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Abstract
In this article, we compare the famous Flory model with its variant that was
recently introduced by the authors. Instead of looking at these models on a
one-dimensional lattice, we consider a two-row ladder. For both models we
compute the complexity function, and we analyze the differences of static and
dynamic versions of these models.
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1 Introduction
Random sequential adsorption (RSA) refers to a process where particles are sequen-
tially introduced in a system at random. Placement (adsorption) of a new particle is
accepted if the particle does not fall into the exclusion region of another particle that
has already been adsorbed. The process continues until a jammed configuration is
reached, i.e. until no more new particles can be adsorbed. These jammed configura-
tions for various models have been extensively studied in the literature (see [18, §7]
for a comprehensive overview). The main question related to jammed configurations
concerns the expected density of the adsorbed particles. There are two natural ways
to interpret this question. One is through the explained RSA approach where parti-
cles are sequentially introduced in a system until a jammed configuration is reached.
This is usually referred to as the dynamic model. The limit to which the expected
density of particles converges in this case is called jamming limit. The other way to
look at this problem is to consider the set of all the possible jammed configurations
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and to sample one such configuration at random. This is referred to as the static (or
equilibrium) model. The static model is usually described with the so-called com-
plexity function (also known as configurational entropy), and the expected density
of particles in a jammed configuration converges to the argument of the maximum
of the complexity function. The precise definitions of the jamming limit and the
complexity function are given later. It is not clear, at first, that the two models are
different. The assumption that both approaches lead to the same expected density
of large jammed configurations is referred to as the Edwards hypothesis, see [2] for
a recent review. In the models studied in the present paper, as is the case for most
irreversible deposition models, Edwards hypothesis is violated.
The dynamic model (RSA) has been studied extensively because of its wide appli-
cability to diverse aspects of physics, chemistry and biology. It was first studied in
one dimension. In his pioneering paper [12], Paul Flory studied the attachment of
pendant groups in a polymer chain. Closely related to his work is the Page-Rényi
car-parking problem (see [24]), which is a discrete version of the original car-parking
model introduced by Alfred Rényi in [27]. To determine the value of the jamming
limit one can run experiments (see [22]), computer simulations (see [23, 30, 31]), or
use mathematical analysis (see [1,3,10,12,13,18,27]). Even though various analytic
solutions have been found, for both continuum and lattice versions of RSA, for most
of the models studied in the literature, jamming limit is only known approximately
and is obtained with the aid of computer simulations.
The static (equilibrium) model has also received attention in the literature (see
[4, 6, 7, 15, 18–20]). The configurational entropy of jammed configurations is usually
determined either by means of direct combinatorial reasoning [4, 7, 19], or by using
the transfer-matrix approach [6, 9, 20]. Recently, a new method for determining
complexity function has been developed in [17], inspired by the theory of renewal
processes.
Most of the results in the literature (in both the static and the dynamic case) have
been obtained for one-dimensional lattices. The problem gets more involved in
higher dimensions. In this paper, we consider a slightly more general structure than
the one-dimensional lattice, namely a two-row ladder (see Figure 1). We employ
the new approach from [17] to develop the complexity function for both the original
Flory model, and the modified version of Flory model that was introduced in [25] and
subsequently studied in [8,16,26]. This modified version of the original Flory model
was introduced in terms of a combinatorial settlement model where the impact of
the architect would be as small as possible, and people would have a lot of freedom
in the process of building the settlement. This minimal intervention from the side
of the architect is given through the condition that houses are not allowed to be
blocked from the sunlight, and that the tracts of land on which the settlements are
built are of rectangular shapes. A house is blocked from the sunlight if there are
other houses on the neighboring sites to the right (east), to the left (west), and below
(to the south) of that house. Additionally, it is assumed that houses receive sunlight
from the eastern, southern and western boundary of the tract of land on which the
settlement is being built. Here, we consider the two-row ladder as the rectangular
tract of land on which the houses are built. The described condition imposes that
each particle (house) in the upper (northern) row of the two-row ladder needs to
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Figure 1: A two-row ladder graph.

