is always divisible by (n

b)
gcd((n

b),(an+b
b )) for all natural numbers m.

By setting b := 1 in the Eq. (49), we obtain Lemma 1. Similarly, by setting b := 1
in the Eq. (50), we obtain Lemma 2. Finally, by setting b := 1 in Theorem 5, we
obtain Theorem 2.
Let us now consider the following sum:

S2(n,m; a, b) =
n∑

k=0
(−1)k

(
n

k

)m(
an+ b+ k

an

)
; (51)
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where n, m, a, and b are natural numbers.
Clearly, S2(n,m; a, 1) = S2(n,m; a). Furthermore, by using M sums, it can be
shown that:

MS2(n, j, 0; a, b) =
(−1)n−j

(
an+b+j

j

)(
an

n−2j

)(
an+b

b

)
(

n−j+b
b

) , (52)

MS2(n, j, 1; a, b) =
⌊ n−2j

2 ⌋∑
u=0

(−1)n−j−u
(

an+b
b

)(
n+b
j+u

)(
j+u

j

)(
an+b+j+u

j+u

)(
an

n−2j−2u

)
(

n+b
n

) . (53)

The Eq. (53) suggests that q2(n, a, b) = (an+b
b )

gcd((an+b
b ),(n+b

n )) . We assert that:

Theorem 6. Let n, a, and b be fixed natural numbers. Then the sum S2(n,m; a, b)
is always divisible by (an+b

b )
gcd((an+b

b ),(n+b
n )) for all natural numbers m.

By setting b := 1 in the Eq. (52), we obtain Lemma 3. Similarly, by setting b := 1
in the Eq. (53), we obtain Lemma 4. Finally, by setting b := 1 in Theorem 6, we
obtain Theorem 4.
For the sake of brevity and clarity, we omit proofs of Thms. (5) and (6).

10 Appendix A
We give an example with the positive binomial sum with Fibonacci numbers.
Let Fn denote the n-th Fibonacci number, where n is a non-negative integer.
Let us consider the following binomial identity:

n∑
k=0

(
n

k

)
5⌊ k

2 ⌋ = 2nFn+1. (54)

It is well-known that the Binet formula for Fibonacci numbers states:

Fn = (1 +
√

5)n − (1 −
√

5)n

2n
√

5
. (55)

The Binet formula is equivalent with the following binomial identity:
n∑

k=0

(
n

2k + 1

)
5k = 2n−1Fn. (56)

Let Ln denote the n-th Lucas number. Formula for Lucas numbers is also well-
known:

Ln = (1 +
√

5)n + (1 −
√

5)n

2n
. (57)

The formula for Lucas numbers is equivalent with the following binomial identity:
n∑

k=0

(
n

2k

)
5k = 2n−1Ln. (58)
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Note that Eq. (54) follows by Eqns. (56) and (58), and the fact that Ln = Fn+1 −
Fn−1.
Let us consider the following sum:

S3(n,m) =
n∑

k=0

(
n

k

)m

5⌊ k
2 ⌋. (59)

Obviously the sum S3(n,m) is an instance of the sum S from the Eq. (10), where
F3(n, k) = 5⌊ k

2 ⌋.
By the Eq. (54), for m = 1, we have that

S3(n, 1) = 2nFn+1.

By using Eqns. (13), (56), and (58), it can be shown that:

MS3(n, j, 0) =

(

n−j
j

)
5 j

2 · 2n−2j · Fn−2j+1, if j is even;(
n−j

j

)
5 j−1

2 · 2n−2j · Ln−2j+1, if j is odd.
(60)

We see that the formula for the MS3(n, j, 0) sum appear both Fibonacci and Lucas
numbers. Since the sum MS3(n, j, 0) is a slight generalization of the sum S3(n, 1),
this is expected, due to Eqns. (56) and (58).
Remark 2. By setting t = 0 in the Eq. (11), and by using Eqns. (12) and (60), we
can calculate the sum S3(n, 2). It can be shown that S3(n, 2) is equal to:

⌊ n
2 ⌋∑

u=0
u is even

(
n

u

)(
n− u

u

)
5u

2 2n−2uFn−2u+1 +
⌊ n

2 ⌋∑
u=0

u is odd

(
n

u

)(
n− u

u

)
5u−1

2 2n−2uLn−2u+1. (61)

11 Appendix B
Let S4(n,m; a) denote the following alternating binomial sum:

n∑
k=0

(−1)k

(
n

k

)m

(
(
an+ k

an

)
+ 2

(
an+ k

an+ 1

)
); (62)

where n, m, and a are natural numbers.
Obviously the sum S4(n,m; a) is an instance of the sum S from the Eq. (10), where
F4(n, k, a) = (−1)k(

(
an+k

an

)
+ 2

(
an+k
an+1

)
).

By the Eq. (13) and the Eq. (2), it can be shown that:

MS4(n, j, 0; a) = (−1)n−j

(
an+ j

j

)(
an+ 1
n− 2j

)
(a+ 1)n+ 1
an+ 1 . (63)

Note that the integers (a+ 1)n+ 1 and an+ 1 are relatively prime. By the Eq. (63),
it follows that the sum MS4(n, j, 0; a) is always divisible by (a+ 1)n+ 1. Hence, we
can take q4(n, a) = (a+ 1)n+ 1.
By using M sums, we can prove the following theorem:
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Theorem 7. Let n and a be fixed natural numbers. Then the sum S4(n,m; a) is
always divisible by (a+ 1)n+ 1 for all natural integers m.

Remark 3. By the Eq. (63), it follows that an integer T (n, j, a) =
(

an+j
j

)(
an+1
n−2j

)
is

always divisible by an + 1 for all non-negative integers j such that j ≤ ⌊n
2 ⌋. These

numbers also appear in Lemma 1 and Lemma 2. Note that the Eq. (15) can be also
written as

MS1(n, j, 0; a) = (−1)n−j(n− j)T (n, j, a). (64)
Similarly, the Eq. (16) can be written as

MS1(n, j, 1; a) = n

⌊ n−2j
2 ⌋∑

u=0
(−1)n−j−u

(
n− 1
j

)(
j + u

u

)
T (n, j + u, a). (65)

Obviously,
MS4(n, j, 0; a) = (−1)n−j((a+ 1)n+ 1)T (n, j, a). (66)

It would be interesting to find a combinatorial interpretation for numbers T (n, j, a).
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On a linear recurrence relation of the
divide-and-conquer type

Daniele Parisse

Abstract
We study the six-parameter linear recurrence relation defined by

f(1) = ζ, f(2n) = αf(n) + β, f(2n + 1) = γf(n) + δf(n + 1) + ε, n ≥ 1,

with α, β, γ, δ, ε, ζ ∈ Z. We determine its ordinary generating function which
shows that the sequence is of the divide-and-conquer type. Then we discuss
some interesting special cases such as the Josephus problem, the number of 1’s
in the binary expression of n ∈ N, the Gros sequence in the Tower of Hanoi
with 3 pegs and n disks, n ∈ N, the Prouhet-Thue-Morse sequence, Stern’s
diatomic sequence and others. We give its solution at first for the special case
δ = 0 and then for δ ̸= 0. Moreover, for δ ̸= 0, β = 0 = ε and α ̸= 0, we
conjecture that it satisfies a second-order recurrence relation. We prove this
conjecture for three special cases and give the solution by means of continued
fractions. Then, we generalize the recurrence relation by considering both β
and ε as integer functions of n and discuss in detail the case δ = 0 and a special
case of this class. Finally, for δ ̸= 0, we only mention two known special cases.
Key words: Sequences of the divide-and-conquer type; Ordinary generating
function; Stern’s diatomic sequence; Prouhet-Thue-Morse sequence; Tower of
Hanoi;
AMS subject classification (2010): Primary 05A10 ; Secondary 05A19.

1 Introduction
There are some problems such as the Tower of Hanoi puzzle, the Josephus problem,
Stern’s diatomic sequence, "the infinity sequence" of Per Nørgård, the Prouhet-Thue-
Morse sequence and many others, which have apparently no connections among each
other. However, they are all defined by the same six-parameter linear recurrence
relation

f(1) = ζ, f(2n) = αf(n) + β, f(2n+ 1) = γf(n) + δf(n+ 1) + ε, n ≥ 1 (1)

(Daniele Parisse) Airbus Defence and Space GmbH, Manching, Germany, daniele.parisse@t-
online.de
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with α, β, γ, δ, ε, ζ,∈ Z. (Note that we begin the sequence by n = 1, although some
of the sequences are also well-defined for all n ∈ N0. If possible, we shall define
f(0) := η ∈ Z so that this value is consistent with (1), otherwise we set f(0) := 0.)
Eq.(1) can also be written as follows:

f(1) = ζ, f(n) = a(n)f
(
⌊n/2⌋

)
+ b(n)f

(
⌈n/2⌉

)
+ c(n), n ≥ 2, (2)

where

a(n) := α + γ

2 + (−1)nα− γ

2 , b(n) := 1 − (−1)n

2 δ, c(n) := β + ε

2 + (−1)nβ − ε

2 .

Recurrence relations of this form are called (binary) divide-and-conquer recurrences
and appear often in computer science, because algorithms based on the technique
of divide et impera (divide and conquer) often reduce a problem of size n to the
solution of two problems of approximately equal sizes ⌊n/2⌋ and ⌈n/2⌉, where n =
⌊n/2⌋ + ⌈n/2⌉, n ∈ N0. The solutions of the two subproblems are then used to solve
the original problem.
In this paper we shall study the linear recurrence relation (1) and its ordinary
generating function. We shall at first consider some known special cases of (1) and
then we shall derive its general solution, first for δ = 0 and then for δ ̸= 0. It will
turn out that for δ = 0 (1) is equivalent to a first-order linear recurrence relation
with variable coefficients and that for δ ̸= 0, β = 0 = ε and α ̸= 0 it seems to be
equivalent to a second-order linear recurrence relation with variable coefficients. We
prove this conjecture for three special cases. The solutions in both cases rely on
the binary expansion of n. In the last chapter we study a generalization of (1) by
considering instead of the constants β and ε the integer functions g(n) and h(n).
Then, we give a solution for δ = 0 and investigate in detail a special case. Finally,
for δ ̸= 0, we only mention two known sequences.

2 Definitions and Examples
Definition 1. A formal series φ(s) is said to be of the divide-and-conquer (DC)
type (see [31]), if it satisfies a functional equation of the form

c0(s)φ(s) + c1(s)φ(s2) + · · · + cn(s)φ(s2n) = b(s), (3)

in which b(s) is a formal series and ck(s), k ∈ [n + 1]0 := {0, 1, . . . , n}, are polyno-
mials not all zero. If b(s) = 0, then the series φ(s) is said to be Mahlerian.
A sequence is of the divide-and-conquer type, if its ordinary generating function, de-
fined by the power series ∑∞

n=0 f(n)sn, is of the divide-and-conquer type and Mahle-
rian, if its generating function is Mahlerian.

We shall now prove that the generating function for the sequence
(
f(n)

)
n∈N0

defined
by (1) is of the DC type and, for some special values of the six parameters, even
Mahlerian.
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Proposition 1. The generating function φ(s) for the sequence
(
f(n)

)
n∈N0

is of the
DC type, since it satisfies the functional equation

sφ(s) = (δ+αs+ γs2)φ(s2) − δη+ η(1 −α)s+
(
ζ(1 − δ) − ηγ

)
s2 + (β + εs)s3

1 − s2 (4)

Proof. Let φ(s) := ∑∞
n=0 f(n)sn and f(0) := η, then by (1)

φ(s) = f(0) +
∞∑

n=1
f(2n)s2n +

∞∑
n=0

f(2n+ 1)s2n+1

= η + α
∞∑

n=1
f(n)s2n + β

∞∑
n=1

s2n + f(1)s+ γ
∞∑

n=1
f(n)s2n+1+

+ δ
∞∑

n=1
f(n+ 1)s2n+1 + ε

∞∑
n=1

s2n+1

= η + α
(
φ(s2) − η

)
+ β

s2

1 − s2 + ζs+ γs
(
φ(s2) − η

)
+

+ δ

s

(
φ(s2) − η − ζs2

)
+ εs

s2

1 − s2 ,

since ∑∞
n=1 f(n+ 1)s2n+1 = 1

s

(
φ(s2) − η − ζs2

)
and ∑∞

n=1 s
2n =

(
1

1−s2 − 1
)

= s2

1−s2 .
Simplifying and multiplying both sides by s we obtain formula (4), which shows
that f(n) is of the DC type.

We shall now discuss some examples (see also [2, 4]).

• E1 The Josephus problem ( [13, pp. 8–13]).
Let n ∈ N people, numbered 1 to n, stand around a circle and eliminate
every second remaining person until one survives. The problem consists in
determining the survivor’s number J(n). (The original and more difficult
problem (for n = 41) was to eliminate every third remaining person.) It
follows (see [13, p. 10])

J(1) = 1, J(2n) = 2J(n) − 1, J(2n+ 1) = 2J(n) + 1, n ≥ 1 (5)

This is the special case α = 2 = γ, β = −1, δ = 0, ε = 1, ζ = 1 and η := 0
of (1). The generating function φ(s) satisfies, by Proposition 1, the functional
equation

φ(s) = 2(1 + s)φ(s2) + s

1 + s

and it is given by

φ(s) = 1
1 − s

∞∑
k=0

2k · s2k
(
1 − s2k

)
1 + s2k , (6)
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since

2(1 + s)φ(s2) + s

1 + s
= 2(1 + s)

1 − s2

∞∑
k=0

2k · s2k+1
(
1 − s2k+1

)
1 + s2k+1 + s

1 − s

= 1
1 − s

∞∑
k=0

2k+1 · s2k+1
(
1 − s2k+1

)
1 + s2k+1 + s

1 + s

= 1
1 − s

 ∞∑
k=0

2k+1 · s2k+1
(
1 − s2k+1

)
1 + s2k+1 + s(1 − s)

1 + s


= φ(s).

The solution of E1 can be given in several equivalent formulas in binary form.

1. Let n = (bm . . . b0)2 := ∑m
k=0 bk ·2k, bk ∈ {0, 1}, k ∈ [m+1]0, (bm = 1), be

the binary expansion of n ∈ N. Then (see [13, formula (1.10) at p. 11])

J
(
(bm . . . b0)2

)
= (bm−1bm−2 . . . b1b0bm)2 (7)

Since (bm−1bm−2 . . . b1b0bm)2 = ∑m
k=1 bk−12k + bm, we have

J
(
(bm . . . b0)2

)
=

m∑
k=1

bk−12k +bm = 2·
(

m∑
k=0

bk2k −2m

)
+1 = 2n−2m+1 +1,

where m = ⌊log2 n⌋. Further, since −2m+1 +1 = −∑m
k=0 2k and 2bk −1 =

(−1)1−bk , we get

J
(
(bm . . . b0)2

)
= (bm−1bm−2 . . . b1b0bm)2 = 2

m∑
k=0

bk2k −
m∑

k=0
2k

=
m∑

k=0
(2bk − 1)2k =

m∑
k=0

(−1)1−bk · 2k.

(8)

2. Let n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0, then

J(2a0+2a1+· · ·+2aℓ) = 1+
ℓ−1∑
k=0

2aℓ−k+1 = 2a1+1+2a2+1+· · ·+2aℓ+1+20 (9)

The first few values of J(n) (the sequence A006257 in the On-Line Encyclo-
pedia of Integer Sequences (OEIS ®) [24]) are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
J(n) 0 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1

Table 1: J(n), 0 ≤ n ≤ 16

• E2 Number of 1’s in the binary expansion of n ∈ N.
For n = (bm . . . b0)2 we define the sum of the bits in the binary expansion of
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n to be s2(n) := ∑m
k=0 bk. Since bk ∈ {0, 1}, k ∈ [m + 1]0, this sum gives the

number of 1’s in the binary expansion of n and satisfies the recurrence relation

s2(1) = 1, s2(2n) = s2(n), s2(2n+ 1) = s2(n) + 1, n ≥ 1 (10)

This is the special case α = 1 = γ, β = 0, δ = 0, ε = 1, ζ = 1 and η = 0 of
(1), since 0 has no 1’s in the binary expansion. The generating function φ(s)
satisfies, by Proposition 1, the functional equation

φ(s) = (1 + s)φ(s2) + s

1 − s2

and it is given by

φ(s) = 1
1 − s

∞∑
k=0

s2k

1 + s2k , (11)

since

(1 + s)φ(s2) + s

1 − s2 = 1 + s

1 − s2

∞∑
k=0

s2k+1

1 + s2k+1 + s

1 − s2

= 1
1 − s

( ∞∑
k=0

s2k+1

1 + s2k+1 + s

1 + s

)
= φ(s).

The solution of E2 is by definition s2
(
(bm . . . b0)2

)
= ∑m

k=0 bk or, alternatively,
for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0,

s2(2a0 + 2a1 + · · · + 2al) = l + 1. (12)

Closely related to s2(n) is the sequence E2’, denoted by e0(n), giving the num-
ber of nonleading 0’s in the binary expansion of n. It satisfies the recurrence
relation

e0(1) = 0, e0(2n) = e0(n) + 1, e0(2n+ 1) = e0(n), n ≥ 1 (13)

This is the special case α = 1 = γ, β = 1, δ = 0, ε = 0, ζ = 0 and η = 0 of
(1). The generating function φ0(s) satisfies, by Proposition 1, the functional
equation

φ0(s) = (1 + s)φ0(s2) + s2

1 − s2

and it is given by

φ0(s) = 1
1 − s

∞∑
k=0

s2k+1

1 + s2k , (14)

since

(1 + s)φ0(s2) + s2

1 − s2 = 1 + s

1 − s2 ·
∞∑

k=0

s2k+2

1 + s2k+1 + s2

1 − s2

= 1
1 − s

( ∞∑
k=0

s2k+2

1 + s2k+1 + s2

1 + s

)
= φ0(s).
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The solution of E2’ for n = (bm . . . b0)2 is given by

e0(n) = m+ 1 −
m∑

k=0
bk = ⌊log2 n⌋ + 1 − s2(n). (15)

The first few values of s2(n) (the sequence A000120 in [24]) and e0(n) (the
sequence A080791 in [24]) are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s2(n) 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 1
e0(n) 0 0 1 0 2 1 1 0 3 2 2 1 2 1 1 0 4

Table 2: s2(n), e0(n), 0 ≤ n ≤ 16

• E3 The Tower of Hanoi with 3 pegs and n disks, n ∈ N.
This puzzle has been invented in 1883 by the French mathematician Édouard
Lucas (1842-1891). It consists of n disks, n ∈ N, of different sizes and three
vertical pegs. At the beginning, all disks are stacked in decreasing order on
one of the three pegs (this is called a tower). The objective is to transfer
the entire tower to another peg using the minimum number of legal moves,
where a legal move is to move one topmost disk at a time and never moving a
larger one onto a smaller one (this is the divine rule). For more details on the
Tower of Hanoi with 3 or more pegs and on some variations of this puzzle we
refer to the comprehensive monograph [19]. It can be shown (see [17, p. 281]
and [19, Theorem 2.1, pp. 79–83]) that the number d2(n) of the disk to be
moved at the nth step of the optimal solution of the Tower of Hanoi puzzle
satisfies the recurrence relation

d2(1) = 1, d2(2n) = d2(n) + 1, d2(2n+ 1) = 1, n ≥ 1 (16)

This is the special case α = 1, β = 1 = ε, γ = 0, δ = 0, ζ = 1 and η := 0
of (1). This sequence is also known as the Gros sequence (see [19, pp. 79–
83]). The generating function φ(s) satisfies, by Proposition 1, the functional
equation

φ(s) = φ(s2) + s

1 − s

and it is given by

φ(s) =
∞∑

k=0

s2k

1 − s2k , (17)

since

φ(s2) + s

1 − s
=

∞∑
k=0

s2k+1

1 − s2k+1 + s

1 − s
=

∞∑
k=0

s2k

1 − s2k = φ(s).

The solution of E3 for n = 2r(2k + 1), r, k ∈ N0, is given by

d2(n) = r + 1, (18)
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or, for n = (bm . . . b0)2 (cf. (74))

d2
(
(bm . . . b0)2

)
=

m∑
k=0

( k−1∏
j=0

(1 − bj)
)
. (19)

Alternatively, for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0,

d2(n) = aℓ + 1. (20)

Other interpretations of this sequence based on (18) and (20) are

1. d2(n) gives the exponent of highest power of 2 dividing 2n.
2. d2(n) gives the position of the first 1 (counting from right to left and

beginning with 1) of the binary representation of n, e.g., 12 = (1100)2 ⇒
d2(12) = 3.

3. d2(n) gives the position of the bit (counting from right to left and begin-
ning with 1) to be changed in the Gray-code (see Table 3).

Therefore, the sequence d̃2(n) := d2(n)−1 for all n ∈ N (called the binary carry
sequence) gives the exponent of highest power of 2 dividing n or, equivalently,
the index of the right-most non-zero bit in the binary representation of n. It
is the sequence A007814 in [24].

n decimal n binary Gray-code d2(n)
1 1 0001 1
2 10 0011 2
3 11 0010 1
4 100 0110 3
5 101 0111 1
6 110 0101 2
7 111 0100 1
8 1000 1100 4
9 1001 1101 1

10 1010 1111 2
11 1011 1110 1
12 1100 1010 3
13 1101 1011 1
14 1110 1001 2
15 1111 1000 1

Table 3: Position of the nth bit to be changed in the Gray-code, 1 ≤ n ≤ 15

Remark 1. The sequence pf (n) of the changed bit in the Gray-code above is
the so-called regular paper-folding (or dragon curve sequence). pf (n) is the
one’s complement of the bit to the left of the least significant ”1” in the binary
expansion of n, e.g., n = 7 = 1112, that is pf (7) = 0. This sequence is defined
recursively by the recurrence relation

pf (1) = 1, pf (4n) = 1, pf (4n+2) = 0, pf (2n+1) = pf (n), n ≥ 1 (21)
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The first few values of d2(n) (the sequence A001511 in [24]) and pf (n) (the
sequence A014577 in [24]) are

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
d2(n) 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5
pf (n) 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1

Table 4: d2(n), pf (n), 1 ≤ n ≤ 16

Eq.(17) can be written in the form

φ(s) =
∞∑

n=1
ρ(n) · sn

1 − sn
, (22)

where ρ(n) is the characteristic function of the powers of 2, that is ρ(n) = 1,
if n is a power of 2 and zero otherwise. It shows that φ(s) is a Lambert series
(cf. (114)). Moreover, since d2(n) is the number of 2’s that divides 2n, or,
equivalently, the number of the positive powers of 2 which divides n, we have

d2(n) =
∑
t|n
ρ(t), n ∈ N. (23)

There is a relation between d2(n) and s2(n).