have at least one of its neighboring sites free, while no restrictions are placed upon
particles (houses) in the lower (southern) row as they are guaranteed to receive
sunlight from the southern border. Compare this to the original Flory model, where
each deposited particle enforces all of its neighboring sites to be vacant.
Flory model on a two-row ladder has already been studied in the literature in the
dynamic case (see [1, 3, 10, 13]). The static case was considered in one dimension
(see [18, §7.2]). On the other hand, the model introduced in [25] was originally
studied on a two-dimensional lattice, and some observations have been made both in
the static and the dynamic case (see [25,26]), but the complexity was addressed only
in the one-dimensional version of that model, the so-called Riviera model (see [8,16]).

Notation. The length of the two-row ladder graph that we are considering is
denoted by L. Notice that such a graph of length L has 2L sites that can be
occupied by deposited particles (atoms, houses), or vacant. Each configuration of
length L can be represented with two binary 0/1 sequences (both of length L, one
representing the upper row, and the other one representing the lower row of a two-
row ladder graph) where 1 is interpreted as an occupied site, and 0 as vacant site.
The total number of different jammed configurations on the two-row ladder of length
L is denoted by JL, and the total number of jammed configurations on the two-row
ladder of length L that have precisely N deposited particles is denoted by JN,L. The
density (saturation, coverage) of any such configuration of length L with N particles
is defined as N/L. Notice that, using the convention that the length of the two-row
ladder graph with 2L sites is denoted by L, the density will always attain values in
[0, 2].

2 Flory model on a ladder
Flory model on a one-dimensional lattice is the most famous model within the
theory of RSA. Each site on the lattice can be occupied by an atom, or vacant.
Each atom blocks its nearest neighbor sites. This model (and the related Page-
Rényi car-parking process) has been extensively studied in the literature, in both
dynamic and static setting (see [12, 14, 24] for the dynamic version and [16, 18] for
both versions). As announced in the introduction, we are dealing with Flory model
on a two-row ladder graph. Most of the analytic treatments of such models are
restricted to one-dimensional lattice. It would be very interesting to see how all
these results translate to the truly two-dimensional lattice. This, however, seems to
be an extremely technical task (if one wants to obtain some analytical result, and not
just run simulations), so we provide here a very modest entrée into two-dimensional
space.
To get a better feeling about the Flory model on a two-row ladder graph, and about
the structure of jammed configurations of this model, we display in Figure 2 all the
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Figure 2: All the jammed configurations of Flory model on a two-row ladder graph
of length 4.

possible jammed configurations on the two-row ladder graph of length 4.
Based on Figure 2, we can easily compare static and dynamic model in the case of the
two-row ladder graph of length 4. Notice that JFlory

4 = 6. More precisely, JFlory
3,4 = 4,

and JFlory
4,4 = 2. Denoting the random variable counting the number of occupied sites

in the static model on a two-row ladder graph of length L by XFlory
s (L), and random

variable counting the number of occupied sites in the dynamic model by XFlory
d (L),

we read from Figure 2 that

XFlory
s (4) ∼

(
3 4
2
3

1
3

)
.

Inspecting in which order particles have to be introduced in the system to end up
in each of the jammed configurations shown in Figure 2, one easily obtains

XFlory
d (4) ∼

(
3 4
2
5

3
5

)
.

Using the sequence of random variables (Xd(L))L, that count the number of occupied
sites in a dynamic model of length L, we can give a precise definition of the jamming
limit of a certain model.

Definition 1. For a fixed length L ∈ N, let Xd(L) denote the random variable which
models the number of occupied sites in a jammed configuration of length L, reached
through the RSA procedure. The jamming limit is then defined as

ρ∞ = lim
L→∞

E[Xd(L)]
L

, (1)

if this limit exists, where E[X] denotes the expected value of a random variable X.

Remark 1. The convergence of expected values in (1) is the most common notion
of convergence considered in these kind of problems. However, in some instances
it was possible to prove convergence in probability for these random variables, in
addition to convergence of expectations (see e.g. [14, 24] for discrete Rényi car-
parking problem). Note that here, due to boundedness of random variables, the
convergence in probability is strictly stronger than the convergence of expected
values.
As mentioned in the introduction, the dynamic version of the Flory model on a two-
row ladder has already been studied in the literature. It was independently shown
in [10] and [1] that the jamming limit of this model is

ρFlory
∞ = 1 − 1

2e
, (2)

and this result was later reconstructed in [3, 13].
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Remark 2. Note that in [1, 3, 10, 13] the density is defined as N
2L

, so the constant
above is divided by two.
We now turn to the static model and to determining the complexity function. We
first recall the definition of complexity function of a certain model.

Definition 2. For a fixed density ρ ≥ 0, take ((Ni, Li))i to be any sequence of pairs
of non-negative integers such that limi→∞ Li = +∞ and limi→∞

Ni

Li
= ρ. Note that

JNi,Li
is the number of configurations of length Li with density Ni

Li
. We are interested

in the quantity
lim sup

i→∞

ln JNi,Li

Li

which is the exponential rate of growth of these configurations. If we now take the
supremum over all such sequences, we arrive at the definition of complexity function
S(ρ) : [0, ∞) → [0, ∞)

S(ρ) = sup
(Ni,Li)

lim sup
i→∞

ln JNi,Li

Li

(3)

where the supremum runs over all the sequences such that Ni/Li → ρ.

Remark 3. Whenever we encounter JN,L = 0 for some (N, L), we will redefine it
as JN,L = 1 so that ln JN,L = 0 can be computed. Consequently, if there are
no configurations with densities approaching a certain ρ, we get S(ρ) = 0. Also
note that the lim sup can be replaced with lim since we can, if needed, pass to a
subsequence.
Remark 4. This definition implies that the number of configurations with density
N/L ≈ ρ grows as eLS(ρ) for large L. The density ρ⋆ at which the complexity
function S(ρ) attains its maximum, i.e. the density corresponding to the largest
rate of growth, is called the equilibrium density and is a static setting analogue of
jamming limit as it can be shown that

ρ⋆ = lim
L→∞

E[Xs(L)]
L

.

where Xs(L) is the number of occupied sites in the static (equilibrium) model in
which each jammed configuration of length L is equally likely. Furthermore, the
random variables Xs(L)/L can be shown to converge in distribution to delta distri-
bution concentrated at ρ⋆.
Remark 5. In most commonly encountered models the sup in the definition is super-
fluous, as any choice of the sequence (say ((NL, L))L where NL = ⌊ρL⌋) will produce
the same limit.
Remark 6. Lastly, note that the complexity function is bounded

S(ρ) ≤ 2 ln 2.

This follows from the trivial bound JN,L ≤ 22L. A more precise bound

S(ρ) ≤ 2H(ρ/2)

follows from the inequality JN,L ≤
(

2L
N

)
∼ exp (2L · H(N/(2L))), where H(p) is the

Shannon’s entropy function H(p) = −p ln p − (1 − p) ln(1 − p), see [5].
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Figure 3: Vertices in the graph encoding the Flory model on a ladder.

To be able to apply the method from [17], we first need to determine the bivariate
generating function for this model. To this end, we apply the so-called transfer
matrix method (see [29, §4.7], [11, §V], and [21, §2–4]). This is a well known method
for counting words of a regular language. Notice that every jammed configuration
on a ladder is composed of the nodes shown in Figure 3. The transfer matrix is then
of the shape

A(x) =



0 0 0 x 0 0
1 0 0 0 x 0
0 x 0 0 0 0
0 0 1 0 0 x
0 0 1 0 0 x
1 0 0 0 x 0


,

where x is a formal variable associated with the number of atoms. Taking into
consideration what the possible starting and ending nodes of a jammed configuration
in the Flory model on a two-row ladder graph are, we define vectors

a(x) = (x, 0, x, 0, x2, x2)T and b = (0, 1, 0, 1, 1, 1)T .