Proposition 2. For all n ∈ N it is

d2(n) = 2 − ∆s2(n) (24)

and, conversely,
s2(n) = 2n−D2(n) (25)

where ∆s2(n) := s2(n) − s2(n− 1) is the difference sequence of s2(n) and

D2(n) :=
n∑

k=1
d2(k) (26)

is the sequence of the partial sums of d2(n).

Proof. Let α(n) := 2−s2(n)+s2(n−1), then α(1) = 2−s2(1)+s2(0) = 2−1+
0 = 1 = d2(1). Further, by (16) and noting that s2(2n−1) = s2(2(n−1)+1) =
s2(n−1)+1 we have α(2n) = 2−s2(2n)+s2(2n−1) = 2−s2(n)+s2(n−1)+1 =
α(n)+1 and α(2n+1) = 2−s2(2n+1)+s2(2n) = 2− (s2(n)+1)+s2(n) = 1.
For all n ≥ 1 the sequence α(n) satisfies the same recurrence relation as d2(n)
and has the same initial value, therefore the two sequences are equal and this
proves (24).
Conversely, by repeated iteration we obtain s2(n) = s2(n − 1) + 2 − d2(n) =
s2(n−2)+2·2−(d2(n−1)+d2(n)) = . . . = s2(0)+2n−∑n

k=1 d2(k) = 2n−D2(n)
and this is (25), since s2(0) = 0.
Note that since s2(n) ≥ 1 for all n ∈ N it follows that D2(n) ≤ 2n.
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E4 Number of odd binomial coefficients in the nth row of Pascal’s triangle.
This sequence (also known as Gould’s sequence) is given recursively by

G(1) = 2, G(2n) = G(n), G(2n+ 1) = 2G(n), n ≥ 1 (27)

G(n) gives the number of odd binomial coefficients in the nth row (n ≥ 0) of
Pascal’s triangle. Since Pascal’s triangle with 2n rows modulo 2 is isomorphic
to the graph of the Tower of Hanoi with 3 pegs and n disks [16], G(n) gives
also the number of regular states for which the distance to a given perfect
state is equal to n. It is the special case α = 1, β = 0 = ε, γ = 2, δ = 0, ζ = 2
and η := 1 of (1). The generating function φ(s) satisfies, by Proposition 1,
the functional equation

φ(s) = (1 + 2s)φ(s2)
which shows that φ(s) is Mahlerian. It is given by the infinite product

φ(s) =
∞∏

k=0
(1 + 2s2k), (28)

since

(1 + 2s)φ(s2) = (1 + 2s) ·
∞∏

k=0
(1 + 2s2k+1) =

∞∏
k=0

(1 + 2s2k) = φ(s).

The solution of E4 for n = (bm . . . b0)2 has been given by Glaisher [12, p. 10]

G((bm . . . b0)2) = 2
∑m

k=0 bk = 2s2(n) (29)

Alternatively, for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0,

G(2a0 + 2a1 + · · · + 2aℓ) = 2ℓ+1. (30)

A slight modification of E4 is the sequence E4’ defined recursively by

G1(1) = 1, G1(2n) = G1(n), G1(2n+ 1) = 2G1(n) + 1, n ≥ 1 (31)

G1(n) is the smallest number with the same number of 1’s in its binary repre-
sentation as n. It is the special case α = 1, β = 0, γ = 2, δ = 0, ε = 1, ζ = 1
and η = 0 of (1) and it is G1(n) = G(n) − 1 for all n ∈ N0. Its generating
function φ1(s) satisfies, by Proposition 1, the functional equation

φ1(s) = (1 + 2s)φ1(s2) + s

1 − s2

and it is given by

φ1(s) = φ(s) −
∞∑

n=0
sn =

∞∏
k=0

(1 + 2s2k) − 1
1 − s

, (32)

since

(1 + 2s)φ1(s2) + s

1 − s2 = (1 + 2s)
( ∞∏

k=0
(1 + 2s2k+1) − 1

1 − s2

)
+ s

1 − s2

=
∞∏

k=0
(1 + 2s2k) − 1 + 2s

1 − s2 + s

1 − s2 = φ1(s).
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The solution of (31) for n = (bm . . . b0)2 is given by (cf. (74))

G1((bm . . . b0)2) = 2
∑m

k=0 bk − 1 = 2s2(n) − 1 =
m∑

k=0
bk · 2

∑k−1
j=0 bj (33)

or, for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0,

G1(2a0 + 2a1 + · · · + 2aℓ) = 2ℓ+1 − 1. (34)

The first few values of G(n) (the sequence A001316 in [24]) and G1(n) (the
sequence A038573 in [24]) are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
G(n) 1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16 2
G1(n) 0 1 1 3 1 3 3 7 1 3 3 7 3 7 7 15 1

Table 5: G(n), G1(n), 0 ≤ n ≤ 16

E5 Base 3 representation of n contains no 2’s.
This sequence is given recursively by

f2(1) = 1, f2(2n) = 3f2(n), f2(2n+ 1) = 3f2(n) + 1, n ≥ 1 (35)

f2(n) gives the nth number that can be written as a sum of distinct powers
of 3. It is the special case α = 3 = γ, β = 0, δ = 0, ε = 1, ζ = 1 and η = 0
of (1). Its generating function φ2(s) satisfies, by Proposition 1, the functional
equation

φ2(s) = 3(1 + s)φ2(s2) + s

1 − s2

and it is given by

φ2(s) = 1
1 − s

∞∑
k=0

3k · s2k

1 + s2k , (36)

since

3(1 + s)φ2(s2) + s

1 − s2 = 3(1 + s)
1 − s2

∞∑
k=0

3k · s2k+1

1 + s2k+1 + s

1 − s2

= 1
1 − s

∞∑
k=0

3k+1 · s2k+1

1 + s2k+1 + s

1 − s2

= 1
1 − s

( ∞∑
k=0

3k+1 · s2k+1

1 + s2k+1 + s

1 + s

)
= φ2(s).

The solution of E5 for n = (bm . . . b0)2 is given by

f2((bm . . . b0)2) = (bm . . . b0)3 =
m∑

k=0
bk · 3k. (37)

Alternatively, for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0,

f2(2a0 + 2a1 + · · · + 2aℓ) = 3a0 + 3a1 + · · · + 3aℓ . (38)

The first few values of f2(n) (the sequence A005836(n+ 1) in [24]) are
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f2(n) 0 1 3 4 9 10 12 13 27 28 30 31 36 37 39 40 81

Table 6: f2(n), 0 ≤ n ≤ 16

Remark 2. An interesting property of this sequence has been noted by D.
Tseng in 2009, namely that f2(n) ≡ s2(n) (mod 2), since 3k ≡ 1 (mod 2) for
all k ∈ [m + 1]0. By (37) it follows f2(n) ≡ ∑m

k=0 bk = s2(n) (mod 2). This is
the Prouhet-Thue-Morse sequence m(n) on {0, 1} which we shall now present
as Example E6.

E6 The Prouhet-Thue-Morse sequence on {0, 1} (see [3, 14,26]).
This famous sequence can be obtained in several ways:

1. consider the sequence of the natural num-
bers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 . . .) in binary form
(0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, . . .) and build the
sum of the digits of these numbers modulo 2, so we obtain the
Prouhet-Thue-Morse sequence (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, . . .), that is
m(n) = s2(n) mod 2.

2. recursively, starting with m(0) = 0 and for all k ∈ N0,
m(0),m(1), . . . ,m(2k − 1) is followed by its one’s comple-
ment, i.e., m(2k) = m(0), . . . ,m(2k+1) = m(2k − 1). Hence,
0, 01, 0110, 01101001, 0110100110010110, . . .

3. by iteration according to the rules 0 → 01, 1 → 10,
that is 0 → 01 → 0110 → 01101001 → 0110100110010110 → · · · .

4. by the logical function XOR (exclusive or) (see Table 7 for n = 2)

x y xXORy

0 0 0
0 1 1
1 0 1
1 1 0

Table 7: Truth table for XOR, x, y propositions, 1 = T (rue), 0 = F (alse)

It satisfies the recurrence relation:

m(1) = 1, m(2n) = m(n), m(2n+ 1) = −m(n) + 1, n ≥ 1 (39)

This is the special case α = 1, β = 0, γ = −1, δ = 0, ε = 1, ζ = 1 and η := 0
of (1). Its generating function φ(s) satisfies, by Proposition 1, the functional
equation

φ(s) = (1 − s)φ(s2) + s

1 − s2 .
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In order to get a simple expression for the generating function φ(s) of m(n)
we use the transformation

m1(n) := −2m(n) + 1 (40)

which gives the Prouhet-Thue-Morse sequence on {−1,+1} instead of {0, 1}.
Note that by (40) we have 0 → 1 and 1 → −1, that is

m1(n) = (−1)m(n). (41)

This sequence E6’ satisfies the recurrence relation:

m1(1) = −1, m1(2n) = m1(n), m1(2n+ 1) = −m1(n), n ≥ 1 (42)

This is the special case α = 1, β = 0 = ε, γ = −1, δ = 0, ζ = −1 and η = 1
of (1). Its generating function ψ(s) satisfies, by Proposition 1, the functional
equation

ψ(s) = (1 − s)ψ(s2).
ψ(s) is Mahlerian and it is given by the infinite product

ψ(s) =
∞∏

k=0
(1 − s2k) (43)

known as Euler’s product, since

(1 − s)ψ(s2) = (1 − s)
∞∏

k=0
(1 − s2k+1) =

∞∏
k=0

(1 − s2k) = ψ(s).

By (41) and (43) we have
∞∑

n=0
(−1)m(n)sn =

∞∏
k=0

(1 − s2k). (44)

Using (40) and (43) we obtain the generating function φ(s) of m(n). Indeed,
we have

φ(s) =
∞∑

n=0
m(n)sn =

∞∑
n=0

1 −m1(n)
2 sn

= 1
2 ·
( ∞∑

n=0
sn −

∞∑
n=0

m1(n)sn
)

= 1
2 ·
( 1

1 − s
− ψ(s)

)

= 1
2 ·
( 1

1 − s
−

∞∏
k=0

(1 − s2k)
)

The solution of E6’ for n = (bm . . . b0)2 is given by

m1(n) = (−1)
∑m

k=0 bk = (−1)s2(n) (45)

or, for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0, by

m1(2a0 + 2a1 + · · · + 2aℓ) = (−1)ℓ+1 (46)
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and that of E6 is given by

m(n) = 1
2 ·
(
1 − (−1)s2(n)

)
(47)

or, for n = (bm . . . b0)2, by

m((bm . . . b0)2) =
m∑

k=0
bk(−1)

∑k−1
j=0 bj (48)

or, for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0, by

m(2a0 + 2a1 + · · · + 2aℓ) =
ℓ∑

k=0
(−1)k = 1

2 ·
(
1 + (−1)ℓ

)
(49)

Note that by (49) we obtain |m(n)| =
∣∣∣∑ℓ

k=0(−1)k
∣∣∣ ≤ ∑ℓ

k=0 |(−1)k| =∑ℓ
k=0 1 = ℓ+ 1 = s2(n), for all n ∈ N.

The first few values of m(n) (the sequence A010060 in [24]) and m1(n) (the
sequence A106400 in [24]) are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
m(n) 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1
m1(n) 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1

Table 8: m(n),m1(n), 0 ≤ n ≤ 16

E7 The infinite sequence of Per Nørgård (see [4, Example 23, pp. 21–22] and
[5]).
This sequence is given recursively by

a(1) = 1, a(2n) = −a(n), a(2n+ 1) = a(n) + 1, n ≥ 1 (50)

It is the special case α = −1, β = 0, γ = 1, δ = 0, ε = 1, ζ = 1 and η := 0 of
(1). It is the infinite sequence of the Danish composer Per Nørgård (1932–),
who invented it in an attempt to unify in a perfect way repetition and variation.
Its generating function φ(s) satisfies, by Proposition 1, the functional equation

φ(s) = −(1 − s)φ(s2) + s

1 − s2

and it is given by

φ(s) =
∞∑

k=0
(−1)k s

2k ∏k−1
j=0(1 − s2j )

1 − s2k+1 , (51)

since

−(1 − s)φ(s2) + s

1 − s2 = −(1 − s)
∞∑

k=0
(−1)k s

2k+1 ∏k−1
j=0(1 − s2j+1)

1 − s2k+2 + s

1 − s2

=
∞∑

k=0
(−1)k+1 s

2k+1 ∏k
j=0(1 − s2j )

1 − s2k+2 + s

1 − s2 = φ(s).
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The solution of E7 for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0,
is given by

a(2a0 + 2a1 + · · · + 2aℓ) =
ℓ∑

k=0
(−1)k · (−1)aℓ−k . (52)

It is possible to generate this sequence by a procedure given by J. Mortensen:
write n in binary form and read from left to right starting with 0 and
interpreting 1 as "add 1" and 0 as "change sign". For example 23 = (10111)2
gives 0 → 1 → −1 → 0 → 1 → 2, so a(23) = 2. Note that by (52) we obtain
|a(n)| =

∣∣∣∑ℓ
k=0(−1)k · (−1)aℓ−k

∣∣∣ ≤ ∑ℓ
k=0 |(−1)k| · |(−1)aℓ−k | = ∑ℓ

k=0 1 = ℓ+1 =
s2(n), for all n ∈ N.

A variation of E7, E2 and E6 is the sequence E7’ defined by

a′(1) = 1, a′(2n) = −a′(n), a′(2n+ 1) = −a′(n) + 1, n ≥ 1 (53)

It is the special case α = −1 = γ, β = 0, δ = 0, ε = 1, ζ = 1 and η := 0
of (1). It can be defined as the alternating bit sum (adding from right to left
and starting with a positive sign) of the binary expansion of n. For example:
n = 13 = (1101)2, hence a′(13) = 1 − 0 + 1 − 1 = 1. Its generating function
φ1(s) satisfies, by Proposition 1, the functional equation

φ1(s) = −(1 + s)φ1(s2) + s

1 − s2

and it is given by

φ1(s) = 1
1 − s

∞∑
k=0

(−1)k s2k

1 + s2k , (54)

since

−(1 + s)φ1(s2) + s

1 − s2 = − 1 + s

1 − s2

∞∑
k=0

(−1)k s2k+1

1 + s2k+1 + s

1 − s2

= 1
1 − s

( ∞∑
k=0

(−1)k+1 s2k+1

1 + s2k+1 + s

1 + s

)
= φ1(s).

The solution of E7’ for n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥
0, ℓ ≥ 0, is given by

a′(2a0 + 2a1 + · · · + 2aℓ) =
ℓ∑

k=0
(−1)ak (55)

This formula can be interpreted as follows: replace in the representation n =
2a0 + 2a1 + · · · + 2aℓ the terms 2ak by (−1)ak , 0 ≤ k ≤ ℓ. As in the case of a(n)
we have by (55) |a′(n)| =

∣∣∣∑ℓ
k=0(−1)ak

∣∣∣ ≤ ∑ℓ
k=0 |(−1)ak | = ∑ℓ

k=0 1 = ℓ + 1 =
s2(n), for all n ∈ N.
The first few values of a(n) (the sequence A004718 in [24]) and a′(n) (the
sequence A065359 in [24]) are
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
a(n) 0 1 -1 2 1 0 -2 3 -1 2 0 1 2 -1 -3 4 1
a′(n) 0 1 -1 0 1 2 0 1 -1 0 -2 -1 0 1 -1 0 1

Table 9: a(n), a′(n), 0 ≤ n ≤ 16

Up to now all sequences were with δ = 0. We shall now consider some example of
(1) with δ ̸= 0. Perhaps the most simple sequence is

• E8 Arithmetic progression
An arithmetic progression is defined recursively for all n ∈ N0 by

a(0) = a0, (⇒ a(1) = a0 + d), a(n+ 1) = a(n) + d (56)

The solution of (56) is given by

a(n) = a0 + nd, n ≥ 0. (57)

This solution satisfies also the recurrence relation

a(1) = a0 + d, (⇒ a(0) = a0)
a(2n) = 2a(n) − a0, a(2n+ 1) = a(n) + a(n+ 1) − a0

(58)

It is the special case α = 2, β = −a0, γ = 1, δ = 1, ε = −a0, ζ = a0 + d and
η = a0 of (1). Conversely, the difference between two consecutive terms of (58)
is a constant, since for d(n) := a(n+ 1) − a(n) we have

d(1) = d, (⇒ d(0) = d), d(2n) = d(n), d(2n+ 1) = d(n) (59)

It is the special case α = 1 = γ, β = 0 = ε, δ = 0, ζ = d and η = d of (1) with
the solution d(n) = d, n ∈ N0 (the constant sequence).
The solution of (59) is given by (57) for a0 = −β and d = β + ζ.

• E9 Stern’s diatomic sequence and two variations on it.
The first 2n + 1, n ∈ N0, terms of this sequence form the rth row of the
so-called Stern’s diatomic array

(
(0, 1)r

)
r∈N0

defined as follows: (0, 1)0(0) :=
0, (0, 1)0(1) := 1 (0 and 1 are called the atoms or the seeds of the array)
and the next rows are obtained by successively intercalating the sum of two
neighbouring numbers. It satisfies the recurrence relation (r, n ∈ N0):

(0, 1)0(0) = 0, (0, 1)0(1) = 1,
(0, 1)r+1(2n) = (0, 1)r(n), (0, 1)r+1(2n+ 1) = (0, 1)r(n) + (0, 1)r(n+ 1)

(60)
This array (originated by G. Eisenstein) has been studied in 1858 by
M. A. Stern [32] and in 1860 (in a different form) by A. Brocot [7]. Later
has been studied, among others, by É. Lucas [22], D. H. Lehmer [20] and
D. A. Lind [21]. Stern’s diatomic sequence can be defined by

s(n) := (0, 1)∞(n), n ∈ N0. (61)
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As a sequence it has been defined for the first time in 1947 by G. de Rham [29,
p. 95] recursively as follows:

s(0) = 0, s(1) = 1, s(2n) = s(n), s(2n+ 1) = s(n) + s(n+ 1), n ≥ 1
(62)

It is the special case α = 1 = γ, β = 0 = ε, δ = 1, ζ = 1 and η = 0 of (1). Its
generating function φ(s) satisfies, by Proposition 1, the functional equation

sφ(s) = (1 + s+ s2)φ(s2)

which shows that φ(s) is Mahlerian. It is given by the infinite product

φ(s) = s ·
∞∏

k=0
(1 + s2k + s2k+1), (63)

since

(1 + s+ s2)φ(s2) = (1 + s+ s2) · s2 ·
∞∏

k=0
(1 + s2k+1 + s2k+2)

= s2 ·
∞∏

k=0
(1 + s2k + s2k+1) = sφ(s).

This sequence has been studied by many mathematicians, see for example the
recent publications by S. Northshield [23] and I. Urbiha [33], because it has
remarkable combinatorial interpretations:

1. s(n+ 1) is the third binary partition function b(3;n), i.e., s(n+ 1) is the
number of representations of n = ∑∞

k=0 ξ · 2i, ξ ∈ {0, 1, 2} (see [28]).
2. in [9, 10] L. Carlitz defined the sequences Θ0(n) as the number of odd

Stirling numbers of second kind
{

n
m

}
with even k, k ≤ n, and Θ1(n) as the

number of odd Stirling numbers of second kind
{

n
m

}
with odd k, k ≤ n,

and showed that Θ1(n+ 1) = Θ0(n) and that the generating function of
Θ0(n) is given by ∏∞

k=0(1 + s2k + s2k+1) and consequently that of Θ1(n)
is given by (63). Moreover, he showed that Θ0(n) satisfies the recurrence
relation Θ0(0) = 1, Θ0(1) = 1, Θ0(2n) = Θ0(n)+Θ0(n−1), Θ0(2n+1) =
Θ0(n), that is Θ0(n) = s(n+ 1) and consequently s(n) = Θ1(n).

3. s(n) is the number of odd binomial coefficients in the nth subdiagonal
(i.e.

(
ℓ
k

)
with ℓ+ k = n, ℓ ≥ k ≥ 0) of Pascal’s triangle.

4. s(µ) = zn(2n − µ), µ = 0, 1, . . . , 2n, where zn(µ) (see [15, p. 305]) is
the number of regular states in the graph of the Tower of Hanoi with 3
pegs and n disks, for which the difference of the distances to two distinct
perfect states is equal to µ (see [18, Formula 2, p. 700]).

The first few values of s(n) (the sequence A002487 in [24]) are given in Table
10.
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s(n) 0 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1

Table 10: s(n), 0 ≤ n ≤ 16

We consider now two variations on Stern’s diatomic sequence. The first vari-
ation E9’ has been introduced in [27] by B. Reznick and it is called Reznick’s
sequence. It is given recursively by

r(1) = 1, r(2n) = r(n), r(2n+ 1) = −r(n) + r(n+ 1), n ≥ 1 (64)

It is the special case α = 1, β = 0 = ε, γ = −1, δ = 1, ζ = 1 and η := 0
of (1). Its generating function φ(s) satisfies, by Proposition 1, the functional
equation

sφ(s) = (1 + s− s2)φ(s2)
which shows that φ(s) is Mahlerian. It is given by the infinite product

φ(s) = s
∞∏

k=0
(1 + s2k − s2k+1), (65)

since

(1 + s− s2)φ(s2) = (1 + s− s2) · s2
∞∏

k=0
(1 + s2k+1 − s2k+2)

= s2
∞∏

k=0
(1 + s2k − s2k+1) = sφ(s).

The second variation E9” called the twisted Stern sequence has been in-
troduced in [6] by R. Bacher and later studied by J. P. Allouche [1] and
M. Coons [11]. It is given recursively by

t(1) = 1, t(2n) = −t(n), t(2n+ 1) = −t(n) − t(n+ 1), n ≥ 1 (66)

It is the special case α = −1 = γ, β = 0 = ε, δ = −1, ζ = 1 and η := 0
of (1). Its generating function φ(s) satisfies, by Proposition 1, the functional
equation

sφ(s) = −(1 + s+ s2)φ(s2) + 2s2

and it is given by

φ(s) = s
∞∏

k=0
(−1)k(1 + s2k + s2k+1) + 2s

∞∑
n=0

(−1)n
( n−1∏

k=0
(1 + s2k + s2k+1)

)
, (67)
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since

−(1 + s+ s2)φ(s2) + 2s2 = (1 + s+ s2)
s2

∞∏
k=0

(−1)k+1(1 + s2k+1 + s2k+2)+

+ 2s2
∞∑

n=0
(−1)n+1

( n−1∏
k=0

(1 + s2k+1 + s2k+2)
+ 2s2

= s2
∞∏

k=0
(−1)k(1 + s2k + s2k+1)+

+ 2s2

1 +
∞∑

n=0
(−1)n+1

( n∏
k=0

(1 + s2k + s2k+1)
)

and this is exactly sφ(s), as the expression between the parentheses in the last
term of the above equation is equal to ∑∞

n=0(−1)n
(∏n−1

k=0(1 + s2k + s2k+1)
)
.