Now the bivariate generating function enumerating all the jammed configurations
in the Flory model on a two-row ladder of length L with precisely N atoms is given
by

FFlory(x, y) = 1 + 2xy +
∞∑

n=2
a(x)T · [A(x)]n−2 · b · yn

= 1 + 2xy + a(x)T
∞∑

n=0
[A(x) · y]n · b · y2

= 1 + xy − xy2

1 − xy − xy2 , (4)

where y is a formal variable associated with the length of the configuration. Hence,
we have just proved the following lemma.

Lemma 1. The bivariate generating function enumerating the total number of
jammed configurations in the Flory model on a two-row ladder of length L, where
precisely N sites are occupied with atoms, is

FFlory(x, y) = 1 + xy − xy2

1 − xy − xy2 .

We will now briefly describe the method from [17], based on the classical Legendre
transform, which enables one to derive the complexity function directly from the
bivariate (rational) generating function for the sequence JN,L.
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Remark 7. In order to follow the procedure described here, the generating function
one starts with does not actually need to be rational. It suffices for the function to be
analytic in y on some disk around the origin for each x > 0. But in order to actually
calculate the complexity, one has to be able to express the radius of convergence (or
the modulus of the non-removable singularity closest to the origin) of that function
in terms of x. This is why rational generating functions are particularly amenable
to this approach.
Let

F (x, y) =
∑
L

(∑
N

JN,L xN

)
yL = p(x, y)

q(x, y)

be the bivariate generating function of the sequence (JN,L), where p and q are
coprime polynomials. For each fixed x > 0, let y0(x) be the root of the polynomial
q(x, y) with the smallest modulus. Then, by the Cauchy–Hadamard theorem from
complex analysis (see e.g. [32, Theorem 2.4.3]), it follows

lim sup
L→∞

L

√∑
N

JN,L xN = |y0(x)|−1.

As x > 0 and the sum above runs over 0 ≤ N ≤ 2L we obtain the bounds

L

√
max

N
(JN,L xN) ≤ L

√∑
N

JN,L xN ≤ L

√
(2L + 1) max

N
(JN,L xN)

and consequently

lim sup
L→∞

L

√
max

N
(JN,L xN) = lim sup

L→∞
L

√∑
N

JN,L xN = |y0(x)|−1.

After taking logarithms

lim sup
L→∞

ln
(
maxN

(
JN,L xN

))
L

= − ln |y0(x)|. (5)

Next, note

ln
(

max
N

(
JN,L xN

))
= max

N
(ln JN,L + N ln x) = L max

N

(
ln JN,L

L
+ N

L
ln x

)

and so (5) reads

lim sup
L→∞

max
N

(
ln JN,L

L
+ N

L
ln x

)
= − ln |y0(x)|. (6)

We next wish to show the following claim

Claim 1. The complexity function S(ρ) associated to the sequence JN,L satisfies the
equation

sup
ρ

{S(ρ) + ρ ln x} = − ln |y0(x)|. (7)
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Proof. Fix ρ ≥ 0 and let (Ni, Li) be an arbitrary sequence such that Ni/Li → ρ.
Clearly

ln JNi,Li

Li

+ Ni

Li

ln x ≤ max
N

(
ln JN,Li

Li

+ N

Li

ln x

)
and thus

lim sup
i→∞

(
ln JNi,Li

Li

)
+ ρ ln x = lim sup

i→∞

(
ln JNi,Li

Li

+ Ni

Li

ln x

)
≤

≤ lim sup
i→∞

max
N

(
JN,Li

Li

+ N

Li

ln x
)

≤ lim sup
L→∞

max
N

(
ln JN,L

L
+ N

L
ln x

)
.

Since this holds for any sequence (Ni, Li) with Ni/Li → ρ we get

S(ρ)+ρ ln x = sup
(Ni,Li)

lim sup
i→∞

(
ln JNi,Li

Li

)
+ρ ln x ≤ lim sup

L→∞
max

N

(
ln JN,L

L
+ N

L
ln x

)
.

Since the latter inequality holds for any ρ we conclude

sup
ρ

{S(ρ) + ρ ln x} ≤ lim sup
L→∞

max
N

(
ln JN,L

L
+ N

L
ln x

)
. (8)

For the opposite inequality, let us take a sequence ((NL, L))L where for each L,
0 ≤ NL ≤ 2L is the number at which the maximum in the right hand side of (8) is
attained. Passing to a subsequence ((NLi

, Li))i, if needed, we may assume that the
lim sup on the right hand of (8) is actually lim. After passing to a subsequence once
more, if needed, we may assume that NLi

/Li → ρ̃ for some ρ̃ ∈ [0, 2]. Therefore

lim sup
L→∞

max
N

(
ln JN,L

L
+ N

L
ln x

)
= lim

i→∞

( ln JNLi
,Li

Li

+ Ni

Li

ln x

)
=

= lim
i→∞

( ln JNLi
,Li

Li

)
+ ρ̃ ln x ≤ S(ρ̃) + ρ̃ ln x

where in the last step we used the fact that ((NLi
, Li))i is just one of the sequences

over which the supremum is taken in the definition of S(ρ̃). Finally

lim sup
L→∞

max
N

(
ln JN,L

L
+ N

L
ln x

)
≤ S(ρ̃) + ρ̃ ln x ≤ sup

ρ
{S(ρ) + ρ ln x} (9)

and putting the statements (6), (8) and (9) together gives the claim (7).

If we set x = et > 0 then the relation (7) becomes

sup
ρ

{tρ − (−S(ρ))} = − ln |y0(et)|

and it expresses the fact that the function − ln |y0(et)| is the convex conjugate (or
Legendre-Fenchel transform) of the function −S(ρ), see [28, §12].
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Since we know the function − ln |y0(et)|, and seek to find −S(ρ), we actually need
to invert the transformation. Luckily, the Legendre transformation is an involution
and therefore

sup
t

{
tρ − (− ln |y0(et)|)

}
= −S(ρ),

which we can express in terms of x as

sup
x>0

{ρ ln x + ln |y0(x)|} = −S(ρ). (10)

Remark 8. The Legendre transformation is actually an involution only on the set of
closed convex functions, and if applied twice on any function it returns the closed
convex envelope of that function [28, Corollary 12.1.1 and Theorem 12.2]. As the
complexity functions for similar models in the literature are known to be closed
concave (−S is closed convex), it is reasonable to think that the complexity function
in our model must be as well. With this in mind, a more precise restatement of (10)
would be

sup
x>0

{ρ ln x + ln |y0(x)|} = cl (conv (−S(ρ))) .

Using the first derivative test, we see that x0 at which maximum on the left hand
side of (10) is attained must satisfy

ρ = −x0
y′

0(x0)
y0(x0)

=
[

x

y

∂xq

∂yq

]
x=x0,y=y0(x0)

(11)

where we used the implicit function theorem and the fact that y0(x) is defined by the
relation q(x, y0(x)) = 0. If we, now, for each 0 ≤ ρ ≤ 2 solve (11) and q(x0, y0) = 0
for x0 = x0(ρ) and y0 = y0(x0(ρ)), then we can write the complexity function as

S(ρ) = −ρ ln x0 − ln |y0|. (12)

In order to find the equilibrium density ρ⋆ of the model we need to solve the opti-
mization problem

ρ⋆ = arg max
ρ

{−ρ ln x0 − ln |y0|}.

Note that the complexity function S(ρ) can be parameterized using x as

S(ρ(x)) = x
y′

0(x)
y0(x) ln x − ln |y0(x)|,

and it is easier to solve the optimization problem in this form. The solution x = x⋆

at which the maximum is attained must satisfy the equation

y′
0(x)

y0(x) ln x + x
y′′

0(x)y0(x) − (y′
0(x))2

(y0(x))2 ln x + x
y′

0(x)
y0(x)

1
x

− y′
0(x)

y0(x) = 0.

or equivalently (
y′

0(x)
y0(x) + x

y′′
0(x)y0(x) − (y′

0(x))2

(y0(x))2

)
ln x = 0.
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(a) N
L = 1

2 + 1
18 (b) N

L = 1

Figure 4: Examples of two jammed configurations with extreme densities for the
Flory model with L = 9.