The first few values of r(n) (the sequence A005590 in [24]) and t(n) (the
sequence A213369 in [24]) are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
r(n) 0 1 1 0 1 -1 0 1 1 -2 -1 1 0 1 1 0 1
t(n) 0 1 -1 0 1 1 0 -1 -1 -2 -1 -1 0 1 1 2 1

Table 11: r(n), t(n), 0 ≤ n ≤ 16

• E10 Tennis Tournament
There are n participants to a (knock-out) tennis tournament. In the first
round, all the losers are eliminated. The winners play in pairs in the second
round, the losers are eliminated again, and so on. How many rounds T (n) do
we need to determine the winner?
This sequence is given recursively for all n ∈ N by

T (1) = 0, T (2n) = T (n) + 1, T (2n+ 1) = T (n+ 1) + 1 (68)

It is the special case α = 1, β = 1 = ε, γ = 0, δ = 1, ζ = 0 and η := 0 of (1).
Equivalently, E10 can be written as

T (1) = 0, T (n) = T
(
⌈n/2⌉

)
+ 1, n ≥ 2 (69)

Its generating function φ(s) satisfies, by Proposition 1, the functional equation

sφ(s) = (1 + s)φ(s2) + s3

1 − s

and it is given by
φ(s) = s

1 − s

∞∑
k=0

s2k

, (70)
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since

(1 + s)φ(s2) + s3

1 − s
= (1 + s) · s2

1 − s2 ·
∞∑

k=0
s2k+1 + s3

1 − s

= s2

1 − s

( ∞∑
k=0

s2k+1 + s
)

= sφ(s)

The solution of E10 for n = 2a0 +2a1 + · · ·+2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥
0, is given by

T (2a0) = a0, T (2a0 + 2a1 + · · · + 2aℓ) = a0 + 1, ℓ ≥ 1, (71)

and since a0 = ⌊log2 n⌋ we can also write

T (n) = ⌈log2 n⌉, n ≥ 1. (72)

The first few values of T (n) (the sequence A029837 in [24]) are

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T (n) 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4

Table 12: T (n), 1 ≤ n ≤ 16

3 Solution of the special case δ = 0
We shall now study the special case δ = 0 of (1), that is

f(1) = ζ, f(2n) = αf(n) + β, f(2n+ 1) = γf(n) + ε, n ≥ 1 (73)

with α, β, γ, ε, ζ ∈ Z, since the general case δ ̸= 0 can be reduced to (73).
Theorem 1. The solution of (73) for n = (bm . . . b0)2 is given by

f(n) = ζ
m−1∏
k=0

(
γbk +α(1−bk)

)
+

m−1∑
k=0

( k−1∏
j=0

(
γbj +α(1−bj)

))
·
(
εbk +β(1−bk)

)
(74)

Proof. Let n = (bm . . . b0)2. Then by (73):
if b0 = 0 we have f

(
(bm . . . b0)2

)
= αf

(
(bm . . . b1)2

)
+ β and

if b0 = 1 we have f
(
(bm . . . b0)2

)
= γf

(
(bm . . . b1)2

)
+ ε.

Hence,

f
(
(bm . . . b0)2

)
= b0 ·

(
γf
(
(bm . . . b1)2

)
+ ε

)
+ (1 − b0) ·

(
αf
(
(bm . . . b1)2

)
+ β

)
=
(
γb0 + α(1 − b0)

)
· f
(
(bm . . . b1)2

)
+
(
εb0 + β(1 − b0)

)
.
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Similarly, f
(
(bm . . . b1)2

)
=
(
γb1 + α(1 − b1)

)
· f
(
(bm . . . b2)2

)
+
(
εb1 + β(1 − b1)

)
.

Substituting this expression into the above equation gives
f
(
(bm . . . b0)2

)
=
(
γb0 + α(1 − b0)

)
·
(
γb1 + α(1 − b1)

)
· f
(
(bm . . . b2)2

)
+

+
(
γb0 + α(1 − b0)

)
·
(
εb1 + β(1 − b1)

)
+
(
εb0 + β(1 − b0)

)
By iteration and noting that f

(
(bm)2

)
= f(1) = ζ one obtains formula (74) and

this proves the theorem.

The next corollary gives the exact values of f(n) for some special numbers.
Corollary 1. We have

f(2m) = f
(
(10 . . . 0)2

)
= ζαm + β

m−1∑
k=0

αk, m ≥ 0 (75)

f(2m + 1) = f
(
(10 . . . 01)2

)
= ζγαm−1 + βγ

m−2∑
k=0

αk + ε, m ≥ 1 (76)

f(2m+1 − 1) = f
(
(11 . . . 1)2

)
= ζγm + ε

m−1∑
k=0

γk, m ≥ 0 (77)

In the next theorem we present an alternative expression of the solution of (73).
Theorem 2. Let n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · > aℓ ≥ 0, ℓ ≥ 0, a strictly
decreasing sequence of positive integers. Then the solution of (73) for α ̸= 0 is given
by

f(n) =
(
γ

α

)ℓ

·
(
ζαa0 +β

a0−1∑
k=0

αk
)

+
ℓ−1∑
k=0

(
γ

α

)k

·
(

(ε−β)αaℓ−k +β
(

1− γ

α

) aℓ−k∑
j=0

αj

)
(78)

and for α = 0 by

f(n) = β + γℓ(ζ − β)
ℓ∏

k=0
[aℓ−k = k] + (βγ + ε− β)

ℓ−1∑
k=0

γk

(
k∏

j=0
[aℓ−j = j]

)
, (79)

where [A] is Iverson’s convention meaning 1 if the assertion A is true and 0 if A is
false.

Proof. 1) Let α ̸= 0 and Ai := f(2a0 + · · ·+2ai), i ∈ [ℓ+1]0, a0 > a1 > · · · > aℓ ≥ 0,
a strictly decreasing sequence of positive integers. Then f(2a0+1) = α · f(2a0) + β
with the initial value f(20) = f(1) = ζ. This is an arithmetic progression with the
solution

f(2a0) = f(1) · αa0 + β
a0−1∑
k=0

αk = ζαa0 + β
a0−1∑
k=0

αk.

Now let i ≥ 0, then by repeated use of (1)

Ai+1 = f(2a0 + · · · + 2ai+1) = f
(
2ai+1 · (2a0−ai+1 + · · · + 2ai−ai+1 + 1)

)
= αai+1 · f(2a0−ai+1 + · · · + 2ai−ai+1 + 1) + β

ai+1−1∑
k=0

αk

= αai+1 ·
(
γ · f(2a0−ai+1−1 + · · · + 2ai−ai+1−1) + ε

)
+ β

ai+1−1∑
k=0

αk,
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that is

Ai+1 = γαai+1 · f(2a0−ai+1−1 + · · · + 2ai−ai+1−1) + εαai+1 + β
ai+1−1∑

k=0
αk. (80)

We have

f(2a0 + · · · + 2ai) = f
(
2ai+1+1 · (2a0−ai+1−1 + · · · + 2ai−ai+1−1)

)
= αai+1+1 · f(2a0−ai+1−1 + · · · + 2ai−ai+1−1) + β

ai+1∑
k=0

αk

or solving for f(2a0−ai+1−1 + · · · + 2ai−ai+1−1) and since α ̸= 0 it follows
f(2a0−ai+1−1 + · · · + 2ai−ai+1−1) =

(
f(2a0 + · · · + 2ai) − β

∑ai+1
k=0 α

k
)
/αai+1+1.

Inserting this formula into (80) yields

Ai+1 = γ

α
Ai − βγ

α

ai+1∑
k=0

αk + εαai+1 + β
ai+1∑
k=0

αk − βαai+1 = γ

α
Ai − g(i+ 1),

where g(i+ 1) := β
(
1 − γ

α

)∑ai+1
k=0 α

k + (ε− β)αai+1 .

The solution of this arithmetic progression is given by

Aℓ = A0 ·
(
γ

α

)ℓ

+
ℓ−1∑
k=0

(
γ

α

)k

· g(ℓ− k)

=
(
γ

α

)ℓ

·
(
ζαa0 + β

a0−1∑
k=0

αk
)

+
ℓ−1∑
k=0

(
γ

α

)k

·
(

(ε− β)αaℓ−k + β
(

1 − γ

α

) aℓ−k∑
j=0

αj
)

and this is formula (78).
2) Let α = 0, then we shall prove (79) by induction on ℓ ∈ N0.
Base step: For ℓ = 0 we have by (73) : if a0 = 0 : f(20) = ζ and if a0 ̸= 0 : f(2a0) =
β or f(2a0) = (a0 = 0) · ζ + (1 − (a0 = 0)) · β = β + (ζ − β) · (a0 = 0), and this is
(79) for ℓ = 0.
Induction step: By (73) we have: f(2a0 + · · · + 2aℓ+1) = γf(2a0−1 + · · · + 2aℓ−1) + ε,
if al+1 = 0 and f(2a0 + · · · + 2aℓ+1) = β, if al+1 ̸= 0 or

f(2a0 + · · · + 2aℓ) = (aℓ+1 = 0) ·
(
γf(2a0−1 + · · · + 2aℓ−1) + ε

)
+ (1 − (aℓ+1 = 0)) · β

= β +
(
γf(2a0−1 + · · · + 2aℓ−1) + ε

)
(aℓ+1 = 0)

(81)

By induction assumption (with a0 − 1, . . . , aℓ − 1 instead of a0, . . . , aℓ) we have

f(2a0−1 + · · · + 2aℓ−1) = β + γℓ(ζ − β)∏ℓ
k=0[aℓ−k = k + 1] + (βγ + ε− β)∑ℓ−1

k=0 γ
k

(∏k
j=0[aℓ−j − 1 = j]

)
.
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Hence, inserting this equation into (81) we obtain

f(2a0 + · · · + 2aℓ+1) = β +
γ ·

(
β + γℓ(ζ − β)

ℓ∏
k=0

[aℓ−k = k]+

+ (βγ + ε− β)
ℓ−1∑
k=0

γk
( k∏

j=0
[aℓ−j = j]

))
+ ε− β

 · [aℓ+1 = 0]

= β + γℓ+1(ζ − β) · [aℓ+1 = 0] ·
ℓ∏

k=0
[aℓ−k = k + 1]+

+ (βγ + ε− β) · [aℓ+1 = 0] ·
(

1 +
ℓ−1∑
k=0

γk+1
( k∏

j=0
[aℓ−j = j + 1]

))

and this is (79) for ℓ+ 1 instead of ℓ, since

[al+1 = 0]
ℓ∏

k=0
[aℓ−k = k + 1] = [al+1 = 0] · [al = 1] · [al−1 = 2] · · · [a0 = ℓ+ 1]

=
ℓ+1∏
k=0

[aℓ+1−k = k]

and

[al+1 = 0] ·
(

1 +
ℓ−1∑
k=0

γk+1
( k∏

j=0
[aℓ−j = j + 1]

))
=

= [al+1 = 0]
(
1 + γ[al = 1] + γ2[al = 1][al−1 = 2] + · · · + γℓ[al = 1][al−1 = 2] · · · [a1 = ℓ]

)
= γ0[al+1 = 0] + γ[al+1 = 0][al = 1] + γ2[al+1 = 0][al = 1][al−1 = 2] + · · · +

+ γℓ[al+1 = 0][al = 1][al−1 = 2] · · · [a1 = ℓ] =
ℓ∑

k=0
γk
( k∏

j=0
[aℓ+1−j = j]

)
.

By induction (79) is true and this proves Theorem 2.

All sequences E1 ..... E8 considered in Chapter 2 are special cases of (73). We shall
now mention some other interesting special cases of (73).

1. Choosing α = 0, β = 1 = ε, γ = 1, ζ = 1 we obtain the recurrence relation

dc(1) = 1, dc(2n) = 1, dc(2n+ 1) = dc(n) + 1, n ≥ 1 (82)

with the solution
dc

(
(bm . . . b0)2

)
=

m∑
k=0

( k−1∏
j=0

bj

)
(83)

Note that by (19) and (83) we have dc(n) = d2(c(n)), n ≥ 1, where c(n) is the
one’s complement of n = (bm . . . b0)2.
The first few values of dc(n) (the sequence A091090 in [24]) are
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
dc(n) 1 1 2 1 2 1 3 1 2 1 3 1 2 1 4 1

Table 13: dc(n), 1 ≤ n ≤ 16

2. Choosing α = 1, β = 1 = ε, γ = 2, ζ = 1 we obtain the recurrence relation

f(1) = 1, f(2n) = f(n) + 1, f(2n+ 1) = 2f(n) + 1, n ≥ 1 (84)

with the solution given by (74)

f
(
(bm . . . b0)2

)
=

m∑
k=0

( k−1∏
j=0

(bj + 1)
)

=
m∑

k=0
2
∑k−1

k=0 bj , (85)

since bj + 1 = 2bj , bj ∈ {0, 1}.
Alternatively, by (78)

f
(
2a0 + 2a1 + · · · + 2aℓ) = 2ℓa0 + 1 −

ℓ−1∑
k=0

2kaℓ−k. (86)

The first few values of f(n) (the sequence A135533 in [24]) are

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f(n) 1 2 3 3 5 4 7 4 7 6 11 5 11 8 15 5

Table 14: f(n), 1 ≤ n ≤ 16

3. The special case α = γ leads by (74) to the solution (n = (bm . . . b0)2)

f(n) = ζαm+
m−1∑
k=0

αk
(
εbk +β(1−bk)

)
= ζαm+(ε−β)

m−1∑
k=0

αkbk +β
m−1∑
k=0

αk (87)

This formula shows that the solution of (73) for α = γ and β = ε depends
only on m = ⌊log2 n⌋. Perhaps, one of the most important of these cases is for
α = 1 = γ, β = 1 = ε and ζ = 1, that is the recurrence relation

B(1) = 1, B(2n) = B(n) + 1, B(2n+ 1) = B(n) + 1, n ≥ 1 (88)

or, equivalently,

B(1) = 1, B(n) = B
(
⌊n/2⌋

)
+ 1, n ≥ 2 (89)

with the solution
B(n) = 1 + ⌊log2 n⌋. (90)

This sequence is, for n ≥ 1, equal to the number of bits in the binary represen-
tation of n, that is B(n) = s2(n)+ e0(n), n ∈ N0, (see Examples E2 and E2’).
It gives also the number of comparisons in the worst case with binary search
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in an (ordered) list of size n (see [30, pp. 64–65]). Its generating function φ(s)
satisfies, by Proposition 1, the functional equation

φ(s) = (1 + s)φ(s2) + s

1 − s

and it is given by
φ(s) = 1

1 − s
·

∞∑
k=0

s2k

, (91)

since

(1 + s)φ(s2) + s

1 − s
= 1 + s

1 − s2 ·
∞∑

k=0
s2k+1 + s

1 − s

= 1
1 − s

( ∞∑
k=0

s2k+1 + s
)

= φ(s).

The generating function (91) is the Cauchy product of two power series, namely

1
1 − s

·
∞∑

k=0
s2k =

( ∞∑
k=0

sn
)

·
( ∞∑

k=1
ρ(n)sn

)
=

∞∑
n=0

( n∑
k=1

ρ(k)
)
sn,

that is B(n) = ∑n
k=1 ρ(k) is the sequence of the partial sums of ρ(n), where

ρ(n) is the characteristic function of the powers of 2 (cf. Example E3 at p. 8).
Note also that B(n) = T (n+ 1), n ≥ 0, where T (n) is the sequence E10.
The first few values of ρ(n) (the sequence A209229 in [24]) and B(n) (the
sequence A029837 in [24]) are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ρ(n) - 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
B(n) 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5

Table 15: ρ(n), B(n), 0 ≤ n ≤ 16

4 Solution of the general case δ ̸= 0

Let f⃗(n) :=
(

f(n)
f(n+ 1)

)
, then f⃗(1) =

(
f(1)
f(2)

)
=
(

ζ
αζ + β

)
, f⃗(2n) =

(
f(2n)

f(2n+ 1)

)
=(

α 0
γ δ

)
f⃗(n) +

(
β
ε

)
and f⃗(2n+ 1) =

(
f(2n+ 1)
f(2n+ 2)

)
=
(
γ δ
0 α

)
f⃗(n) +

(
ε
β

)
.

In this way Eq.(1) is equivalent to

f⃗(1) =
(

ζ
αζ + β

)
, f⃗(2n) = A · f⃗(n) + b⃗, f⃗(2n+ 1) = B · f⃗(n) + Cb⃗ (92)

where A :=
(
α 0
γ δ

)
, B :=

(
γ δ
0 α

)
, C :=

(
0 1
1 0

)
, b⃗ :=

(
β
ε

)
and α, β, γ, δ, ε, ζ ∈ Z.

Before giving the general solution of (92) we shall determine the values of this
sequence for the numbers n = 2m, 2m + 1, 2m+1 − 1.
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Lemma 1. Let m ≥ 0, then

f(2m) = ζαm + β
m−1∑
k=0

αk (93)

f(2m + 1) = δm(αζ + β) +
m−1∑
k=0

δk
(
γζαm−1−k + βγ

m−2−k∑
j=0

αj + ε
)

(94)

f(2m+1 − 1) = ζγm +
m−1∑
k=0

γk
(
δζαm−k + βδ

m−1−k∑
j=0

αj + ε
)

(95)

Proof. 1) Let A(m) := f(2m), A(0) = f(1) = ζ, then by (1):
A(m) = αf(2m−1) + β = αA(m − 1) + β. This is an arithmetic progression with
constant coefficients. Its solution is given by A(m) = A(0) · αm + ∑m−1

k=0 α
kβ and

this proves (93).

2) Let B(m) := f(2m + 1), B(0) = f(2) = αζ + β, then by (1):
B(m) = γf(2m−1) + δf(2m−1 + 1) + ε = γA(m− 1) + δB(m− 1) + ε.
Inserting (93) into this equation we obtain the arithmetic progression
B(m) = δB(m − 1) + g(m − 1), where g(m − 1) := γ ·

(
ζαm−1 + β

∑m−2
k=0 α

k
)

+ ε

with the solution B(m) = B(0) · δm +∑m−1
k=0 δ

kg(m− 1 − k) and this proves (94).

3) Let C(m) := f(2m+1 − 1) = f(2m + · · · + 21 + 20), C(0) = f(1) = ζ, then by (1):
C(m) = γf(2m−1 + · · ·+20)+δf(2m−1 + · · ·+20 +1)+ε = γC(m−1)+δf(2m)+ε =
γC(m− 1) + δA(m) + ε.
Inserting (93) into this equation we obtain the arithmetic progression
C(m) = γC(m − 1) + h(m), where h(m) := δ ·

(
ζαm + β

∑m−1
j=0 αj

)
+ ε with the

solution C(m) = C(0) · γm +∑m−1
k=0 γ

kg(m− k) and this proves (95).

We shall now determine the general solution of (92).
Theorem 3. Let n = (bm . . . b0)2, then the solution of (92) is given by

f⃗
(
(bm . . . b0)2

)
= M(b0) ·M(b1) · · ·M(bm−1) ·

(
ζ

αζ + β

)
+

+
(
M(b0) · · ·M(bm−2) · Cbm−1 + · · · +M(b0) · Cb1 + Cb0

)
·
(
β
ε

)
,

(96)

where M(bk) := A1−bk ·Bbk = (1 − bk)A+ bkB, k ∈ [m]0, i.e., M(0) = A, M(1) = B

and C0 :=
(

1 0
0 1

)
is the 2 × 2 unit matrix E2.

Proof. Let n = (bm . . . b0)2. Then by (92):
if b0 = 0 we have f⃗

(
(bm . . . b0)2

)
= A · f⃗

(
(bm . . . b1)2

)
+ b⃗ and

if b0 = 1 we have f⃗
(
(bm . . . b0)2

)
= B · f⃗

(
(bm . . . b1)2

)
+ C · b⃗.

Hence,
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f⃗
(
(bm . . . b0)2

)
= (1 − b0) ·

(
A · f⃗

(
(bm . . . b1)2

)
+ b⃗

)
+ b0 ·

(
B · f⃗

(
(bm . . . b1)2

)
+ C · b⃗

)
=
(
(1 − b0)A+ b0B

)
· f⃗
(
(bm . . . b1)2

)
+
(
(1 − b0)⃗b+ b0 · Cb⃗

)
= M(b0) · f⃗

(
(bm . . . b1)2

)
+ Cb0 · b⃗.

Similarly, f⃗
(
(bm . . . b1)2

)
= M(b1) · f⃗

(
(bm . . . b2)2

)
+ Cb1 · b⃗.

Substituting this expression into the above equation gives

f⃗
(
(bm . . . b0)2

)
= M(b0) ·M(b1) · f⃗

(
(bm . . . b2)2

)
+
(
M(b0) · Cb1 + Cb0

)
· b⃗

By iteration and noting that f⃗
(
(bm)2

)
= f⃗(1) =

(
ζ

αζ + β

)
one obtains formula (96)

and this proves the theorem.
We now apply formula (96) to the sequences E9, E9’and E9”.

1. For E9 we have α = 1 = γ, β = 0 = ε, δ = 1, ζ = 1. Hence A =
(

1 0
1 1

)
, B =(

1 1
0 1

)
, b⃗ :=

(
0
0

)
, s⃗(1) =

(
1
1

)
and M(bk) =

(
1 bk

1 − bk 1

)
, k ∈ [m]0. The

solution is given by

s⃗
(
(bm . . . b0)2

)
=
(

1 b0
1 − b0 1

)
·
(

1 b1
1 − b1 1

)
· · ·

(
1 bm−1

1 − bm−1 1

)
·
(

1
1

)
(97)

For example, if n = 13 = (1101)2, then

s⃗(13) =
(
s(13)
s(14)

)
=
(

1 1
0 1

)
·
(

1 0
1 1

)
·
(

1 1
0 1

)
·
(

1
1

)
=
(

2 3
1 2

)
·
(

1
1

)
=
(

5
3

)

that is s(13) = 5 and s(14) = 3.
Remark 3. We have B = CAC and since C2 = E2 it follows BC = CA =(

1 1
1 0

)
=
(
F2 F1
F1 F0

)
=: Q, where Q is the Q-matrix that generates the Fi-

bonacci numbers Fn, since Qn =
(
Fn+1 Fn

Fn Fn−1

)
.

2. For E9’ we have α = 1, β = 0 = ε, γ = −1, δ = 1, ζ = 1. Hence A =(
1 0

−1 1

)
, B =

(
−1 1
0 1

)
, b⃗ :=

(
0
0

)
, r⃗(1) =

(
1
1

)
and M(bk) =

(
1 − 2bk bk

bk − 1 1

)
,

k ∈ [m]0. The solution is given by

r⃗
(
(bm . . . b0)2

)
=
(

1 − 2b0 b0
b0 − 1 1

)
·
(

1 − 2b1 b1
b1 − 1 1

)
· · ·

(
1 − 2bm−1 bm−1
bm−1 − 1 1

)
·
(

1
1

)
(98)
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For example, if n = 13 = (1101)2, then

r⃗(13) =
(
r(13)
r(14)

)
=
(

−1 1
0 1

)
·
(

1 0
−1 1

)
·
(

−1 1
0 1

)
·
(

1
1

)

=
(

2 −1
1 0

)
·
(

1
1

)

=
(

1
1

)

that is r(13) = 1 and r(14) = 1.