From here, it is easy to see that x⋆ = 1, and the corresponding y⋆ = y0(1) is the
solution of the equation q(1, y⋆) = 0. The equilibrium density ρ⋆ and the maximum
value of the complexity function can then be calculated using (11) and (12) as

ρ⋆ = 1
y⋆

∂xq(1, y⋆)
∂yq(1, y⋆)

,

S(ρ⋆) = − ln |y⋆|.
(13)

Remark 9. Before we proceed to apply this method in order to compute the com-
plexity of the Flory model on a two-row ladder, let us briefly discuss the support of
S. As each occupied site in a maximal configuration must have all of its three neigh-
bors unoccupied, and as each unoccupied site has at least one occupied neighbor, if
follows E ≤ 3N , where N and E stand for the number of occupied and unoccupied
sites in a configuration, respectively. From here, 2L = E + N ≤ 4N and therefore
N
L

≥ 1
2 . Also, to each occupied site corresponds the unique unoccupied site (above

or below) which is on the same rung of the ladder. Hence, N ≤ E or, equivalently,
2N ≤ N + E = 2L and therefore N

L
≤ 1. One can actually show, more precisely,

that
⌊

L
2

⌋
+ 1 ≤ N ≤ L. Examples of the most and the least saturated maximal

configurations for L = 9 are depicted in Figure 4.
The previous discussion implies that the complexity S(ρ) can be non-zero only on
the interval 1

2 ≤ ρ ≤ 1.
It is clear from the method described above that complexity is determined by the
denominator of the bivariate generating function. In our case, the denominator of
the expression (4) is

q(x, y) = 1 − xy − xy2,

which coincides with the one that appears in [17, §4.2 Isolated empty sites (4.21)].
The name Isolated empty sites of the model discussed in [17, §4.2] already suggests
that this is equivalent to the Flory model on a two-row ladder, because in the Flory
model on the two-row ladder we are not allowed to have two empty columns in a
row, and in non-empty columns we always have exactly one atom. Following the
method described above, Krapivsky and Luck in [17, equation (4.28)] obtain the
complexity function

SFlory(ρ) = ρ ln(ρ) − (1 − ρ) ln(1 − ρ) − (2ρ − 1) ln(2ρ − 1), (14)

for 1/2 < ρ < 1 (see Figure 5). The density for which the complexity function is
maximized is

ρFlory
⋆ = 5 +

√
5

10 , (15)
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0.5 0.6 0.7 0.8 0.9 1.0
ρFlory
∞ρFlory

?

ρ

0.0

0.1

0.2

0.3

0.4

0.5

SFlory(ρ)

Figure 5: The complexity of the Flory model on the ladder. Also depicted on
the plot are the jamming limit ρFlory

∞ = 1 − (2e)−1, and the equilibrium density
ρFlory

⋆ = (5 +
√

5)/10.

and the value of the maximum is

S(ρFlory
⋆ ) = ln

(
1 +

√
5

2

)
. (16)

This can be obtained from (13) by setting x⋆ = 1 and y⋆ =
√

5−1
2 . The interpretation

of the value calculated in (16) is that on the two-row ladder of length L, there are
roughly (

1 +
√

5
2

)L

jammed configurations. Comparing the jamming limit ρFlory
∞ from equation (2),

which summarizes the dynamic model, and the value of ρFlory
⋆ (i.e. the argument

of the maximum of the complexity function) given in (15), which summarizes the
equilibrium model, we see that Edwards hypothesis does not hold (see Figure 5).
Remark 10. Notice that the constant appearing in relation (16) is the famous golden
ratio. It is in fact very easy to see that the sequence JL counting the number of all
jammed configurations of length L satisfies the well-known Fibonacci recursion

JFlory
L = JFlory

L−1 + JFlory
L−2 .

3 Settlement model on a ladder
Recently, a combinatorial settlement planning model was introduced in [25] and the
same model has been further studied in [8,16,26]. As in the case of Flory model, most
of the results have been developed for the one-dimensional version of this model, the
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Figure 6: All the jammed configurations of the settlement model from [25] on a
two-row ladder graph of length 4 (J4 = 6, J6,4 = 4, J7,4 = 2).

so-called Riviera model. The complexity function for the Riviera model has been
derived in [16], and in the same paper the authors discuss the dynamic model, and
they obtain the jamming limit using simulations. In this paper, we are interested
in the model from [25] on a ladder. As in the previous section, we first show some
concrete examples of jammed configurations of this model. In Figure 6 are shown
all the jammed configurations of combinatorial settlement model, introduced in [25],
on a two-row ladder graph of length 4. Recall that there are no restrictions on the
houses placed in the bottom row, while each house in the top row (which is not on
the boundary) must have at least one of its immediate neighbors unoccupied. It is
clear from Figure 6 that

Xs(4) ∼
(

6 7
2
3

1
3

)
,

where Xs(4) is a random variable that counts the number of occupied sites in the
static combinatorial settlement model on a two-row ladder graph of length 4. De-
noting by Xd(4) the corresponding random variable in the dynamic version of the
model, and carefully analyzing in which order the houses had to be built to reach a
particular jammed configurations, we have

Xd(4) ∼
(

6 7
1
3

2
3

)
.

This particular model has been considered in the static case in [8], but only bivariate
generating function was developed. However, in light of the new method (introduced
in [17]) for computing complexity function, we know that this result about the
bivariate generating function can be used to obtain the desired complexity function.
From [8, §4.1 and relation (A.4)], we have

F (x, y) = 1 − xy + x2y − 2x3y2 + x4y2 + x4y3 + x5y3 − x8y5

1 − xy − x3y2 + x4y3 − x5y3 − x6y4 + x9y6 . (17)

It is not hard to see what the extreme configurations look like for this model (see
also [25, Theorem 4.5]) and to conclude

L + 2 ≤ N ≤ 2L − ⌊L/3⌋ = 5
3L + (L/3 − ⌊L/3⌋) ≤ 5

3L + 2
3 ,

and from there
1 + 2

L
≤ N

L
≤ 5

3 + 2
3L

.

In Figure 7 are given examples of the most and the least saturated maximal config-
urations for L = 9. The inequality above immediately implies that the support of
the complexity function of this model will be contained in the interval 1 ≤ ρ ≤ 5/3.
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(a) N
L = 1 + 2

9 (b) N
L = 5

3

Figure 7: Examples of two jammed configurations with extreme densities for the
settlement model with L = 9.

Using the same notation as in the previous section, we have

q(x, y) = 1 − xy − x3y2 + x4y3 − x5y3 − x6y4 + x9y6. (18)

As it is not possible to explicitly solve for y0(x) in the equation q(x, y) = 0, the first
step is to find a parametrization of this equation which will enable us to express its
roots in terms of the new variables. To this end, we employ the parametrizationt = y

1
3 ,

u = xy
2
3 ,

i.e.

x = u

t2 ,

y = t3.

Plugging this into the equation q(x, y) = 0 (where q(x, y) is given in (18)) gives us

(u4 − u)t + (u9 − u6 − u3 + 1) − u5t−1 = 0.

Multiplying by t, we get

(u4 − u)t2 + (u9 − u6 − u3 + 1)t − u5 = 0.

From here it follows that

t±
0 = −(u9 − u6 − u3 + 1) ±

√
u18 − 2u15 − u12 + 8u9 − 5u6 − 2u3 + 1

2(u4 − u) . (19)

These two expression for t0 in terms of u enable us to express the roots y0(x) of the
polynomial q(x, y0(x)) for each x > 0 in terms of the parameter u. In fact, all the
quantities of interest can now be expressed in terms of u in the following way

y0 = [t0(u)]3 , x0 = u

[t0(u)]2
, ρ(u) =

[
x

y

∂xq

∂yq

]
x=x0,y=y0

, S(ρ) = −ρ ln x0 − ln |y0|.