3. For E9” we have α = −1 = γ, β = 0 = ε, δ = −1, ζ = 1. Hence

A =
(

−1 0
−1 −1

)
, B =

(
−1 −1
0 −1

)
, b⃗ :=

(
0
0

)
, t⃗(1) =

(
1

−1

)
and M(bk) =(

−1 −bk

bk − 1 −1

)
, k ∈ [m]0. The solution is given by

t⃗
(
(bm . . . b0)2

)
=
(

−1 −b0
b0 − 1 −1

)
·
(

−1 −b1
b1 − 1 −1

)
· · ·

(
−1 −bm−1

bm−1 − 1 −1

)
·
(

1
−1

)
(99)

For example, if n = 13 = (1101)2, then

t⃗(13) =
(
t(13)
t(14)

)
=
(

−1 −1
0 −1

)
·
(

−1 0
−1 −1

)
·
(

−1 −1
0 −1

)
·
(

1
−1

)

=
(

−2 −3
−1 −2

)
·
(

1
−1

)
=
(

1
1

)

that is t(13) = 1 and t(14) = 1.

For β = 0 = ε and α ̸= 0 the sequence (92) seems to satisfy a second-order linear
recurrence relation with variable coefficients. We conjecture the following statement.
Conjecture 1. Let β = 0 = ε, α ̸= 0 in (92) and n = 2a0 + 2a1 + · · · + 2aℓ , a0 >
a1 > · · · > aℓ ≥ 0, ℓ ≥ 0, be a strictly decreasing sequence of positive integers. Then

f(2a0) = ζ · αa0 , f(2a0 + 2a1) = ζ · αa0

(
α
(
δ

α

)a0−a1

+ γ

α

a0−a1−1∑
k=0

(
δ

α

)k
)

f(2a0 + · · · + 2aℓ) = A · f(2a0 + · · · + 2aℓ−1) +B · f(2a0 + · · · + 2aℓ−2), ℓ ≥ 2
(100)

where A :=
(

δ
α

)aℓ−1−aℓ + γ
α

·∑aℓ−1−aℓ−1
k=0

(
δ
α

)k
and B := (α− δ − γ

α
) ·
(

δ
α

)aℓ−2−aℓ−1
.

Indeed, for the cases discussed in Section 2, namely E9 (Stern’s diatomic sequence
s(n)), E9’ (Reznick sequence r(n)), and E9” (twisted Stern sequence t(n)) we can
prove three special cases of this Conjecture.
Theorem 4. Let β = 0 = ε in (92) and n = 2a0 + 2a1 + · · · + 2aℓ , a0 > a1 > · · · >
aℓ ≥ 0, ℓ ≥ 0, be a strictly decreasing sequence of positive integers. Then
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1. For α = 1, γ = 1, δ = 1 we have for ℓ ≥ 2

s(2a0) = 1, s(2a0 + 2a1) = a0 − a1 + 1,
s(2a0 + · · · + 2aℓ) = (aℓ−1 − aℓ + 1) · s(2a0 + · · · + 2aℓ−1) − s(2a0 + · · · + 2aℓ−2)

(101)

2. For α = 1, γ = −1, δ = 1 we have for ℓ ≥ 2

r(2a0) = 1, r(2a0 + 2a1) = −a0 + a1 + 1,
r(2a0 + · · · + 2aℓ) = (−aℓ−1 + aℓ + 1) · r(2a0 + · · · + 2aℓ−1) + r(2a0 + · · · + 2aℓ−2)

(102)

3. For α = −1, γ = −1, δ = −1 we have for ℓ ≥ 2

t(2a0) = (−1)a0 , t(2a0 + 2a1) = (−1)a0(a0 − a1 − 1),
t(2a0 + · · · + 2aℓ) = (aℓ−1 − aℓ + 1) · t(2a0 + · · · + 2aℓ−1) − t(2a0 + · · · + 2aℓ−2)

(103)

Proof. By induction on ℓ ∈ N0.
1) Case ℓ = 0: the first initial value of (101) follows from (93) for m = a0 and ζ = 1.
2) Case ℓ = 1: Since s(2a0 + 2a1) = s

(
2a1 · (2a0−a1 + 1)

)
= s(2a0−a1 + 1), we obtain

from (94) for m = a0 − a1 and ζ = 1 the second initial value of (101).
Let now ℓ ≥ 1 and Aℓ+1 := s(2a0 + · · · + 2aℓ+1), then by definition
Aℓ+1 = s

(
2aℓ+1 · (2a0−aℓ+1 + · · · + 2aℓ−aℓ+1 + 1)

)
= s(2a0−aℓ+1 + · · · + 2aℓ−aℓ+1 + 1).

Let bi := ai − aℓ+1, i ∈ [ℓ + 2]0, then b0 > b1 > · · · > bℓ > bℓ+1 = 0. Hence, by
definition

Aℓ+1 = s(2b0 + · · · + 2bℓ + 1) = s(2 · (2b0−1 + · · · + 2bℓ−1) + 1)
= s(2b0−1 + · · · + 2bℓ−1) + s(2b0−1 + · · · + 2bℓ−1 + 1)
= s(2b0 + · · · + 2bℓ) + s(2b0−1 + · · · + 2bℓ−1 + 1).

Repeating this procedure bℓ times we obtain by induction

Aℓ+1 = bℓ · s(2b0 + · · · + 2bℓ) + s(2b0−bℓ + · · · + 2bℓ−1−bℓ + 2bℓ−bℓ + 1)
= bℓ · s(2b0 + · · · + 2bℓ) + s(2b0−bℓ−1 + · · · + 2bℓ−1−bℓ−1 + 1)
= (aℓ − aℓ−1) · s(2a0−aℓ+1 + · · · + 2aℓ−aℓ+1) + s(2a0−aℓ−1 + · · · + 2aℓ−1−aℓ−1 + 1)

and this is by definition and since bi −bℓ −1 = ai −aℓ+1 −(aℓ −aℓ+1)−1 = ai −aℓ −1
equal to

Aℓ+1 = (aℓ − aℓ−1) · Aℓ + s(2a0−aℓ−1 + · · · + 2aℓ−1−aℓ−1 + 1) (104)

We distinguish now two cases: 1.) aℓ−1 − aℓ − 1 > 0 and 2.) aℓ−1 − aℓ − 1 = 0.
First case: aℓ−1 − aℓ − 1 > 0.
Applying by assumption the assertion to the sequence of ℓ+ 1 integers a0 −aℓ − 1 >
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a1−aℓ−1 > . . . > aℓ−1−aℓ−1 > 0 and by definition we obtain for ci := ai−aℓ−1, i ∈
[ℓ]0, cℓ := 0,
s(2c0 + · · · + 2cℓ−1 + 1) = (cℓ−1 − cℓ + 1) · s(2c0 + · · · + 2cℓ−1) − s(2c0 + · · · + 2cℓ−2)

= (aℓ−1 − aℓ) · s(2a0 + · · · + 2aℓ−1) − s(2a0 + · · · + 2aℓ−2)
= (aℓ−1 − aℓ) · Aℓ−1 − Aℓ−2,

since s(2c0 +· · ·+2cℓ−1) = s(2a0−aℓ−1+· · ·+2aℓ−1−aℓ−1) = s(2a0 +· · ·+2aℓ−1). Inserting
the above expression into (104) we obtain

Aℓ+1 = (aℓ − aℓ−1) · Aℓ + (aℓ−1 − aℓ) · Aℓ−1 − Aℓ−2

= (aℓ − aℓ−1 + 1 − 1) · Aℓ + (aℓ−1 − aℓ + 1 − 1) · Aℓ−1 − Aℓ−2

= (aℓ − aℓ−1 + 1) · Aℓ − Aℓ + (aℓ−1 − aℓ + 1) · Aℓ−1 − Aℓ−1 − Aℓ−2

= (aℓ − aℓ−1 + 1) · Aℓ − Aℓ−1

and this is the assertion for ℓ + 1 instead of ℓ, since by assumption −Aℓ + (aℓ−1 −
aℓ + 1) · Aℓ−1 − Aℓ−2 = 0.
Second case: aℓ−1 − aℓ − 1 = 0.
In this case the sequence ci := ai − aℓ − 1, i ∈ [ℓ]0, cℓ := 0 is no longer strictly
decreasing, since cℓ−1 − cℓ = aℓ−1 − aℓ − 1 = 0. We define n := 2c0 + · · · + 2cℓ−1

and using the rule s(n+ 1) = s(2n+ 1) − s(n) we obtain s(2c0 + · · · + 2cℓ−1 + 1) =
s(2c0+1 + · · · + 2cℓ−1+1 + 1) − s(2c0 + · · · + 2cℓ−1) or
s(2c0 + · · · + 2cℓ−1 + 1) = s(2a0−aℓ + · · · + 2aℓ−1−aℓ + 1) − s(2a0−aℓ−1 + · · · + 2aℓ−1−aℓ−1)

= s(2a0 + · · · + 2aℓ) − s(2a0 + · · · + 2aℓ−1)
= Aℓ − Aℓ−1.

Inserting this expression into (104) we get
Aℓ+1 = (aℓ − aℓ−1) · s(2a0 + · · · + 2aℓ) + s(2a0 + · · · + 2aℓ) − s(2a0 + · · · + 2aℓ−1)

= (aℓ − aℓ−1 + 1) · Aℓ − Aℓ−1

and this is again the assertion for ℓ+ 1 instead of ℓ. This proves (101).
The proofs of (102) and (103) are similar and will be omitted.
By means of Theorem 4 (and using the Euler-Wallis relations) the solution of Stern’s
diatomic sequence can be given by the numerator of the finite continued fraction

Aℓ

Bℓ

= a0 − a1 + 1 − 1
a1 − a2 + 1 − · · · − 1

aℓ−1 − aℓ + 1 , for ℓ > 0

and s(2a0) = 1 for ℓ = 0, that is s(n) = Aℓ for ℓ > 0 and s(2a0) = 1 for ℓ = 0.

We recall that b0 + a1
b1

+ a2
b2

+ · · · + an−1
bn−1

+ an

bn
is the notation of Pringsheim

of a finite generalized continued fraction

b0 +
a1

b1 +
a2

b2 + . . . an−1

bn−1 +
an

bn
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If some or all ak, k ∈ [n], are provided with minus signs, then these are also written in

front of the ak instead of the plus signs; thus instead of b0+ −a1
b1

+ a2
b2

+· · ·+ −an

bn

we will write b0 − a1
b1

+ a2
b2

+ · · · − an

bn
.

If ak = 1 and bk ∈ N for all k ∈ [n], then the continued fraction is said to be simple.
Remark 4. Other equivalent solutions of Stern’s diatomic sequence have been given
in [29, pp. 95–96], in [13, Exercise 6.50 at p. 300 and its solution at p. 531] and
in [20] by different representations of n.
Similarly, the solution of Reznick’s sequence can be given by the numerator of the
finite simple continued fraction

Aℓ

Bℓ

= −a0 + a1 + 1 + 1
−a1 + a2 + 1 + · · · + 1

−aℓ−1 + aℓ + 1 , for ℓ > 0

and r(2a0) = 1 for ℓ = 0, that is r(n) = Aℓ for ℓ > 0 and r(2a0) = 1 for ℓ = 0.

Finally, the solution of the twisted Stern sequence can be given by the numerator
of the finite continued fraction

Aℓ

Bℓ

= (−1)a0 ·
(
a0 − a1 − 1 − 1

a1 − a2 + 1 − · · · − 1
aℓ−1 − aℓ + 1

)
, for ℓ > 0

and t(2a0) = (−1)a0 for ℓ = 0, that is t(n) = Aℓ for ℓ > 0 and t(2a0) = (−1)a0 for
ℓ = 0.

5 Generalization
An obvious generalization of (1) is given by

f(1) = ζ, f(2n) = αf(n) + g(n), f(2n+ 1) = γf(n) + δf(n+ 1) +h(n), n ≥ 2,
(105)

with α, γ, δ, ζ ∈ Z and g, h : N −→ Z two arbitrary integer functions.

5.1 The case δ = 0
At first we shall give the general solution of (105) for the case δ = 0.
Theorem 5. The solution of (105) for δ = 0 and for n = (bm . . . b0)2 is given by

f(n) = ζ ·
m−1∏
k=0

(
γbk + α(1 − bk)

)
+

+
m−1∑
k=0

( k−1∏
j=0

(
γbj + α(1 − bj)

))
·
(
bk · h

(
(bm . . . bk+1)2

)
+ (1 − bk) · g

(
(bm . . . bk+1)2

))
(106)
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Proof. Let n = (bm . . . b0)2. Then by (105):
if b0 = 0 we have f

(
(bm . . . b0)2

)
= αf

(
(bm . . . b1)2

)
+ g

(
(bm . . . b1)2

)
and

if b0 = 1 we have f
(
(bm . . . b0)2

)
= γf

(
(bm . . . b1)2

)
+ h

(
(bm . . . b1)2

)
.

Hence,

f
(
(bm . . . b0)2

)
= b0 ·

(
γf
(
(bm . . . b1)2

)
+ h

(
(bm . . . b1)2

))
+

+ (1 − b0) ·
(
αf
(
(bm . . . b1)2

)
+ g

(
(bm . . . b1)2

))
=
(
γb0 + α(1 − b0)

)
· f
(
(bm . . . b1)2

)
+
(
b0 · h

(
(bm . . . b1)2

)
+

+ (1 − b0) · g
(
(bm . . . b1)2

))
.

Similarly, f
(
(bm . . . b1)2

)
=
(
γb1 +α(1− b1)

)
·f
(
(bm . . . b2)2

)
+
(
b1 ·h

(
(bm . . . b2)2

)
+

(1 − b1) · g
(
(bm . . . b2)2

))
.

Substituting this expression into the above equation gives

f
(
(bm . . . b0)2

)
=
(
γb0 + α(1 − b0)

)
·
(
γb1 + α(1 − b1)

)
· f
(
(bm . . . b2)2

)
+

+
(
γb0 + α(1 − b0)

)
·
(
b1 · h

(
(bm . . . b2)2

)
+ (1 − b1) · g

(
(bm . . . b2)2

))
+

+
(
b0 · h

(
(bm . . . b1)2

)
+ (1 − b0) · g

(
(bm . . . b1)2

))
By iteration and noting that f(bm) = f(1) = ζ one obtains formula (106) and this
proves the theorem.

An interesting special case of (105) is for γ = α and g(n) := 2n, h(n) := 2n + 1,
that is the recurrence relation

f(1) = ζ, f(2n) = αf(n) + 2n, f(2n+ 1) = αf(n) + 2n+ 1, n ≥ 1 (107)

or, equivalently,

f(1) = ζ, f(n) = αf
(
⌊n/2⌋

)
+ n, n ≥ 2 (108)

Proposition 3. The solution of (107) for n = (bm . . . b0)2 is given by

f
(
(bm . . . b0)2

)
=
(ζ − 1) · 2m +∑m

k=1 k · bk · 2k + (bm . . . b0)2, if α = 2
(ζ − 1) · αm + α

α−2(bm . . . b0)α − 2
α−2(bm . . . b0)2, if α ̸= 2

(109)
where (bm . . . b0)α := ∑m

k=0 bk · αk.

Proof. By (106) with

h
(
(bm . . . bk+1)2

)
= 2 · (bm . . . bk+1)2 + 1 = (bm . . . bk+11)2,

g
(
(bm . . . bk+1)2

)
= 2 · (bm . . . bk+1)2 = (bm . . . bk+10)2
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and
bk · (bm . . . bk+1)2 + (1 − bk) · (bm . . . bk+1)2 = (bm . . . bk+1bk)2

we obtain
f
(
(bm . . . b0)2

)
= ζ · αm +

m−1∑
k=0

αk · (bm . . . bk+1bk)2.

Since (bm . . . bk−1bk)2 = ∑m
j=k bj2j−k it follows

m−1∑
k=0

αk · (bm . . . bk+1bk)2 =
m−1∑
k=0

αk
( m∑

j=k

bj2j−k
)

= α0 · (b020 + b121 + b222 + · · · + bm−12m−1 + bm2m)+
+ α1 · ( b120 + b221 + · · · + bm−12m−2 + bm2m−1)+
+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · +
+ αm−1 · ( bm−120 + bm21)
= b0(α020) + b1(α021 + α120) + b2(α021 + α121 + α220)+
+ · · · + bm(α02m + α12m−1 + · · · + αm−121 + αm20 − αm20)

=
m∑

k=0
bk · 2k ·

( k∑
j=0

(α/2)j
)

− bmα
m

Substituting the value of the finite geometric series
k∑

j=0
(α/2)j =

k + 1, if α = 2
1

2k
αk+1−2k+1

α−2 , if α ̸= 2

into the last formula and simplifying one obtains the formula (109) and this proves
the proposition.

An important example of (107) is for α = 1, ζ = 1. Its solution f(n) = 2n −∑n
k=0 bk = 2n − s2(n) shows, that this is the sequence

(
D2(n)

)
n∈N

defined in (26).
Besides, it is not difficult to show directly that by (16) this sequence satisfies the
recurrence relation

D2(1) = 1, D2(2n) = D2(n) + 2n, D2(2n+ 1) = D2(n) + 2n+ 1, n ≥ 1 (110)

We now derive some properties of this sequence.
Proposition 4. 1. The solution of (110) is given by

D2(n) =
⌊log2 n⌋∑

k=0
⌊n/2k⌋, (111)

that is, D2(n) is the number of positive powers of 2 which divide numbers ≤ n.

2. The generating function φ(s) := ∑∞
n=1 D2(n)sn satisfies the functional equation

φ(s) = (1 + s)φ(s2) + s

(1 − s)2 , (112)

which shows that D2(n) is of the DC type.
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3. The solution of (112) is given either by

φ(s) = 1
1 − s

∞∑
k=0

s2k

1 − s2k (113)

or by the Lambert series

φ(s) =
∞∑

n=1
an

sn

1 − sn
(114)

where an := 2ϕ(n) −∑
t|n µ(n/t)s2(t), µ(n) is the Möbius function and ϕ(n) is

Euler’s totient function.

Proof. By (23) we have d2(n) = ∑
t|n ρ(t), where ρ(n) = 1, if n is a power of 2 and

zero otherwise. Hence,

D2(n) =
n∑

k=1
d2(k) =

n∑
k=1

(∑
t|k
ρ(t)

)
(115)

We collect terms with equal values of ρ(t) in the above double sum. For every
j ≤ n, ρ(j) appears in ∑

t|k ρ(t) if and only if j | k. Since each integer has itself
as a divisor, the right-hand side of (115) includes ρ(j) at least once. Furthermore,
there are exactly ⌊n/j⌋ integers among 1, 2, . . . , n which are divisible by j, namely:
j, 2j, 3j, . . . , ⌊n/j⌋j. Hence, ∑n

k=1

(∑
t|k ρ(t)

)
= ∑n

j=1 ρ(j) · ⌊n/j⌋ = ∑⌊log2 n⌋
k=0 ⌊n/2k⌋

and this proves (111) (see [8, Theorem 6-11, pp. 119–120]).

Let φ(s) := ∑∞
n=1 D2(n)sn, then by (110)

φ(s) =
∞∑

n=1
D2(2n)s2n +

∞∑
n=0

D2(2n+ 1)s2n+1

=
∞∑

n=1
D2(n)s2n +

∞∑
n=1

(2n)s2n + s
∞∑

n=1
D2(n)s2n +

∞∑
n=0

(2n+ 1)s2n+1

= (1 + s)φ(s2) +
∞∑

n=1
(2n)s2n +

∞∑
n=0

(2n+ 1)s2n+1

and this is (112), since ∑∞
n=1(2n)s2n +∑∞

n=0(2n+ 1)s2n+1 = ∑∞
n=1 ns

n = s
(1−s)2 .

It is well-known that the generating function for the sequence of the partial sums of
a sequence a(n) is equal to the generating function of a(n) divided by 1 − s. Hence,

∞∑
n=1

D2(n)sn = 1
1 − s

∞∑
n=1

d2(n)sn (116)

Substituting (17) into this equation gives immediately (113).
By (22) the generating function for d2(n) is given by a Lambert series. Therefore, it
is reasonable to assume that the generating function of D2(n) is given by a Lambert
series, too. Let φ(s) = ∑∞

n=1 an
sn

1−sn , where (an) is an unknown sequence to be
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determined. Since sn

1−sn = sn(1 + sn + s2n + · · · ) = sn + s2n + s3n + · · · = ∑∞
m=1 s

m·n

we obtain ∑∞
n=1 an

sn

1−sn = ∑∞
n=1 an

(∑∞
m=1 s

m·n
)
. Summing by rows we obtain

∞∑
n=1

an
sn

1 − sn
=

∞∑
n=1

(∑
t|n
at

)
sn,

that is ∑t|n at = D2(n). By the Möbius Inversion Formula (see [8, Theorem 6-7,
pp. 113–114]) it follows an = ∑

t|n µ(n/t) ·D2(t), where

µ(n) =


1, if n = 1
(−1)k, if n = ∏k

j=1 pj, p1, . . . , pk distinct primes
0, otherwise

is the Möbius function. Since by (25) D2(t) = 2t− s2(t) we obtain

an = 2
∑
t|n
µ(n/t)t−

∑
t|n
µ(n/t)s2(t) = 2ϕ(n) −

∑
t|n
µ(n/t)s2(t)

(see [8, Theorem 7-8, pp. 138–139]), where ϕ(n) is Euler’s totient function giving
the number of positive integers not exceeding n that are relative prime to n, and
this proves (114).
The first few values of D2(n) (the sequence A005187 in [24]) and an (the sequence
A035532 in [24]) are

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
D2(n) 1 3 4 7 8 10 11 15 16 18 19 22 23 25 26 31
an 1 2 3 4 7 4 10 8 12 8 18 8 22 12 15 16

Table 16: D2(n), an, 1 ≤ n ≤ 16

Note that for all primes p we have

D2(p) − ap = 1, (117)

since ap = 2ϕ(p) − ∑
t|p µ(p/t)s2(t) = 2(p − 1) − µ(p)s2(1) − µ(1)s2(p) = 2p − 2 −

(−1) · 1 − 1 · s2(p) = D2(p) − 1.
The next proposition lists some more properties of the sequences (d2(n)), (s2(n))
and (D2(n)).
Proposition 5. Let n ∈ N, then

1. (Highest power of 2 that divides n!)

D2(n) − n = n− s2(n) =
⌊log2 n⌋∑

k=1
⌊n/2k⌋ (118)

is the highest power of 2 dividing n!, that is

n! = 2n−s2(n) · (2k + 1), for a k ∈ N0 (119)
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2. (Asymptotic behavior)

lim
n→∞

D2(n)
n

= 2, (120)

consequently,
lim

n→∞

s2(n)
n

= 0 (121)

3. (Another representation of the generating function of s2(n))
∞∑

n=1
s2(n)sn = 2s

(1 − s)2 − 1
1 − s

∞∑
k=0

s2k

1 − s2k (122)

4. (Another representation of the generating function of d2(n))
∞∑

n=1
d2(n)sn = 2s

1 − s
−

∞∑
k=0

s2k

1 + s2k (123)

5. (Another representation of the generating function of D2(n))
∞∑

n=1
D2(n)sn = 2s

(1 − s)2 − 1
1 − s

∞∑
k=0

s2k

1 + s2k (124)

Proof. By (2) and (111) one obtains the formula (118). The right-hand side of this
(double) equation gives the exponent of the highest power of 2 that divides n!, since
there are ⌊n/2⌋ numbers (namely, 2, 2 · 2, 3 · 2, . . . , ⌊n/2⌋ · 2) which are divisible by
2, ⌊n/22⌋ numbers which are divisible by 22, etc. This proves (119).
By definition it holds that x − 1 < ⌊x⌋ ≤ x for all x ∈ R. Choosing x := n/2k we
obtain n/2k − 1 < ⌊n/2k⌋ ≤ 2/nk. Summing up for k = 0, 1, . . . , ⌊log2 n⌋ it follows

⌊log2 n⌋∑
k=0

(
n/2k − 1

)
<

⌊log2 n⌋∑
k=0

⌊n/2k⌋ ≤
⌊log2 n⌋∑

k=0
n/2k

or by (111) and using the formula for finite geometric series we obtain

2n
(

1 − 1/2⌊log2 n⌋+1
)

− (⌊log2 n⌋ + 1) < D2(n) ≤ 2n
(

1 − 1/2⌊log2 n⌋+1
)

or dividing by n

2
(

1 − 1
2⌊log2 n⌋+1

)
− ⌊log2 n⌋ + 1

n
<
D2(n)
n

≤ 2
(

1 − 1
2⌊log2 n⌋+1

)
Assertion (120) follows by noting that 1/2⌊log2 n⌋+1 → 0 and (⌊log2 n⌋ + 1)/n → 0
for n → ∞.
Since s2(n) = 2n−D2(n) we conclude by (120) that s2(n)

n
= 2− D2(n)

n
→ 0 for n → ∞

and this proves (121).
By (25) we have

∞∑
n=1

s2(n)sn =
∞∑

n=1
(2n−D2(n))sn = 2

∞∑
n=1

nsn −
∞∑

n=1
D2(n)sn
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and this is formula (122) by (118) and noting that ∑∞
n=1 ns

n = s
(1−s)2 .

By (24) and noting that the generating function for a difference sequence ∆a(n) is
equal to 1 − s times the generating function for the sequence a(n) we have

∞∑
n=1

d2(n)sn =
∞∑

n=1

(
2 − ∆s2(n)

)
sn

= 2
∞∑

n=1
sn −

∞∑
n=1

∆s2(n)sn

= 2s
1 − s

− (1 − s)
∞∑

n=1
s2(n)sn

and this is formula (123) by (11) and noting that ∑∞
n=1 s

n = s
1−s

.
Substituting (123) into (116) gives immediately the formula (124).
Note that formula (118) has been obtained for the first time in 1808 by A. M. Leg-
endre in the form (cf. Example E3 at p. 7)

n∑
k=1

d̃2(k) =
n∑

k=1

(
d2(k) − 1

)
= D2(n) − n = n− s2(n).

By equating the two representations (11) and (122) of the generating function for
s2(n) and simplifying one obtains the identities
Corollary 2.

∞∑
k=0

s2k

1 + s2k = 2s
1 − s

−
∞∑

k=0

s2k

1 − s2k (125)

∞∑
k=0

s2k

1 − s2k+1 = s

1 − s
. (126)

5.2 The case δ ̸= 0
In this subsection we just mention two known sequences, namely

1. The Bodlaender sequence, that is the special case α = 1, γ = 0, δ = 1, ζ =
−1, g(n) = 0, h(n) = n of (105)

f(1) = −1, f(2n) = f(n), f(2n+ 1) = f(n+ 1) + n, n ≥ 1 (127)

already studied in [25] with the solution

f
(
(bm . . . b0)2 + 1

)
= −1 +

m−1∑
k=0

(1 − bk)(bm . . . bk+1)2 (128)

2. Merge sort (see [13, p. 79, Exercise 34 at p. 98])
The total number of comparisons for merge sort of n records is at most C(n),
where

C(1) = 0, C(n) = C
(
⌊n/2⌋

)
+ C

(
⌈n/2⌉

)
+ n− 1, n ≥ 2, (129)
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or, equivalently, for n ≥ 1

C(1) = 0, C(2n) = 2C(n)+2n−1, C(2n+1) = C(n)+C(n+1)+2n (130)

This is the special case α = 2, γ = 1, δ = 1, ζ = 0, g(n) = 2n − 1, h(n) = 2n
of (105) with the solution (see [13, p. 496])

C(n) =
n∑

k=1
⌈log2 k⌉ = n · ⌈log2 n⌉ − 2⌈log2 n⌉ + 1. (131)
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Complexity function for a variant of Flory model
on a ladder
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Abstract
In this article, we compare the famous Flory model with its variant that was
recently introduced by the authors. Instead of looking at these models on a
one-dimensional lattice, we consider a two-row ladder. For both models we
compute the complexity function, and we analyze the differences of static and
dynamic versions of these models.
Keywords: dynamic lattice systems, equilibrium lattice systems, complexity
function, configurational entropy, jammed configuration.
AMS subject classification (2020): 82B20, 82C20, 05B40, 05A15, 05A16.

1 Introduction
Random sequential adsorption (RSA) refers to a process where particles are sequen-
tially introduced in a system at random. Placement (adsorption) of a new particle is
accepted if the particle does not fall into the exclusion region of another particle that
has already been adsorbed. The process continues until a jammed configuration is
reached, i.e. until no more new particles can be adsorbed. These jammed configura-
tions for various models have been extensively studied in the literature (see [18, §7]
for a comprehensive overview). The main question related to jammed configurations
concerns the expected density of the adsorbed particles. There are two natural ways
to interpret this question. One is through the explained RSA approach where parti-
cles are sequentially introduced in a system until a jammed configuration is reached.
This is usually referred to as the dynamic model. The limit to which the expected
density of particles converges in this case is called jamming limit. The other way to
look at this problem is to consider the set of all the possible jammed configurations
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and to sample one such configuration at random. This is referred to as the static (or
equilibrium) model. The static model is usually described with the so-called com-
plexity function (also known as configurational entropy), and the expected density
of particles in a jammed configuration converges to the argument of the maximum
of the complexity function. The precise definitions of the jamming limit and the
complexity function are given later. It is not clear, at first, that the two models are
different. The assumption that both approaches lead to the same expected density
of large jammed configurations is referred to as the Edwards hypothesis, see [2] for
a recent review. In the models studied in the present paper, as is the case for most
irreversible deposition models, Edwards hypothesis is violated.
The dynamic model (RSA) has been studied extensively because of its wide appli-
cability to diverse aspects of physics, chemistry and biology. It was first studied in
one dimension. In his pioneering paper [12], Paul Flory studied the attachment of
pendant groups in a polymer chain. Closely related to his work is the Page-Rényi
car-parking problem (see [24]), which is a discrete version of the original car-parking
model introduced by Alfred Rényi in [27]. To determine the value of the jamming
limit one can run experiments (see [22]), computer simulations (see [23, 30, 31]), or
use mathematical analysis (see [1,3,10,12,13,18,27]). Even though various analytic
solutions have been found, for both continuum and lattice versions of RSA, for most
of the models studied in the literature, jamming limit is only known approximately
and is obtained with the aid of computer simulations.
The static (equilibrium) model has also received attention in the literature (see
[4, 6, 7, 15, 18–20]). The configurational entropy of jammed configurations is usually
determined either by means of direct combinatorial reasoning [4, 7, 19], or by using
the transfer-matrix approach [6, 9, 20]. Recently, a new method for determining
complexity function has been developed in [17], inspired by the theory of renewal
processes.
Most of the results in the literature (in both the static and the dynamic case) have
been obtained for one-dimensional lattices. The problem gets more involved in
higher dimensions. In this paper, we consider a slightly more general structure than
the one-dimensional lattice, namely a two-row ladder (see Figure 1). We employ
the new approach from [17] to develop the complexity function for both the original
Flory model, and the modified version of Flory model that was introduced in [25] and
subsequently studied in [8,16,26]. This modified version of the original Flory model
was introduced in terms of a combinatorial settlement model where the impact of
the architect would be as small as possible, and people would have a lot of freedom
in the process of building the settlement. This minimal intervention from the side
of the architect is given through the condition that houses are not allowed to be
blocked from the sunlight, and that the tracts of land on which the settlements are
built are of rectangular shapes. A house is blocked from the sunlight if there are
other houses on the neighboring sites to the right (east), to the left (west), and below
(to the south) of that house. Additionally, it is assumed that houses receive sunlight
from the eastern, southern and western boundary of the tract of land on which the
settlement is being built. Here, we consider the two-row ladder as the rectangular
tract of land on which the houses are built. The described condition imposes that
each particle (house) in the upper (northern) row of the two-row ladder needs to
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Figure 1: A two-row ladder graph.

have at least one of its neighboring sites free, while no restrictions are placed upon
particles (houses) in the lower (southern) row as they are guaranteed to receive
sunlight from the southern border. Compare this to the original Flory model, where
each deposited particle enforces all of its neighboring sites to be vacant.
Flory model on a two-row ladder has already been studied in the literature in the
dynamic case (see [1, 3, 10, 13]). The static case was considered in one dimension
(see [18, §7.2]). On the other hand, the model introduced in [25] was originally
studied on a two-dimensional lattice, and some observations have been made both in
the static and the dynamic case (see [25,26]), but the complexity was addressed only
in the one-dimensional version of that model, the so-called Riviera model (see [8,16]).

Notation. The length of the two-row ladder graph that we are considering is
denoted by L. Notice that such a graph of length L has 2L sites that can be
occupied by deposited particles (atoms, houses), or vacant. Each configuration of
length L can be represented with two binary 0/1 sequences (both of length L, one
representing the upper row, and the other one representing the lower row of a two-
row ladder graph) where 1 is interpreted as an occupied site, and 0 as vacant site.
The total number of different jammed configurations on the two-row ladder of length
L is denoted by JL, and the total number of jammed configurations on the two-row
ladder of length L that have precisely N deposited particles is denoted by JN,L. The
density (saturation, coverage) of any such configuration of length L with N particles
is defined as N/L. Notice that, using the convention that the length of the two-row
ladder graph with 2L sites is denoted by L, the density will always attain values in
[0, 2].

2 Flory model on a ladder
Flory model on a one-dimensional lattice is the most famous model within the
theory of RSA. Each site on the lattice can be occupied by an atom, or vacant.
Each atom blocks its nearest neighbor sites. This model (and the related Page-
Rényi car-parking process) has been extensively studied in the literature, in both
dynamic and static setting (see [12, 14, 24] for the dynamic version and [16, 18] for
both versions). As announced in the introduction, we are dealing with Flory model
on a two-row ladder graph. Most of the analytic treatments of such models are
restricted to one-dimensional lattice. It would be very interesting to see how all
these results translate to the truly two-dimensional lattice. This, however, seems to
be an extremely technical task (if one wants to obtain some analytical result, and not
just run simulations), so we provide here a very modest entrée into two-dimensional
space.
To get a better feeling about the Flory model on a two-row ladder graph, and about
the structure of jammed configurations of this model, we display in Figure 2 all the
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Figure 2: All the jammed configurations of Flory model on a two-row ladder graph
of length 4.

possible jammed configurations on the two-row ladder graph of length 4.
Based on Figure 2, we can easily compare static and dynamic model in the case of the
two-row ladder graph of length 4. Notice that JFlory

4 = 6. More precisely, JFlory
3,4 = 4,

and JFlory
4,4 = 2. Denoting the random variable counting the number of occupied sites

in the static model on a two-row ladder graph of length L by XFlory
s (L), and random

variable counting the number of occupied sites in the dynamic model by XFlory
d (L),

we read from Figure 2 that

XFlory
s (4) ∼

(
3 4
2
3

1
3

)
.

Inspecting in which order particles have to be introduced in the system to end up
in each of the jammed configurations shown in Figure 2, one easily obtains

XFlory
d (4) ∼

(
3 4
2
5

3
5

)
.

Using the sequence of random variables (Xd(L))L, that count the number of occupied
sites in a dynamic model of length L, we can give a precise definition of the jamming
limit of a certain model.

Definition 1. For a fixed length L ∈ N, let Xd(L) denote the random variable which
models the number of occupied sites in a jammed configuration of length L, reached
through the RSA procedure. The jamming limit is then defined as

ρ∞ = lim
L→∞

E[Xd(L)]
L

, (1)

if this limit exists, where E[X] denotes the expected value of a random variable X.

Remark 1. The convergence of expected values in (1) is the most common notion
of convergence considered in these kind of problems. However, in some instances
it was possible to prove convergence in probability for these random variables, in
addition to convergence of expectations (see e.g. [14, 24] for discrete Rényi car-
parking problem). Note that here, due to boundedness of random variables, the
convergence in probability is strictly stronger than the convergence of expected
values.
As mentioned in the introduction, the dynamic version of the Flory model on a two-
row ladder has already been studied in the literature. It was independently shown
in [10] and [1] that the jamming limit of this model is

ρFlory
∞ = 1 − 1

2e, (2)

and this result was later reconstructed in [3, 13].

96



Complexity function for a variant of Flory model on a ladder

Remark 2. Note that in [1, 3, 10, 13] the density is defined as N
2L

, so the constant
above is divided by two.
We now turn to the static model and to determining the complexity function. We
first recall the definition of complexity function of a certain model.

Definition 2. For a fixed density ρ ≥ 0, take ((Ni, Li))i to be any sequence of pairs
of non-negative integers such that limi→∞ Li = +∞ and limi→∞

Ni

Li
= ρ. Note that

JNi,Li
is the number of configurations of length Li with density Ni

Li
. We are interested

in the quantity
lim sup

i→∞

ln JNi,Li

Li

which is the exponential rate of growth of these configurations. If we now take the
supremum over all such sequences, we arrive at the definition of complexity function
S(ρ) : [0,∞) → [0,∞)

S(ρ) = sup
(Ni,Li)

lim sup
i→∞

ln JNi,Li

Li

(3)

where the supremum runs over all the sequences such that Ni/Li → ρ.

Remark 3. Whenever we encounter JN,L = 0 for some (N,L), we will redefine it
as JN,L = 1 so that ln JN,L = 0 can be computed. Consequently, if there are
no configurations with densities approaching a certain ρ, we get S(ρ) = 0. Also
note that the lim sup can be replaced with lim since we can, if needed, pass to a
subsequence.
Remark 4. This definition implies that the number of configurations with density
N/L ≈ ρ grows as eLS(ρ) for large L. The density ρ⋆ at which the complexity
function S(ρ) attains its maximum, i.e. the density corresponding to the largest
rate of growth, is called the equilibrium density and is a static setting analogue of
jamming limit as it can be shown that

ρ⋆ = lim
L→∞

E[Xs(L)]
L

.

where Xs(L) is the number of occupied sites in the static (equilibrium) model in
which each jammed configuration of length L is equally likely. Furthermore, the
random variables Xs(L)/L can be shown to converge in distribution to delta distri-
bution concentrated at ρ⋆.
Remark 5. In most commonly encountered models the sup in the definition is super-
fluous, as any choice of the sequence (say ((NL, L))L where NL = ⌊ρL⌋) will produce
the same limit.
Remark 6. Lastly, note that the complexity function is bounded

S(ρ) ≤ 2 ln 2.

This follows from the trivial bound JN,L ≤ 22L. A more precise bound

S(ρ) ≤ 2H(ρ/2)

follows from the inequality JN,L ≤
(

2L
N

)
∼ exp (2L ·H(N/(2L))), where H(p) is the

Shannon’s entropy function H(p) = −p ln p− (1 − p) ln(1 − p), see [5].
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Figure 3: Vertices in the graph encoding the Flory model on a ladder.

To be able to apply the method from [17], we first need to determine the bivariate
generating function for this model. To this end, we apply the so-called transfer
matrix method (see [29, §4.7], [11, §V], and [21, §2–4]). This is a well known method
for counting words of a regular language. Notice that every jammed configuration
on a ladder is composed of the nodes shown in Figure 3. The transfer matrix is then
of the shape

A(x) =



0 0 0 x 0 0
1 0 0 0 x 0
0 x 0 0 0 0
0 0 1 0 0 x
0 0 1 0 0 x
1 0 0 0 x 0


,

where x is a formal variable associated with the number of atoms. Taking into
consideration what the possible starting and ending nodes of a jammed configuration
in the Flory model on a two-row ladder graph are, we define vectors

a(x) = (x, 0, x, 0, x2, x2)T and b = (0, 1, 0, 1, 1, 1)T .

Now the bivariate generating function enumerating all the jammed configurations
in the Flory model on a two-row ladder of length L with precisely N atoms is given
by

FFlory(x, y) = 1 + 2xy +
∞∑

n=2
a(x)T · [A(x)]n−2 · b · yn

= 1 + 2xy + a(x)T
∞∑

n=0
[A(x) · y]n · b · y2

= 1 + xy − xy2

1 − xy − xy2 , (4)

where y is a formal variable associated with the length of the configuration. Hence,
we have just proved the following lemma.

Lemma 1. The bivariate generating function enumerating the total number of
jammed configurations in the Flory model on a two-row ladder of length L, where
precisely N sites are occupied with atoms, is

FFlory(x, y) = 1 + xy − xy2

1 − xy − xy2 .

We will now briefly describe the method from [17], based on the classical Legendre
transform, which enables one to derive the complexity function directly from the
bivariate (rational) generating function for the sequence JN,L.
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Remark 7. In order to follow the procedure described here, the generating function
one starts with does not actually need to be rational. It suffices for the function to be
analytic in y on some disk around the origin for each x > 0. But in order to actually
calculate the complexity, one has to be able to express the radius of convergence (or
the modulus of the non-removable singularity closest to the origin) of that function
in terms of x. This is why rational generating functions are particularly amenable
to this approach.
Let

F (x, y) =
∑
L

(∑
N

JN,L x
N

)
yL = p(x, y)

q(x, y)

be the bivariate generating function of the sequence (JN,L), where p and q are
coprime polynomials. For each fixed x > 0, let y0(x) be the root of the polynomial
q(x, y) with the smallest modulus. Then, by the Cauchy–Hadamard theorem from
complex analysis (see e.g. [32, Theorem 2.4.3]), it follows

lim sup
L→∞

L

√∑
N

JN,L xN = |y0(x)|−1.

As x > 0 and the sum above runs over 0 ≤ N ≤ 2L we obtain the bounds

L

√
max

N
(JN,L xN) ≤ L

√∑
N

JN,L xN ≤ L

√
(2L+ 1) max

N
(JN,L xN)

and consequently

lim sup
L→∞

L

√
max

N
(JN,L xN) = lim sup

L→∞
L

√∑
N

JN,L xN = |y0(x)|−1.

After taking logarithms

lim sup
L→∞

ln
(
maxN

(
JN,L x

N
))

L
= − ln |y0(x)|. (5)

Next, note

ln
(

max
N

(
JN,L x

N
))

= max
N

(ln JN,L +N ln x) = L max
N

(
ln JN,L

L
+ N

L
ln x

)

and so (5) reads

lim sup
L→∞

max
N

(
ln JN,L

L
+ N

L
ln x

)
= − ln |y0(x)|. (6)

We next wish to show the following claim

Claim 1. The complexity function S(ρ) associated to the sequence JN,L satisfies the
equation

sup
ρ

{S(ρ) + ρ ln x} = − ln |y0(x)|. (7)
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Proof. Fix ρ ≥ 0 and let (Ni, Li) be an arbitrary sequence such that Ni/Li → ρ.
Clearly

ln JNi,Li

Li

+ Ni

Li

ln x ≤ max
N

(
ln JN,Li

Li

+ N

Li

ln x
)

and thus

lim sup
i→∞

(
ln JNi,Li

Li

)
+ ρ ln x = lim sup

i→∞

(
ln JNi,Li

Li

+ Ni

Li

ln x
)

≤

≤ lim sup
i→∞

max
N

(
JN,Li

Li

+ N

Li

ln x
)

≤ lim sup
L→∞

max
N

(
ln JN,L

L
+ N

L
ln x

)
.

Since this holds for any sequence (Ni, Li) with Ni/Li → ρ we get

S(ρ)+ρ ln x = sup
(Ni,Li)

lim sup
i→∞

(
ln JNi,Li

Li

)
+ρ ln x ≤ lim sup

L→∞
max

N

(
ln JN,L

L
+ N

L
ln x

)
.

Since the latter inequality holds for any ρ we conclude

sup
ρ

{S(ρ) + ρ ln x} ≤ lim sup
L→∞

max
N

(
ln JN,L

L
+ N

L
ln x

)
. (8)

For the opposite inequality, let us take a sequence ((NL, L))L where for each L,
0 ≤ NL ≤ 2L is the number at which the maximum in the right hand side of (8) is
attained. Passing to a subsequence ((NLi

, Li))i, if needed, we may assume that the
lim sup on the right hand of (8) is actually lim. After passing to a subsequence once
more, if needed, we may assume that NLi

/Li → ρ̃ for some ρ̃ ∈ [0, 2]. Therefore

lim sup
L→∞

max
N

(
ln JN,L

L
+ N

L
ln x

)
= lim

i→∞

( ln JNLi
,Li

Li

+ Ni

Li

ln x
)

=

= lim
i→∞

( ln JNLi
,Li

Li

)
+ ρ̃ ln x ≤ S(ρ̃) + ρ̃ ln x

where in the last step we used the fact that ((NLi
, Li))i is just one of the sequences

over which the supremum is taken in the definition of S(ρ̃). Finally

lim sup
L→∞

max
N

(
ln JN,L

L
+ N

L
ln x

)
≤ S(ρ̃) + ρ̃ ln x ≤ sup

ρ
{S(ρ) + ρ ln x} (9)

and putting the statements (6), (8) and (9) together gives the claim (7).

If we set x = et > 0 then the relation (7) becomes

sup
ρ

{tρ− (−S(ρ))} = − ln |y0(et)|

and it expresses the fact that the function − ln |y0(et)| is the convex conjugate (or
Legendre-Fenchel transform) of the function −S(ρ), see [28, §12].
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Since we know the function − ln |y0(et)|, and seek to find −S(ρ), we actually need
to invert the transformation. Luckily, the Legendre transformation is an involution
and therefore

sup
t

{
tρ− (− ln |y0(et)|)

}
= −S(ρ),

which we can express in terms of x as

sup
x>0

{ρ ln x+ ln |y0(x)|} = −S(ρ). (10)

Remark 8. The Legendre transformation is actually an involution only on the set of
closed convex functions, and if applied twice on any function it returns the closed
convex envelope of that function [28, Corollary 12.1.1 and Theorem 12.2]. As the
complexity functions for similar models in the literature are known to be closed
concave (−S is closed convex), it is reasonable to think that the complexity function
in our model must be as well. With this in mind, a more precise restatement of (10)
would be

sup
x>0

{ρ ln x+ ln |y0(x)|} = cl (conv (−S(ρ))) .

Using the first derivative test, we see that x0 at which maximum on the left hand
side of (10) is attained must satisfy

ρ = −x0
y′

0(x0)
y0(x0)

=
[
x

y

∂xq

∂yq

]
x=x0,y=y0(x0)

(11)

where we used the implicit function theorem and the fact that y0(x) is defined by the
relation q(x, y0(x)) = 0. If we, now, for each 0 ≤ ρ ≤ 2 solve (11) and q(x0, y0) = 0
for x0 = x0(ρ) and y0 = y0(x0(ρ)), then we can write the complexity function as

S(ρ) = −ρ ln x0 − ln |y0|. (12)

In order to find the equilibrium density ρ⋆ of the model we need to solve the opti-
mization problem

ρ⋆ = arg max
ρ

{−ρ ln x0 − ln |y0|}.

Note that the complexity function S(ρ) can be parameterized using x as

S(ρ(x)) = x
y′

0(x)
y0(x) ln x− ln |y0(x)|,

and it is easier to solve the optimization problem in this form. The solution x = x⋆

at which the maximum is attained must satisfy the equation

y′
0(x)
y0(x) ln x+ x

y′′
0(x)y0(x) − (y′

0(x))2

(y0(x))2 ln x+ x
y′

0(x)
y0(x)

1
x

− y′
0(x)
y0(x) = 0.

or equivalently (
y′

0(x)
y0(x) + x

y′′
0(x)y0(x) − (y′

0(x))2

(y0(x))2

)
ln x = 0.
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(a) N
L = 1

2 + 1
18 (b) N

L = 1

Figure 4: Examples of two jammed configurations with extreme densities for the
Flory model with L = 9.

From here, it is easy to see that x⋆ = 1, and the corresponding y⋆ = y0(1) is the
solution of the equation q(1, y⋆) = 0. The equilibrium density ρ⋆ and the maximum
value of the complexity function can then be calculated using (11) and (12) as

ρ⋆ = 1
y⋆

∂xq(1, y⋆)
∂yq(1, y⋆)

,

S(ρ⋆) = − ln |y⋆|.
(13)

Remark 9. Before we proceed to apply this method in order to compute the com-
plexity of the Flory model on a two-row ladder, let us briefly discuss the support of
S. As each occupied site in a maximal configuration must have all of its three neigh-
bors unoccupied, and as each unoccupied site has at least one occupied neighbor, if
follows E ≤ 3N , where N and E stand for the number of occupied and unoccupied
sites in a configuration, respectively. From here, 2L = E + N ≤ 4N and therefore
N
L

≥ 1
2 . Also, to each occupied site corresponds the unique unoccupied site (above

or below) which is on the same rung of the ladder. Hence, N ≤ E or, equivalently,
2N ≤ N + E = 2L and therefore N

L
≤ 1. One can actually show, more precisely,

that
⌊

L
2

⌋
+ 1 ≤ N ≤ L. Examples of the most and the least saturated maximal

configurations for L = 9 are depicted in Figure 4.
The previous discussion implies that the complexity S(ρ) can be non-zero only on
the interval 1

2 ≤ ρ ≤ 1.
It is clear from the method described above that complexity is determined by the
denominator of the bivariate generating function. In our case, the denominator of
the expression (4) is

q(x, y) = 1 − xy − xy2,

which coincides with the one that appears in [17, §4.2 Isolated empty sites (4.21)].
The name Isolated empty sites of the model discussed in [17, §4.2] already suggests
that this is equivalent to the Flory model on a two-row ladder, because in the Flory
model on the two-row ladder we are not allowed to have two empty columns in a
row, and in non-empty columns we always have exactly one atom. Following the
method described above, Krapivsky and Luck in [17, equation (4.28)] obtain the
complexity function

SFlory(ρ) = ρ ln(ρ) − (1 − ρ) ln(1 − ρ) − (2ρ− 1) ln(2ρ− 1), (14)

for 1/2 < ρ < 1 (see Figure 5). The density for which the complexity function is
maximized is

ρFlory
⋆ = 5 +

√
5

10 , (15)
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SFlory(ρ)

Figure 5: The complexity of the Flory model on the ladder. Also depicted on
the plot are the jamming limit ρFlory

∞ = 1 − (2e)−1, and the equilibrium density
ρFlory

⋆ = (5 +
√

5)/10.

and the value of the maximum is

S(ρFlory
⋆ ) = ln

(
1 +

√
5

2

)
. (16)

This can be obtained from (13) by setting x⋆ = 1 and y⋆ =
√

5−1
2 . The interpretation

of the value calculated in (16) is that on the two-row ladder of length L, there are
roughly (

1 +
√

5
2

)L

jammed configurations. Comparing the jamming limit ρFlory
∞ from equation (2),

which summarizes the dynamic model, and the value of ρFlory
⋆ (i.e. the argument

of the maximum of the complexity function) given in (15), which summarizes the
equilibrium model, we see that Edwards hypothesis does not hold (see Figure 5).
Remark 10. Notice that the constant appearing in relation (16) is the famous golden
ratio. It is in fact very easy to see that the sequence JL counting the number of all
jammed configurations of length L satisfies the well-known Fibonacci recursion

JFlory
L = JFlory

L−1 + JFlory
L−2 .

3 Settlement model on a ladder
Recently, a combinatorial settlement planning model was introduced in [25] and the
same model has been further studied in [8,16,26]. As in the case of Flory model, most
of the results have been developed for the one-dimensional version of this model, the
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Figure 6: All the jammed configurations of the settlement model from [25] on a
two-row ladder graph of length 4 (J4 = 6, J6,4 = 4, J7,4 = 2).

so-called Riviera model. The complexity function for the Riviera model has been
derived in [16], and in the same paper the authors discuss the dynamic model, and
they obtain the jamming limit using simulations. In this paper, we are interested
in the model from [25] on a ladder. As in the previous section, we first show some
concrete examples of jammed configurations of this model. In Figure 6 are shown
all the jammed configurations of combinatorial settlement model, introduced in [25],
on a two-row ladder graph of length 4. Recall that there are no restrictions on the
houses placed in the bottom row, while each house in the top row (which is not on
the boundary) must have at least one of its immediate neighbors unoccupied. It is
clear from Figure 6 that

Xs(4) ∼
(

6 7
2
3

1
3

)
,

where Xs(4) is a random variable that counts the number of occupied sites in the
static combinatorial settlement model on a two-row ladder graph of length 4. De-
noting by Xd(4) the corresponding random variable in the dynamic version of the
model, and carefully analyzing in which order the houses had to be built to reach a
particular jammed configurations, we have

Xd(4) ∼
(

6 7
1
3

2
3

)
.

This particular model has been considered in the static case in [8], but only bivariate
generating function was developed. However, in light of the new method (introduced
in [17]) for computing complexity function, we know that this result about the
bivariate generating function can be used to obtain the desired complexity function.
From [8, §4.1 and relation (A.4)], we have

F (x, y) = 1 − xy + x2y − 2x3y2 + x4y2 + x4y3 + x5y3 − x8y5

1 − xy − x3y2 + x4y3 − x5y3 − x6y4 + x9y6 . (17)

It is not hard to see what the extreme configurations look like for this model (see
also [25, Theorem 4.5]) and to conclude

L+ 2 ≤ N ≤ 2L− ⌊L/3⌋ = 5
3L+ (L/3 − ⌊L/3⌋) ≤ 5

3L+ 2
3 ,

and from there
1 + 2

L
≤ N

L
≤ 5

3 + 2
3L.

In Figure 7 are given examples of the most and the least saturated maximal config-
urations for L = 9. The inequality above immediately implies that the support of
the complexity function of this model will be contained in the interval 1 ≤ ρ ≤ 5/3.
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(a) N
L = 1 + 2

9 (b) N
L = 5

3

Figure 7: Examples of two jammed configurations with extreme densities for the
settlement model with L = 9.

Using the same notation as in the previous section, we have

q(x, y) = 1 − xy − x3y2 + x4y3 − x5y3 − x6y4 + x9y6. (18)

As it is not possible to explicitly solve for y0(x) in the equation q(x, y) = 0, the first
step is to find a parametrization of this equation which will enable us to express its
roots in terms of the new variables. To this end, we employ the parametrizationt = y

1
3 ,

u = xy
2
3 ,

i.e.
x = u

t2
,

y = t3.

Plugging this into the equation q(x, y) = 0 (where q(x, y) is given in (18)) gives us

(u4 − u)t+ (u9 − u6 − u3 + 1) − u5t−1 = 0.

Multiplying by t, we get

(u4 − u)t2 + (u9 − u6 − u3 + 1)t− u5 = 0.

From here it follows that

t±0 = −(u9 − u6 − u3 + 1) ±
√
u18 − 2u15 − u12 + 8u9 − 5u6 − 2u3 + 1

2(u4 − u) . (19)

These two expression for t0 in terms of u enable us to express the roots y0(x) of the
polynomial q(x, y0(x)) for each x > 0 in terms of the parameter u. In fact, all the
quantities of interest can now be expressed in terms of u in the following way

y0 = [t0(u)]3 , x0 = u

[t0(u)]2
, ρ(u) =

[
x

y

∂xq

∂yq

]
x=x0,y=y0

, S(ρ) = −ρ ln x0 − ln |y0|.

We have, thus, proved the following theorem which provides a parameterized ex-
pression for the complexity function of the combinatorial settlement planning model
on a two-row ladder.
Theorem 1. The complexity function of the combinatorial settlement planning
model on a two-row ladder is given as

S(ρ) = −ρ ln x0 − ln |y0|,

where 
ρ(u) = −9x8y5+6x5y3+5x4y2−4x3y2+3x2y+1

−6x8y5+4x5y3+3x4y2−3x3y2+2x2y+1

∣∣∣∣
x=x0,y=y0

,

x0 = u [t0(u)]−2 ,

y0 = [t0(u)]3 ,
and t0(u) is given by (19).
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Figure 8: The complexity of the combinatorial settlement model on the ladder.
Also depicted on the plot are (a Monte Carlo estimation of) the jamming limit
ρSettlement

∞ ≈ 1.54064, and the equilibrium density ρSettlement
⋆ ≈ 1.4374959.

Remark 11. The equilibrium density ρSettlement
⋆ for this model can be calculated using

(13). More precisely,

ρSettlement
⋆ = 1 + y⋆ + y2

⋆ + 6y3
⋆ − 9y5

⋆

1 + 2y⋆ + 4y3
⋆ − 6y5

⋆

≈ 1.4374959

where y⋆ is the root of the polynomial 1−y−y2 −y4 +y6 with the smallest modulus.
Remark 12. A closer inspection of the parametrization given in the theorem above
and the equation (19) reveals that, in order to obtain the whole range of values
x > 0, it suffices to take 0 < u ≤ u0, where u0 ≈ 0.70633685 is the positive root of
the polynomial appearing under the square root in (19). For each such a value u,
both t+0 and t−0 , have to be used in order to produce the whole range x > 0.
Theorem 1 enables us to produce the graph in Figure 8 showing the complexity
function of the settlement model. Note that, as previously discussed, the complexity
is supported on [1, 5

3 ].
When it comes to the dynamic version of the combinatorial settlement planning
model, there are no analytical results for the jamming limit. Even in the simplest
case of Riviera model (which lives on a one-dimensional lattice), the exact solution
is not known, and it is not clear whether it is even possible to derive one. One-
dimensional RSA, and similar models, usually enjoy a peculiar property that is
commonly referred to as the shielding property. The deposition of any elementary
object splits the line into two half-lines which evolve independently from each other.
This ensures the exact solvability of this class of models, by means of a common
analytical approach based on tracking empty intervals (see [18, §7]). Clearly, the
original Flory model has the shielding property. The Riviera model, on the other
hand, does not enjoy the shielding property. On the contrary, the rule that at least

106



Complexity function for a variant of Flory model on a ladder

one of the two neighboring lots of each house should remain forever unbuilt couples
both neighboring sites of any occupied one. The ensuing lack of exact solvability
has observable consequences (see [16, §3]). The authors of [16] even write that this
model (in all likelihood) cannot be solved by analytical means. In the case of the
two-row ladder, the situation is even more involved, so we only provide Monte Carlo
estimation of the jamming limit. The value is approximately ρSettlement

∞ ≈ 1.54064,
and comparing this value with ρSettlement

⋆ ≈ 1.4374959, which is the argument of the
maximum of the complexity function from Theorem 1 (see Figure 8) again shows
the violation of Edwards hypothesis.

4 Conclusions
In this paper we use the novel approach developed in [17] to compute the complexity
function (configurational entropy) of two similar, but essentially different, models on
a two-row ladder graph. One of them is the famous Flory model, and the other one
is the combinatorial settlement model introduced in [25]. Using the obtained con-
figurational entropies, we compare the dynamic and static versions of these models
and conclude weak violation of Edwards hypothesis.
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Abstract
A graph is locally irregular if the degrees of the end-vertices of every edge
are distinct. An edge coloring of a graph G is locally irregular if every color
induces a locally irregular subgraph of G. A colorable graph G is any graph
which admits a locally irregular edge coloring. The locally irregular chromatic
index χ′

irr(G) of a colorable graph G is the smallest number of colors required
by a locally irregular edge coloring of G. The Local Irregularity Conjecture
claims that all colorable graphs require at most 3 colors for a locally irregular
edge coloring.
In this extended abstract, we summarize our results on the mentioned conjec-
ture for the class of cactus graphs. First, we established that the conjecture
holds for unicyclic graphs and cacti with vertex disjoint cycles. Then we ob-
served that there exists a cactus graph, the so called bow-tie graph B, which
is colorable and requires at least 4 colors for a locally irregular edge color-
ing [8]. As B is a cactus graph and all non-colorable graphs are also cacti,
the class of cactus graphs seems to be a relevant for the Local Irregularity
Conjecture. By further researching this class, we established that 4 colors are
the maximum number of colors required by a locally irregular edge coloring
of any colorable cactus graph [9]. Using the same approach, but with the
more elaborated argument, we established that the bow-tie graph B is the
only connected colorable cactus graph which requires 4 colors for a locally
irregular edge coloring [10]. Our last result indicates that B is possibly the
only connected graph with χ′

irr(B) = 4, and consequently it could be the only
graph which contradicts the present form of the Local Irregularity Conjecture.
Keywords: locally irregular edge coloring; Local Irregularity Conjecture; cac-
tus graphs.
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1 Introduction
For all graphs mentioned in this paper it is tacitly assumed they are simple, finite
and connected. A locally irregular graph is any graph in which the two end-vertices
of every edge have distinct degrees. A locally irregular k-edge coloring (also called
k-liec for short) is any k-edge coloring of G such that every color induces locally
irregular subgraph of G. We say that a graph G is colorable if it admits a locally
irregular edge coloring. For a colorable graph G, the smallest number k such that
G admits a k-liec is called the locally irregular chromatic index of G and denoted
by χ′

irr(G). Since isolated vertices of G do not influence the local irregularity of an
edge coloring, if such vertices arise in a graph by edge deletion we will ignore them.
We first need to establish which graphs are colorable. For that purpose, any graph
with edge disjoint cycles is called a cactus graph. We define a class T of cacti as
follows:

• the triangle K3 belongs to T,

• for every graph G in T, a graph H which is also from T is obtained as: let v
be a vertex of G of degree 2 from a triangle in G, and let w be a vertex of
degree one in a path of even length or in a graph consisting of a triangle and
an odd-length path pending on one vertex of the triangle, then identifying v
and w yields H.

Obviously, every graph G in T is a special kind of cactus graph in which every cycle
is a triangle, all triangles are vertex disjoint, and all vertices in G are of degree ≤ 3.
Also, every vertex of degree 3 belongs to a triangle, a pair of triangles is connected
by a path of odd length and there may be paths of even length pending at a vertex
of a triangle. It is known [1] that paths of odd length, cycles of odd length and
cactus graphs from T are the only non-colorable connected graphs. As for colorable
graphs, the following conjecture was proposed [1].

Conjecture 1 (Local Irregularity Conjecture). For every colorable connected graph
G, χ′

irr(G) ≤ 3.

Many partial results support this conjecture, the conjecture is true for trees [2],
graphs with vertex disjoint cycles [8], graphs in which the minimum degree is at
least 1010 [7], k-regular graphs for k ≥ 107 [1]. For general graphs, the first constant
upper bound on χ′

irr(G) that was found is 328 [4], and then it was decreased to
220 [6].

2 Preliminaries
Let us introduce some basic notions and notation related to colorings, which are
already introduced in literature, mainly in [2].
The number of a-colored edges incident to a vertex u is called the a-degree of u and
it is denoted by da

G(u). Similarly we have b-degree, c-degree, etc. The a-sequence of
a vertex u ∈ V (G) is defined as da

G(v1), . . . , da
G(vk) where v1, . . . , vk are all neighbors
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of u. We usually assume that neighbors vi of u are denoted so that the a-sequence
is non-increasing.
For a graph G and a subgraph G0 of G, a k-liec ϕ of G is said to be an extension of
k-liec ϕ0 of G0 if ϕ(e) = ϕ0(e) for every e ∈ E(G0).
Let G be a colorable graph which admits a k-liec for k ≥ 3. If G contains a leaf u,
then a graph G′ obtained from G by appending an even length path P at u also
admits a k-liec. An ear of a graph G is any subgraph P of G such that P is a
path and for any internal vertex u ∈ V (P ) it holds that dG(u) = 2. If G contains
an ear Pq = u0u1 . . . uq of length q ≥ 3, then at least one internal vertex ui of Pq is
bichromatic by a k-liec of G, so if G′ is obtained from G by replacing an ear Pq by
an ear Pq+2r of the length q + 2r, then G′ also admits a k-liec. In both situations
we say G is obtained by trimming G′.
Remark 1. Let G′ be a colorable graph which admits a k-liec for k ≥ 3. If G is
obtained by trimming G′, then G also admits a k-liec.
A graph G is totally trimmed if it does not contain a pending path of length ≥ 3
and an ear of length ≥ 5. Because of Observation 1, in the rest of the paper we will
tacitly assume every graph G is totally trimmed.
A shrub is any tree rooted at its leaf. An almost locally irregular k-edge coloring of
a shrub G, or k-aliec for short, is any k-liec of G or any edge coloring of G such that
only the edge incident to the root is locally regular. The following are useful results
for trees from [2].

Theorem 1. Every shrub admits a 2-aliec.

Theorem 2. Every colorable tree T satisfies χ′
irr(T ) ≤ 3. Moreover, if ∆(T ) ≥ 5,

then χ′
irr(T ) ≤ 2.

Let T be a tree with χ′
irr(T ) = 3 and ϕ a 3-liec of T. If there is precisely one vertex

u in T which is incident to edges of all three colors, and every shrub rooted at u
is colored by at most two colors, than ϕ is called a special coloring and u is called
the rainbow root of ϕ. The proof of Theorems 1 and 2 from [2] implies the following
observation.
Remark 2. Let T be a colorable tree with χ′

irr(T ) = 3. Every vertex of maximum
degree in T is a neighbor of another vertex of maximum degree in T. Let u be a
vertex of maximum degree in T, then there exists a special 3-liec of T for which u
is the rainbow root. Also, for any shrub Ti of T rooted at u, there exists a 3-liec of
T which uses color c only in Ti.

3 Our results
In this section we will present our results on unicyclic graphs and cacti from [8], [9]
and [10]. Since the Local Irregularity Conjecture holds for trees, we first investigated
unicyclic graphs given that they are obtained from trees by introducing a single edge.
In [8] the following result is established.

Theorem 3. Every colorable unicyclic graph G sattisfies χ′
irr(G) ≤ 3.
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A natural question that arises from this result is whether the bound χ′
irr(G) ≤ 3 is

tight, i.e. are there colorable unicyclic graphs which are not 2-colorable. The family
of cycles of length 4k + 2 are such graphs, but this family is not an isolated case,
there exist other unicyclic graphs which require three colors, for example the graph
from Figure 1. One can assure infinitely many such graphs for example by taking
longer threads of suitable parity in the given graph.

Figure 1: A colorable unicyclic graph distinct from cycle which requires 3 colors for
locally irregular edge coloring.

The approach for unicyclic graphs usually extends to cactus graphs, so we further
investigated that class of graphs. Let G be a cactus graph with at least two cycles,
let C be a cycle in G and let u be a vertex from C. We say that u is a root vertex
of C if the connected component of G − E(C) which contains u is a cyclic graph.
A cycle C of G is a proper end-cycle if G − V (C) contains at most one cyclic
connected component. Every cactus graph with vertex disjoint cycles contains at
least two proper end-cycles, given it is not a unicyclic graph. Focusing the attention
to a proper end-cycle of a cactus graph with vertex disjoint cycles, we obtained the
following result [8].

Theorem 4. Every colorable cactus graph G with vertex disjoint cycles satisfies
χ′

irr(G) ≤ 3.

The attempt to extend the approach to cacti in which cycles may share a vertex
yielded the so called bow-tie graph B, illustrated by Figure 2, and the following
result.

Figure 2: The bow-tie graph B and a locally irregular 4-edge coloring of it.

Proposition 1. For the bow-tie graph B, it holds that χ′
irr(B) = 4.
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Proof. The edge coloring of the graph B shown in Figure 2 is locally irregular and
it uses 4 colors, thus χ′

irr(G) ≤ 4. It remains to establish that B does not admit a
locally irregular coloring with less than 4 colors. Let u and v denote two vertices
of degree 5 in B. Let u1, . . . , u4 (resp. v1, . . . , v4) be the four vertices neighboring
u (resp. v) distinct from v (resp. u), so that u1 and u2 (resp. v1 and v2) belong
to a same triangle of B. Let ϕ be a locally irregular edge coloring of B which uses
less than 4 colors. Notice that ϕ(u1u2) must be equal to precisely one of ϕ(u1u)
and ϕ(u2u), we may assume ϕ(u1u2) = ϕ(u1u) ̸= ϕ(u2u). Similarly, we may assume
ϕ(u3u4) = ϕ(u3u) ̸= ϕ(u4u). Let us denote a = ϕ(uv).
If ϕ(u1u2) = ϕ(u3u4), then it must hold a = ϕ(u1u2) = ϕ(u3u4), otherwise ϕ would
not be locally irregular. Thus, the a-degree of u by ϕ equals 3.
If ϕ(u1u2) ̸= ϕ(u3u4), then it must hold ϕ(u2u) = ϕ(u4u), otherwise ϕ would use at
least 4 colors. Notice that ϕ(u1u2) = a or ϕ(u3u4) = a would imply ϕ is not a liec,
thus it must be a = ϕ(u2u) = ϕ(u4u), so again we obtain the a-degree of u by ϕ
equals 3.
The analogous analisys of the edges in the two triangles of B containing v yields
that a-degree of v also equals 3. Since uv is an edge in B colored by a and a-degree
of both u and v equals 3, this is a contradiction with ϕ being locally irregular.

The above result implies that B contradicts the Local Irregularity Conjecture. This
gives rise to the following questions: are 4 colors now enough for a liec of all colorable
graphs, and are there other graphs beside B which require 4 colors. Since the class
of cactus graphs yielded the first known counterexample, we attempted to answer
these two questions for that class.
To establish that all colorable cacti admit a 4-liec, we need the following definitions.
A grape G is any cactus graph with at least one cycle in which all cycles share a
vertex u, and the vertex u is called the root of G. A berry Gi of a grape G is any
subgraph of G induced by V (G′

i)∪{u}, where u is the root of G and G′
i a connected

component of G−u. Notice that a berry Gi can be either a unicyclic graph in which
u is of degree 2 or a tree in which u is a leaf, so such berries will be called unicyclic
berries and acyclic berries, respectively. A unicyclic berry Gi is said to be triangular
if its cycle is the triangle.
An end-grape Gu of a cactus graph G is any subgraph of G such that:

• Gu is a grape rooted at u where u is the only vertex of Gu incident to edges
from G− E(Gu), and

• u is incident to either one edge from G−E(Gu) or two such edges which then
must belong to a same cycle of G−E(Gu), and such edges are called the exit
edges of Gu.

This notion is illustrated by Figure 3. Also, for an end-grape Gu rooted at u, the
graph G0 = G−E(Gu) will be called the root component of Gu. In [9], we established
the following theorem.

Theorem 5. Every colorable cactus graph G satisfies χ′
irr(G) ≤ 4.
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Figure 3: A cactus graph G with five cycles which contains two end-grapes, Gu1

and Gu8 . The end-grape Gu1 has two unicyclic berries and one exit edge u1u2. The
end-grape Gu8 consists of one unicyclic and one acyclic berry and it has two exit
edges u8u7 and u8u9. Notice that the cycle C3 is not an end-grape of G since it has
two exit edges u4u3 and u4u5 and they do not belong to the same cycle.

The result of Theorem 5 is obtained by induction on the number of cycles in G, using
Theorem 3 as the basis of the induction. This approach enables one to assume that
the root component G0 of an end-grape Gu is already colored by a locally irregular
edge coloring and then one has to extend such a coloring to the end-grape Gu by
using at most 4 colors in all. This is done by removing precisely one edge incident
to the root vertex u from every unicyclic berry of Gu, denote such set by Eu. Notice
that Gu −Eu becomes a tree and thus admits a 3-liec in colors a, b and c, the edges
of Eu can then be colored by the fourth color d. The problem with local irregularity
can thus arise only on edges incident to u in G. This is avoided by carefuly chosing
the coloring of the tree T = Gu − Eu using Observation 2.
This result can be further extended to a claim that every colorable cactus graph
distinct from B requires at most three colors for the locally irregular edge coloring.
Our argument of this claim is lengthy but uses the same approach as Theorem 5.
The main difference is that in proving Theorem 5, no special attention needs to be
given to the a- and b-degrees of the neighbors of u in T since there is fourth color d
to use it for at least one of the two edges incident to u in G0. When the fourth color
must not be used, then a great care has to be taken of these a- and b-degrees in T
because the same colors must be used for both edges incident to u in G0. So, one
has to avoid colors a and b for edges incident to u in Gu to spare them for G0. That
is not always possible, so special berries and alternative colorings for them need to
be introduced, which is done in [10].

Primary coloring. A berry coloring by which all edges are incident to u have a
same color, say c, is a desirable coloring since it is very convenient when gathering
berries in a grape. For that purpose, it is also desirable that the c-degree of the
neighbors of u is ≤ 2.

Definition 1. Let G be a graph rooted at a vertex u with dG(u) ∈ {1, 2}. Let v be
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a neighbor of u and w the other neighbor of u if dG(u) = 2. A standard primary
coloring of G is any 3-edge coloring ϕa,b,c of G with the following properties:

• every edge non-incident to u is locally irregular by ϕa,b,c;

• u is monochromatic by ϕa,b,c, say ϕa,b,c(u) = {c};

• dc(v) ≤ 2 and dc(w) ≤ 2.

It would be convenient to use a standard primary coloring for all berries, but berries
B1, . . . , B7 from Figure 4 (dashed edges are not included in a berry) do not admit
such a coloring, so these berries are called alternative berries. For such berries, we
introduce an alternative primary coloring as follows.

B1 B2 B3

B4 B5

B6 B7

Figure 4: Alternative berries B1, . . . , B7 rooted at u. Dashed edges are not included
in the berry.

Definition 2. Let G be a graph rooted at a vertex u with dG(u) ∈ {1, 2}. Let v be a
neighbor of u and w the other neighbor of u if dG(u) = 2.

• If dG(u) = 1, an alternative primary coloring of G is any 3-liec ϕa,b,c of G
such that v is monochromatic by ϕa,b,c, say ϕa,b,c(v) = {c}.

• If dG(u) = 2, an alternative primary coloring of G is any 3-edge coloring ϕa,b,c

of G with the following properties:

– every edge e ̸= uv is locally irregular by ϕa,b,c;

117



J. Sedlar and R. Škrekovski

– u is bichromatic by ϕa,b,c, say ϕa,b,c(uv) = c and ϕa,b,c(uw) = a;
– dc(v) ≤ 2 and da(w) ∈ {2, 4};
– if dc(v) = 2 then da(w) = 4.

Alternative primary coloring of alternative berries is illustrated by Figure 4, all other
berries admit a standard primary coloring [10]. In the sequel we will say shortly
’primary coloring’, assuming standard primary coloring for standard berries and
alternative primary coloring for alternative berries.

Secondary and tertiary coloring. So far we have one kind of coloring for every
berry - a primary coloring. When we gather berries in an end-grape, if the problem
with local irregularity arises for edges incident to the root u, it is convenient to
have another kind of coloring for every berry, so that the change of coloring for
some berries changes the color degrees of u and its neighbors. For standard berries,
another kind of coloring is a so called secondary coloring, and for alternative berries
it is tertiary coloring.

Definition 3. Let G ̸= B7 be a graph rooted at a vertex u with dG(u) ∈ {1, 2}. Let
v be a neighbor of u and w the other neighbor of u if dG(u) = 2.

• If dG(u) = 1, a secondary coloring of G is any 3-edge coloring ϕa,b,c of G such
that all edges not incident to u are locally irregular and dc(v) ̸= 2 where c is
the color of uv by ϕa,b,c.

• If dG(u) = 2, a secondary coloring of G is any 3-edge coloring ϕa,b,c of G with
the following properties:

– every edge e ̸= uv is locally irregular by ϕa,b,c;
– u is bichromatic by ϕa,b,c, say ϕa,b,c(uv) = c and ϕa,b,c(uw) = a;
– dc(v) ≤ 2;
– if dc(v) = 2 then da(w) ≥ 3.

We exclude B7 from the above definition, since we always want an alternative pri-
mary coloring of it.

Definition 4. Let G be a graph rooted at a vertex u with dG(u) = 2. Let v and w
be the neighbors of u. A tertiary coloring of G is any 3-edge coloring ϕa,b,c of G with
the following properties:

• every edge e ̸= uv is locally irregular by ϕa,b,c;

• u is monochromatic by ϕa,b,c, say ϕa,b,c(u) = {c};

• dc(v) ≤ 2 and dc(w) ∈ {3, 4}.
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B2 B3

B4 B5

B6

Figure 5: A tertiary coloring of berries B2, . . . , B6 and its closures.

A tertiary coloring of B2, . . . , B6 is shown in Figure 5 (without dashed lines). Notice
that B1 is the only berry which admits only one coloring.

Even with all these kinds of colorings, it turns out that the coloring of the root
component G0 cannot be extended to all possible end-grapes. To be more precise,
there are six end-grapes to which it is not always possible to extend a coloring of
G0, we denote them by A1, . . . , A6 and they are shown in Figure 6. For all other
end-grapes, the following proposition [10] holds (here G′

0 denotes a graph obtained
from G0 by adding a leaf neighbor to u).

Proposition 2. Let G be a cactus graph with c ≥ 2 cycles which is not a grape and
which does not contain end-grapes A1, . . . , A6. For an end-grape Gu of G with a root
component G0, there exists a colorable graph G̃0 ∈ {G0, G

′
0} such that every k-liec of

G̃0, for k ≥ 3, can be extended to k-liec of G in which every berry of Gu is colored
by a primary, secondary or tertiary coloring.

If a cactus graph G contains only end-grapes A1, . . . , A6, then by deleting an edge
in every triangle of such end-grapes one can obtain a tree, a unicyclic graph or
a cactus graph Gop which contains an end-grape distinct from A1, . . . , A6. A tree
and a unicyclic graph admit a 3-liec, and for Gop the induction hypothesis and
Proposition 2 assure the existance of a 3-liec in which every berry is colored by a
primary, secondary od tertiary coloring. Thus, it only remains to establish that a
3-liec of Gop can be extended to a 3-liec of G, i.e. to the removed edges of triangles
in end-grapes of G. Since every berry of Gop is colored by a primary, secondary
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A1 A2

A3 A4

A5 A6

Figure 6: The singular end-grapes A1, . . . , A6.

or tertiary coloring, the question reduces to whether such berry colorings can be
extended to the removed edges of G. The extension of alternative primary and
tertiary coloring is shown in Figures 4 and 5, and the existence of the extension
for a standard primary and a secondary coloring of standard berries is established
in [10]. This finally yields the following result [10].

Theorem 6. Let G ̸= B be a colorable cactus graph. Then χ′
irr(G) ≤ 3.

Our investigation of the Local Irregularity Conjecture makes us believe that B is
the only graph with χ′

irr(G) ≥ 4, so the following conjecture is proposed in [10].

Conjecture 2. The bow-tie graph B is the only colorable connected graph with
χ′

irr(B) > 3.
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On circumradius equations of cyclic polygons

Dragutin Svrtan

Abstract
Finding formulas for the area or circumradius of polygons inscribed in a circle
in terms of side lengths is a classical subject. For the area of a triangle we
have the famous Heron’s formula and for cyclic quadrilaterals we have the
Brahmagupta’s formula. A three decades ago D. P. Robbins found the min-
imal equations of degree 7 satisfied by the squared area of cyclic pentagons
and hexagons by a method of undetermined coefficients and he wrote the re-
sult in a nice compact form. For the circumradius of cyclic pentagons and
hexagons he did not publish the formulas because he was not able to put
them into a compact form (in this paper we describe our compact form also
for a heptagon and octagon). The Robbins approach could hardly be used
for heptagons due to computational complexity of the approach (leading to a
system with 143307 equations). In another approach with two collaborators a
concise heptagon/octagon area formula was obtained in 2004. (not long after
D. P. Robbins premature death) in the form of a quotient of two resultants
(the quotient still hard to be written explicitly because it would have about
one million terms–this approach uses covariants of binary quintics). It is not
clear if this approach could be effectively used for cyclic polygons with nine
or more sides. A nice survey on this and other Robbins conjectures is written
by I. Pak. In this paper we shall explain a simple quadratic system, which
seems to be new, for the circumradius and area of arbitrary cyclic polygons
based on a Wiener-Hopf factorization of our new Laurent polynomial invariant
of cyclic polygons. Explicit formulas, of degree 38, for the squared circumra-
dius (and less explicit for the squared area) of cyclic heptagons /octagons are
obtained. By solving our system in certain algebraic extensions we found a
compact form of our circumradius heptagon/octagon formulas with remark-
ably small coefficients. In 2005. we have presented an intrinsic proof of the
Robbins formulas for the area (and also for the circumradius and area times
circumradius) of cyclic hexagons based on an intricate direct elimination of
diagonals (the case of pentagon was treated in Ref. [7]) and using a new algo-
rithm from Ref. [11]. In the early stage we used computations with MAPLE
(which sometimes lasted several days!).

(Dragutin Svrtan) Faculty of Science, Department of Mathematics, Zagreb, Croatia,
dragutin.svrtan@gmail.com
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1 Introduction
Cyclic polygons are the polygons inscribed in a circle. In terms of their side
lengths a1, a2, . . . , an, their area S and circumradius r are given in case of trian-
gles and quadrilaterals explicitly by the following well known formulas: the Heron’s
formula ( 60 B.C.) for the area and the circumradius r of triangles (by letting
A = (4S)2, ρ = 1/r2) :

A− (a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c) = 0,
a2b2c2ρ− (a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c) = 0 (1)

and the Brahmagupta’s formula, (7 th c. A.D.) for the area and the circumradius
of convex (ε = 1) and nonconvex (ε = −1) quadrilaterals:

Aε − (a+ b+ c− εd)(a+ b− c+ εd)(a− b+ c+ εd)(−a+ b+ c+ εd) = 0, (2)

(ab+ εcd)(ac+ εbd)(bc+ εad)ρε−
(a+ b+ c− εd)(a+ b− c+ εd)(a− b+ c+ εd)(−a+ b+ c+ εd) = 0. (3)

(Note that for ε = 0 (or d = 0) Brahmagupta’s formula transforms into Heron’s
formula.) In a masterfully written (in german language) thirty pages long paper (and
published in 1828 in Crelle’s Journal) A. F. Möbius studied some properties of the
polynomial equations for the circumradius of arbitrary cyclic polygons (convex and
nonconvex) and produced a polynomial of degree δn = n

2

(
n−1

⌊(n−1)/2⌋

)
−2n−2 that relates

the square of a circumradius (r2) of a cyclic polygon to the squared side lengths.
He also showed that the squared area rationally depends on r2, a1, a2, . . . , an. His
approach is based, by a clever use of trigonometry, on the rationalization (in terms
of the squared sines ) of the sine of a sum of n angles (peripheral angles of a cyclic
polygon ). In this way one obtains a polynomial relating the circumradius to the side
lengths squared. These polynomials, known also as generalized Heron r-polynomials,
are a kind of generalized (symmetric) multivariable Chebyshev polynomials and are
quite difficult to be computed explicitly. Möbius obtained nice form for the leading
and constant terms for pentagons and hexagons, but no complete answer even for
pentagons. By an argument involving series expansions (cf. [8]) he proved that
the r2-degree for cyclic n-polygon is equal to δn. In the final part of the paper he
obtained for the squared area a rational function in r2, a1, a2, . . . , an involving partial
derivatives, with respect to side length variables, of all the coefficients of the Heron
r-polynomial. So, in principle, one could get from this formula the area polynomial
by using Viete formulas together with a heavy use of symmetric functions.
About thirty years ago David Robbins ( [3, 4]) obtained, for the first time, concise
explicit formulas for the areas of cyclic pentagons and hexagons (he mentioned that
he computed also the circumradius polynomials for cyclic pentagons and hexagons
but was not able to put either formula into a sensible compact form). In [3] two
general conjectures (Conjecture1 and Conjecture2), naturally extending nice Möbius
product formulas for the leading and constant terms for pentagons and hexagons
are given. We shall give a verification of these conjectures up to n = 8.
One of the Additional Conjectures of Robbins, stating that the degree of the minimal
A-polynomial equation for cyclic n-polygons αn (16S2, a2

1, . . . , a
2
n) = 0, (i.e. of the
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generalized Heron A− polynomial), is equal to δn was established in [FP] first (by
relating it to the Sabitov theory of volume polynomials of polyhedra, see nice survey
article by Pak ) and later in [8] (obtained by reviving the argument of Möbius and
reproving the Robbins lower bound on the degrees of minimal polynomials, c.f. [17]).
In Robbins work a method of undetermined coefficients is used for pentagons (70
unknowns) and hexagons (134 unknowns). This method seems to be inadequate for
heptagons because one would need to handle a linear system with 143307 undeter-
mined coefficients. By using a clever substitution (Robbins ti ’s) he was able to
write the pentagon and hexagon area equations in a compact form. He wrote his
formulas also as a discriminant of some (still mysterious) qubic. Along these lines
in [8] it is found that for (2m + 1)-gon or (2m + 2)− gon, the generalized Heron
A-polynomial is the defining polynomial of a certain variety of binary (2m−1)-forms
with m−1 double roots (in some sense it demystify Robbins cubic but its role is still
mysterious). In [8] a formula for the area polynomial for heptagons and octagons is
found in the form of a quotient of two resultants, one of which could be expanded
explicitly so far. This exiting result was finished by two of the Robbins collaborators
just few months later after Robbins passed away.
Another approach, which uses elimination of diagonals in cyclic polygons, is treated
at length in [5] where among numerous results one also finds an explicit derivation
of the Robbins area polynomial for pentagons by using some general properties,
developed in that paper, together with a little use of one undetermined coefficient.
Independently in [7], where an almost forgotten elegant Gauss quadratic pentagon
area equation is revived, the Robbins pentagon area formula was obtained with a
simpler system of equations by a direct elimination (and MAPLE of course) with
no assistance of undetermined coefficient method. In [7] also the circumradius and
the area times circumradius formulas for pentagons, in terms of symmetric func-
tions of the side lengths squared, are explicitly computed. The diagonal elimination
approach seems to be better suited for circumradius computations than for the area
computations. By introducing diagonals into play the original side length variables
are separated into groups (symmetry breaking) and, after eliminating diagonals, one
needs to use immense computations with symmetric functions to regain the symme-
try. In [11,18] we have designed an algorithm, which generalizes the basic algorithm
for writing symmetric functions in terms of the elementary symmetric functions,
which does not expresses everything in terms of the original variables. Instead it
goes only down to the level of symmetric functions of the partial alphabets and leads
to global symmetric function expansion. This enabled us to get r-polynomials for
hexagons (and hopefully more in the future).
In this paper we illustrate yet another approach to the Robbins problem, especially
well suited for obtaining Heron r-polynomials. We have discovered that Robbins
problem is somehow related to a Wiener-Hopf factorization. We first associate a
Laurent polynomial LP to a cyclic polygon P, which is invariant under similarity of
cyclic polygons ( it is a kind of "conformal invariant"). Then there exists a (Wiener-
Hopf ) factorization of LP into a product of two polynomials, γ+(1/z) and γ−(z), ( in
our case it will be γ− = γ+ =: γ ) providing a complex realization of P is given. The
factorization (i.e. γ(z)) is then given in terms of the elementary symmetric functions
ek of the vertex quotients, if we regard vertices of (a realization of) P as complex

125



D. Svrtan

numbers of equal moduli (= r). For (ek)’s, viewed as the unknowns, we then obtain
a system of n quadratic equations, arising from our Wiener-Hopf factorization, with
n− 1 unknowns (note that en is necessarily equal to 1 as a product of all the vertex
quotients (we call this a "cocycle property" or simply "cocyclicity")). The consistency
condition (obtained by eliminating all ek, k = 1..n − 1 ) for our "overdetermined"
system will then give a relation between the coefficients of our conformal invariant
LP , which in turn will be nothing but the equation relating the inverse square radius
of P with the elementary symmetric polynomials in the squares of the sides.
During of these investigations we found another type of substitutions by expressing
the coefficients of LP in terms of the inverse radius squared (ρ) and the elemen-
tary symmetric functions of side lengths squared. By using this substitutions, our
Heron ρ-polynomials get remarkably small coefficients. Further simplifications we
have obtained by doing computations in some quadratic algebraic extensions. In
such quadratic extensions we can simplify our original system (having all but one
equations quadratic) by replacing two quadratic equations by two linear ones). Also
the final result can be written in a more compact form ρn = A2

n − ∆nB
2
n (a Pell

equation). Thus the number of terms is the final formula is roughly a square root
of the number of terms in the fully expanded formula. With such tricks we have
obtained so far, down to earth, explicit formulas for Heron ρ-polynomials, up to
n = 8.

2 Equations for cyclic polygons via Wiener-Hopf
factorization

Assume that a cyclic polygon P has its vertices on a circle centered at the origin in
the complex plane. Suppose that these vertices are in order v1, . . . , vn and that the
radius of the circle is r. Also let vn+1 = v1 and define the vertex quotients by

qj = vj+1

vj

. (4)

The geometric meaning of these vertex quotients are qj = cosφj + I sinφj = eIφj ,
where φj denotes the central angle ∢ (vjOvj+1) of P . Then we have the following
Cocycle identity:

n∏
j=1

qj = 1. (5)

The side lengths aj (= the distance from vj to vj+1) of P are given by

a2
j = |vj − vj+1|2 = (vj − vj+1) (vj − vj+1) = r2

(
2 − vj+1

vj

− vj

vj+1

)
= r2

(
2 −

(
qj + q−1

j

))
.

(6)

Now we associate to a cyclic polygon P , with side lengths a1, . . . , an, a Laurent
polynomial LP (z) defined by the following formula:
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LP (z) :=
n∏

j=1

(
z + z−1 + 2 − a2

jρ
)

∈ C
[
z, z−1

]
, (7)

where ρ = 1/r2 denotes the squared curvature of the circle circumscribed to P .
Note that this polynomial is a conformal invariant in the sense that if cyclic polygons
P1 and P2 are similar, then LP1(z) = LP2(z).
Basic notations:
Denote by ek the elementary symmetric functions of q1, . . . , qn (vertex variables):

1 + e1t+ e2t
2 + · · · + ent

n =
n∏

j=1
(1 + qjt) (8)

and by εk the elementary symmetric functions of a2
1, . . . , a

2
n (side lengths squared):

1 + ε1t+ ε2t
2 + · · · + εnt

n =
n∏

j=1

(
1 + a2

j t
)
. (9)

Lemma 1. (Additive form of LP ). We have

LP (z) =
∑

−n≤k≤n

λkz
k = λ0 +

n∑
k=0

λk

(
zk + z−k

)
, (10)

where

λ−k = λk =
n∑

i=k

(
2i

i− k

)
(−1)n−iεn−iρ

n−i (0 ≤ k ≤ n). (11)

(Note that λN = λ−n = 1.)

Proof. We compute

LP (z) =
n∏

j=1

(
z + z−1 + 2 − a2

jρ
)

=
n∏

j=1

(
(1 + z)2z−1 − a2

jρ
)

=
∑

0≤i≤n

(1 + z)2iz−ien−i

(
a2

1, . . . , a
2
n

)
(−ρ)n−i

=
∑

0≤i≤n

 ∑
0≤j≤2i

(
2i
j

)
zi−jεn−i(−ρ)n−i


=

∑
0≤i≤n

(
2i
i

)
εn−i(−ρ)n−i +

∑
1≤k≤n

( ∑
k≤i≤n

(
2i

i−k

)
εn−i(−ρ)n−i

) (
zk + z−k

)
.

By equating the coefficients the result follows.

If we know the vertex coordinates v1, . . . , vn of P then in terms of the vertex quo-
tients qj = vj+1/vj we can factor its Laurent polynomial LP into a product of two
polynomials, one in z and the other in z−1.
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Lemma 2. (Multiplicative form of LP ) We have

LP (z) = γ
(
z−1

)
γ(z), (12)

where γ(z) is the following polynomial

γ(z) = 1 + e1z + e2z
2 + · · · + enz

n (13)
with e1, . . . , en denoting the elementary symmetric functions of vertex quotients
q1, . . . , qn of the cyclic polygon P (note that en = q1 · · · qn = 1).

Proof. We apply the identity

z + z−1 + q + q−1 = q−1
(
1 + qz−1

)
(1 + qz) (14)

to each factor of the defining formula (7) of LP (z) and then use the cocycle identity
(7).

By combining both Lemma 1 and Lemma 2 we obtain the following
Theorem 1. The quantities e0 = 1, e1, e2, . . . , en−1, en = 1, associated to a cyclic
polygon P , defined by (8) satisfy the following quadratic system of equations:

k∑
j=0

ek−jen−j = ck, k = 1..n, (15)

or more explicitly:

e1 + en−1 = c1,

e2 + e1en−1 + en−2 = c2,

...
en−1 + en−2en−1 + · · · + e1e2 + e1 = cn−1,

1 + e2
1 + e2

2 + · · · + e2
n−1 + 1 = cn

(15’)

with ck = λn−k, where the lambda’s are defined by (11).

Proof. By comparing the coefficients of zn−1, zn−2, . . . , z, 1 in the factorization re-
sulting Lemma 1 and Lemma 2 which explicitly looks as:(

1 + e1

z
+ e2

z2 + · · · + en

zn

) (
1 + e1z + e2z

2 + · · · + enz
n
)

=

cn + cn−1
(
z + z−1

)
+ cn−2

(
z2 + z−2

)
+ · · · + c0

(
zn + z−n

)
and using that e0 = en = 1.
Example 1. For n = 3 we get the following system:

e1 + e2 = c1

e2 + e1e2 + e1 = c2

e2
1 + e2

2 + 2 = c3

(Eq3)
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with

c1 =
3∑

i=2

(
2i
i− 2

)
(−1)3−iε3−iρ

3−i = −ε1ρ+ 6,

c2 =
3∑

i=1

(
2i
i− 1

)
(−1)3−iε3−iρ

3−i = ε2ρ
2 − 4ε1ρ+ 15,

c3 =
3∑

i=0

(
2i
i

)
(−1)3−iε3−iρ

3−i = −ε3ρ
3 + 2ε2ρ

2 − 6ε1ρ+ 20.

(C3)

By eliminating e1, e2 from the (dependent!) system (Eq3) above we obtain

c2
1 + 2c1 − 2c2 + 2 − c3 = 0. (16)

By substituting for c1, c2, c3 from (C3) into (16) we obtain

ρ2
(
ε3ρ+ ε2

1 − 4ε2
)

= 0.

Since ρ (= 1/r2) is nonzero we end up with the Heron formula (1) for inverse radius
squared:

ε3ρ+ ε2
1 − 4ε2 = 0

written in terms of elementary symmetric functions ε1 = a2
1 + a2

2 + a2
3, ε2 = a2

1a
2
2 +

a2
2a

2
3 + a2

1a
2
3, ε2 = a2

1a
2
2a

2
3.

This example shows the main feature of our Wiener-Hopf type approach to Robbins
circumradius of cyclic polygons problem. We may hope that simply by eliminat-
ing e1, . . . , en−1 from the system (15) of Theorem 1 we would get an equation for
the circumradius of general cyclic polygons. But elimination from such a "simple"
quadratic system may be computationally very demanding even for a very powerful
computers today. Further notation: The special values for z = ±1 of the polynomial
γP (z) we denote by

Yn := γP (1) = 2 + e1 + e2 + · · · + en−1, (17)
Θn := γP (−1) = 1 + (−1)n − e1 + e2 + · · · + (−1)n−1en−1, (18)

∆n =
n∑

j=0
4n−j(−1)jεjρ

j.

Then, from the factorization LP (±1) = γP (±1)2 we immediately get

Y 2
n = 2 (c1 + c2 + · · · + cn−2 + cn−1 + 1) + cn = ∆n, (19)

Θ2
n = (−1)nεnρ

n. (20)
If we adjoin to our quadratic system, from Theorem 1, two linear equations, resulting
from (17) and (18):
Auxiliary equations:

e1 + e2 + · · · + en−1 = Yn − 2,
−e1 + e2 + · · · + (−1)n−1en−1 = Θn − 1 − (−1)n.

(21)
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For example for n = 3 the two auxiliary equations are:

e1 + e2 = Y3 − 2 with Y 2
3 = 2 (c1 + c2 + 1) + c3,

−e1 + e2 = Θ3 with Θ2
3 = −ε3ρ

3 (22)

and we obtain immediately

c1 + 2 − Y3 = 0. (23)
This gives us a new form of the classical Heron formula for the circumradius:

ρ3 = ρ−2 (A2
3 − ∆3B

2
3) = 0 (24)

where

A3 := c1 + 2, B3 = 1, and ∆3 = Y 2
3 = 2 (c1 + c2 + 1) + c3. (25)

This new derivation of the classical Heron formula explains some features of our
approach to Robbins problem. We are intending to write a final result in the form

ρn = ρ−2n−2 (A2
n − ∆nB

2
n) = 0 , (26)

which is much shorter than if we would expand A2
n and B2

n. Without auxiliary
equations we would get the formula in the expanded form which may not be
explicitly computable on a computer at our disposal.

Cyclic quadrilaterals (n = 4)

Now by eliminating e1, e2, e3 from the basic system

Eq4 =
{
e1 + e3 − c1, e2 + e1e3 + e2 − c2, e3 + e2e3 + e1e2 + e1 − c3, e

2
1 + e2

2 + e2
3 − c4

}
we obtain

c4
1 − 2c2

1c2 − c2
1c4 − c2

1 + 2c1c3 + c2
3 = 0 .

With only first auxiliary equations

e1 + e2 + e3 = Y4 − 2, Y 2
4 = 2 (c1 + c2 + c3 + 1) + c4

we get

ρ4 = ρ−4
(
A2

4 − ∆4B
2
4

)
= 0

where

A4 := c2
1 + c1 + c3, B4 = c1.
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Remark 1. If we substitute c1 = 8−ε1ρ, c2 = ε2ρ
2 −6ε1ρ+28, c3 = −ε3ρ

3 +4ε2ρ
2 −

15ε1ρ+ 56, c4 = ε4ρ
4 − 2ε3ρ

3 + 6ε2ρ
2 − 20ε1ρ+ 70, and ε4 = η2

4 we obtain

ρ4 =
(
ε3ρ+ ε2

1 − 4ε2 + η4 (8 − ε1ρ)
) (
ε3ρ+ ε2

1 − 4ε2 − η4 (8 − ε1ρ)
)

= ρ+
4 ρ

−
4

where ρ+
4 corresponds to convex quadrilaterals and ρ−

4 to nonconvex quadrilaterals.
Note also the following property:

ρ4 = ρ2
3 − ε4 (8 − ε1ρ)2 .

Note that 8 − ε1ρ can be interpreted as −ρ2 (for a digon).

Cyclic pentagons (n = 5)

By eliminating e1, . . . , e4 from the basic system for cyclic pentagon we obtain a
polynomial in c1, . . . , c5 having 119 terms and coefficients between -20 and 32. By
substituting c5−k = ∑5

i=k

(
2i
i−k

)
(−1)5−iε5−iρ

5−i(0 ≤ k ≤ 4) we obtain a ρ8 times a
polynomial of degree 7 in ρ having 81 terms and coefficients between -16384 and
8192.
By using auxiliary equations we obtain a much shorter expression (with coefficients
±1,±2,±3,±4 )

ρ5 = ρ−8
(
A2

5 −B2
5∆5

)
where

A5 =c4
1 + (−3c2 + 2c3 + c4 − 3) c2

1 + (−2c2 − 4c4 + 2) c1+
+ 2c2

2 + (−2c3 − 2c4 + 4) c2 + c2
3 + 2c3 − 2c4 + (c2 + 3) c5 + 2,

B5 = − c3
1 + 2c2

1 + (2c2 − c3) c1 − 2c2 + 2c4 − c5 − 2,
∆5 =Y 2

5 = 2 (c1 + c2 + c3 + c4 + 1) + c5.

ρelem
5 =

ρ14ϵ53+(−2 ϵ1ϵ3ϵ52+ϵ22ϵ52−4 ϵ4ϵ52)ρ12+(2 ϵ13ϵ52−2 ϵ12ϵ2ϵ4ϵ5+ϵ12ϵ32ϵ5−8 ϵ1ϵ2ϵ52+8 ϵ1ϵ3ϵ4ϵ5−2 ϵ2ϵ32ϵ5+32 ϵ3ϵ52)ρ10+

+(−2 ϵ14ϵ3ϵ5+ϵ14ϵ42+8 ϵ13ϵ4ϵ5+4 ϵ12ϵ2ϵ3ϵ5−2 ϵ12ϵ32ϵ4−16 ϵ12ϵ52−32 ϵ1ϵ32ϵ5+16 ϵ22ϵ3ϵ5+ϵ34−32 ϵ2ϵ52−64 ϵ3ϵ4ϵ5)ρ8+

+(ϵ16ϵ5+6 ϵ14ϵ2ϵ5−4 ϵ14ϵ3ϵ4+32 ϵ13ϵ3ϵ5−32 ϵ13ϵ42−32 ϵ12ϵ22ϵ5+16 ϵ12ϵ2ϵ3ϵ4+4 ϵ12ϵ33−32 ϵ12ϵ4ϵ5+32 ϵ1ϵ32ϵ4−32 ϵ23ϵ5−

−16 ϵ2ϵ33+256 ϵ1ϵ52+128 ϵ2ϵ4ϵ5+224 ϵ32ϵ5)ρ6+(−2 ϵ16ϵ4−64 ϵ15ϵ5+16 ϵ14ϵ2ϵ4+6 ϵ14ϵ32+128 ϵ13ϵ2ϵ5+64 ϵ13ϵ3ϵ4−32 ϵ12ϵ22ϵ4−

−48 ϵ12ϵ2ϵ32−576 ϵ12ϵ3ϵ5+384 ϵ12ϵ42+512 ϵ1ϵ22ϵ5−256 ϵ1ϵ2ϵ3ϵ4+96 ϵ22ϵ32−512 ϵ1ϵ4ϵ5−768 ϵ2ϵ3ϵ5−128 ϵ32ϵ4−768 ϵ52)ρ4+

+(4 ϵ16ϵ3+32 ϵ15ϵ4−48 ϵ14ϵ2ϵ3+736 ϵ14ϵ5−256 ϵ13ϵ2ϵ4+192 ϵ12ϵ22ϵ3−2816 ϵ12ϵ2ϵ5−256 ϵ12ϵ3ϵ4+512 ϵ1ϵ22ϵ4−256 ϵ23ϵ3+

+6144 ϵ1ϵ3ϵ5−2048 ϵ1ϵ42−512 ϵ22ϵ5+1024 ϵ2ϵ3ϵ4+2048 ϵ4ϵ5)ρ2+ϵ18−16 ϵ16ϵ2+96 ϵ14ϵ22−128 ϵ14ϵ4−256 ϵ12ϵ23−2048 ϵ13ϵ5+

+1024 ϵ12ϵ2ϵ4+256 ϵ24+8192 ϵ1ϵ2ϵ5−2048 ϵ22ϵ4−16384 ϵ3ϵ5+4096 ϵ42

Cyclic heptagons (n = 7)

In this case we have ρ7 = ρ−64 (A2
7 − ∆7B

2
7) (where here we have ρ = r−1), ∆7 =

2 (c1 + c2 + · · · + c5 + c6 + 1) + c7.
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In conclusion, we can interpret the quantity Q7 := (A7h)2 − ∆7 · (B7h)2 as a
kind of minimal condensed polynomial relation (among c1, . . . , c7), Q7 = 0. It
has only up to four-digit coefficients (between -1614 and 2180). Our formula for
ρel

7 , having 199695 monomial terms (with up to 22-digit coefficients), is expectedly
large (as a 2200 pages book!). From this formula one can get other expressions by
simple substitution (e.g., by side lengths - what might be unreasonable, instead one
might rewrite it in monomial or Schur basis of symmetric functions, etc.). Similar
explicit circumradius formulas we have obtained for cyclic octagons already in 2004
(see [9, 11, 14, 18]) (for partial results see [22]), but for heptagon area equation we
need to compute resultant of two polynomials of degree 11 and 12- not yet achievable
on our computer at hand.
Future research: One may expect, with more powerful computer system, to obtain
circumradius equation for cyclic nonagon (cyclic 9-gon) which has degree 187 in
circumradius squared.
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Planets are (very likely) in orbits of stars

Darko Veljan

Abstract
The probability that a randomly and uniformly chosen point from the cir-
cumball of a tetrahedron lies outside of the inscribed ball of the tetrahedron
can be bounded very sharply from below in terms of the edge lengths of the
tetrahedron. One can imagine four stars in the Universe (vertices) with known
mutual distances and a small (exo-) planet orbiting between them within the
circumsphere. The least probability that the planet is outside of the insphere
is given in terms of the distances of the stars. The least probability occurs for
the regular tetrahedron and it is 0.962962. . . . Geometrically, this is a tricky
corollary of (refinements of) the famous Euler inequality: circumradius is at
least three times bigger than the inradius of a tetrahedron with equality for a
regular tetrahedron. The Euler inequality can be extended to Euclidean sim-
plices in all dimensions and to non-Euclidean planes. The most relevant cases
of 3D and 4D being in accordance with the relativity theory are considered.
Keywords: Euler’s inequality, refined Euler’s inequality in 3D and 4D, exo-
planet.
AMS subject classification (2020): 51M04, 51M16, 85A15.

1 Introduction
In this paper we shall geometrically explain why planets detected to be in vicinity
of four stars must, in fact, with high probability, orbit around one of the four stars.
The lower bound of the probability is given in terms of the distances of the stars.
The essence of the argument is Euler’s inequality R ≥ nr from 1765 between the
circumradius R and the inradius r of an n-dimensional simplex and particularly its
refinements as given in [1], [2] and [3].
A popular introductionary text on some mathematical and computational aspects in
astronomy or astrophysics is [4] (in Croatian) and a textbook on the topic is e.g. [5].
A popular history book on math is [6]. Many Euler’s contributions can be found
there.

(Darko Veljan) Department of Mathematics, University of Zagreb, Croatia,
darko.veljan@gmail.com
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We shall first consider the case of three stars and a planet moving in their plane
(n = 2). Next is the main 3D-case (n = 3), because four (general) points form a
space.
Finally, we shall consider 4D-case (i.e. when n = 4) which is important because the
Universe is by Einstein’s relativity theory four dimensional (hyperbolic) space-time
object.

2 Triangle of stars
To begin with, we start with an easier question. Let T be a triangle of stars and a,
b and c their mutual distances. Let X be a randomly and uniformly chosen planet
(point) within the circumcircle of T . What is the minimal probability p that X lies
outside of of the incircle of T? That is, what is the minimal probability that X is
rather close to one of the stars? The probability that a randomly and uniformly
chosen point within the circumcircle of T (of radius R) which is within the incircle
of T (of radius r) is equal to the quotient of their areas r2π/R2π = (r/R)2. Hence,
p = 1−(r/R)2. In [1] (see also [2], [3]) we proved a refined Euler’s inequality R ≥ 2r
in the form

R

r
≥ abc+ a3 + b3 + c3

2abc ≥ 2. (1)

with equalities if and only if the triangle T is equilateral. Recall Heron’s formula
for the area S of T in terms of side lengths a, b, c of T :

16S2 = (2s)d3(a, b, c),

where 2s = a + b + c is the perimeter of T and d3(a, b, c) := (a + b − c)(a − b +
c)(−a+ b+ c). Then the probability q that X is within the incircle is equal to:

q =
(
r

R

)2
=
(
S

s
: abc4S

)2

=
(

4S2

sabc

)2

=
(

16S2

4sabc

)2

=(
2sd3(a, b, c)

4sabc

)2

=
(
d3(a, b, c)

2abc

)2

≤ 1
4 .

Hence,

p = 1 − q = 1 −
(
d3(a, b, c)

2abc

)2

≥ 0.75. (2)

The last inequality follows from Euler’s R ≥ 2r and above inequality.

3 Tetrahedron of stars
Now, the main topic in this paper is to show that with a high probability an (exo-)
planet from the vicinity of four stars must, in fact, orbit around one of the stars.
We quote Theorem 4.1. from [3]: the probability that a randomly and uniformly
chosen point within the circumsphere of the tetrahedron T is within the insphere of
T is at most equal to
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√√√√ d3(aa′, bb′, cc′)
[3(aa′ + bb′ + cc′)]3 ≤ 1

27 . (3)

Here a, b and c are side lengths forming the base of T , a′ is opposite to a etc.
Therefore, the probability p that a randomly and uniformly chosen point (planet)
from the circumball of the tetrahedron T of four stars (vertices of T ) is outside of
the inscribed ball of T is at least equal to

p ≥ 1 −
√

d3

(3e1)3 , (4)

where d3 := d3(aa′, bb′, cc′) and e1 := aa′ + bb′ + cc′. (Recall that aa′, bb′, cc′ form
a triangle, called Crelle’s triangle of T .) By Euler’s inequality R ≥ 3r (and [3]), it
follows from (4) that the probability

p ≥ 1 − 1/27 = 0.962962 . . . (4’)
And this is rather close to 1. This can be considered as a geometric proof that a
planet very likely must orbiting around a star and taken by gravity rules must stay
in the orbit for good (or at least for billions of years). The equality in (4) in fact
occurs if and only if aa′ = bb′ = cc′, i.e. when Crelle’s triangle of T is equilateral.
In particular, we have equality in (4) and (4’) when T is a regular tetrahedron.
This geometric-probabilistic proof shows that with the chance of at least 96.2962%
we can expect that a planet moving in vicinity of four stars (with known mutual
distances of stars) is rather close to one of the stars instead of being somewhere
in deep space formed by four stars. And then the gravity rule force the planet to
orbit (eliptically) around one of the star. (A little quiz for the reader: four girls are
bathing in a lake or sea; their mutual distances are 20 meters; three girls have on
them red bikini; what has the fourth girl on? If you don’t know, see [4].)
As an astronomy example consider four stars from the Ursa Major (the Great Bear)
constellation: Dubhe, Merak, Phecda and Megrez. They are roughly 120 ly far from
the Earth. With data available from the Internet, a little computation shows that
the chance that a planet close to the constellation (within the circumball) but out
of the inball of the four stars, that is, rather close to one of the stars, is roughly a
bit more than 97%. In other words, it is quite likely that a planet is not wandering
in deep space between four stars.
A geometric example is the tetrahedron whose vertices are the origin and three unit
points on the coordinate axes. Its Crelle’s triangle is regular (with side lengths

√
2),

hence the probability in question is minimal and is (at least) 96.2962%. For the
tetrahedron ABCD with AB = BC = CD = 1 and BC ⊥ AB, CD ⊥ AB, BC,
i.e. an "ortoscheme", the considered probability is at least 97%. In any concrete
example, we can, of course, compute R and r exactly and hence the probability, but
that is not the issue here.
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4 4-simplex
Four dimensional geometry in astrophysics is also of interest since our space-time
Universe is four-dimensional. It seems, the hyperbolic geometry is prevailing, ac-
cording to relativity theory, but 3D and even more 4D hyperbolic geometry is still to
some degree "tabula rasa". One possible inequality for edge lengths of a hyperbolic
tetrahedron can be obtained by applying Theorem 2.3. from [3] to corresponding
Crelle’s triangle (if it exists). In any way, the best known approximation to our
geometric-probabilistic approach is Euclidean 3D- and 4D-geometry.
Recall, our refinement of Euler’s R ≥ 4r for a 4-dimensional simplex T =
A0A1A2A3A4 in terms of symmetric functions of edge lengths aij = AiAj, i < j, of
T is (5.8) from [3]

(
R

r

)2
≥ 8

∑
a2

ij

5∏(i, j, k, l)1/15 ≥ 42, (5)

where ∑ a2
ij is the sum of squared lengths of all ten edges of T and the symbol

(i, j, k, l) is defined by (i, j, k, l) := d3(aijakl, aikajl, ailajk) for all 0 ≤ i < j < k <
l ≤ 4. The equality in (5) holds for a regular 4-simplex. From (5) we have a sharp
lower bound for the probability p that a randomly and uniformly chosen point from
the circumball of the 4-simplex T is out of the inball of T . It is given by

p ≥ 1 −
(
r

R

)4
≥ 25∏(i, j, k, l)2/15

64(∑ a2
ij)2 ≥ 1 − 4−4. (6)

In the case of a regular 4D-simplex (of stars) with all edge lengths aij = 1, we have
(i, j, k, l) = 1 for all five choices of i, j, k, l, and the probability is p = 1 − 2−8 =
99.609 . . .%.

5 Conclusion
We have proved here that planets quite likely orbit around stars. This fact was
observed back in ancient times, as well as the fact that satellites must orbit around
planets; the first examples, naturally, being Moon around Earth and Earth around
Sun. It was firmly established only by Kepler and later explained by Newton. In
fact, the Croatian mathematician Ruđer Bošković was the first to give a procedure
to compute a planet’s orbit from three observations of its position. (Bošković did
not get the Grand Prix of the Academy in 1752 for his studies on Saturn and Jupiter,
but the prize was given to Euler.)
In this paper we provided a pure geometric proof of these facts.
In searching for an exo-planet, where humans have to move once in the future,
one can imagine the following experiment. Suppose we get a spectral signal that a
certain planet has water, but we don’t know the exact position of this planet. Then
our method predicts its position with high probability within four nearest stars.
This prediction then focus the search for the planet to much less space.
By the procedure (recursive algorithm) proposed in [3] for refined Euler’s inequality,
we can proceed further to higher dimensions and prove that the limit when dimension
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n tends to infinity for the probability that a randomly and uniformly chosen point
from the circumball that is out of the inball of simplex is equal to 1.
In a similar manner to astrophysics, we can apply our method to the micro world
as well, by considering for instance electrons in atoms and other subatomic particles
and predict with some high probability the behavior and position of particles, but
this is already in the domain of quantum physics. Such "predictology" is also very
much appreciated in biochemistry, molecular biology, information theory and other
modern sciences.
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