We have, thus, proved the following theorem which provides a parameterized ex-
pression for the complexity function of the combinatorial settlement planning model
on a two-row ladder.
Theorem 1. The complexity function of the combinatorial settlement planning
model on a two-row ladder is given as

S(ρ) = −ρ ln x0 − ln |y0|,

where 
ρ(u) = −9x8y5+6x5y3+5x4y2−4x3y2+3x2y+1

−6x8y5+4x5y3+3x4y2−3x3y2+2x2y+1

∣∣∣∣
x=x0,y=y0

,

x0 = u [t0(u)]−2 ,

y0 = [t0(u)]3 ,

and t0(u) is given by (19).
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0.6

SSettlement(ρ)

Figure 8: The complexity of the combinatorial settlement model on the ladder.
Also depicted on the plot are (a Monte Carlo estimation of) the jamming limit
ρSettlement

∞ ≈ 1.54064, and the equilibrium density ρSettlement
⋆ ≈ 1.4374959.

Remark 11. The equilibrium density ρSettlement
⋆ for this model can be calculated using

(13). More precisely,

ρSettlement
⋆ = 1 + y⋆ + y2

⋆ + 6y3
⋆ − 9y5

⋆

1 + 2y⋆ + 4y3
⋆ − 6y5

⋆

≈ 1.4374959

where y⋆ is the root of the polynomial 1−y −y2 −y4 +y6 with the smallest modulus.
Remark 12. A closer inspection of the parametrization given in the theorem above
and the equation (19) reveals that, in order to obtain the whole range of values
x > 0, it suffices to take 0 < u ≤ u0, where u0 ≈ 0.70633685 is the positive root of
the polynomial appearing under the square root in (19). For each such a value u,
both t+

0 and t−
0 , have to be used in order to produce the whole range x > 0.

Theorem 1 enables us to produce the graph in Figure 8 showing the complexity
function of the settlement model. Note that, as previously discussed, the complexity
is supported on [1, 5

3 ].
When it comes to the dynamic version of the combinatorial settlement planning
model, there are no analytical results for the jamming limit. Even in the simplest
case of Riviera model (which lives on a one-dimensional lattice), the exact solution
is not known, and it is not clear whether it is even possible to derive one. One-
dimensional RSA, and similar models, usually enjoy a peculiar property that is
commonly referred to as the shielding property. The deposition of any elementary
object splits the line into two half-lines which evolve independently from each other.
This ensures the exact solvability of this class of models, by means of a common
analytical approach based on tracking empty intervals (see [18, §7]). Clearly, the
original Flory model has the shielding property. The Riviera model, on the other
hand, does not enjoy the shielding property. On the contrary, the rule that at least
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one of the two neighboring lots of each house should remain forever unbuilt couples
both neighboring sites of any occupied one. The ensuing lack of exact solvability
has observable consequences (see [16, §3]). The authors of [16] even write that this
model (in all likelihood) cannot be solved by analytical means. In the case of the
two-row ladder, the situation is even more involved, so we only provide Monte Carlo
estimation of the jamming limit. The value is approximately ρSettlement

∞ ≈ 1.54064,
and comparing this value with ρSettlement

⋆ ≈ 1.4374959, which is the argument of the
maximum of the complexity function from Theorem 1 (see Figure 8) again shows
the violation of Edwards hypothesis.

4 Conclusions
In this paper we use the novel approach developed in [17] to compute the complexity
function (configurational entropy) of two similar, but essentially different, models on
a two-row ladder graph. One of them is the famous Flory model, and the other one
is the combinatorial settlement model introduced in [25]. Using the obtained con-
figurational entropies, we compare the dynamic and static versions of these models
and conclude weak violation of Edwards hypothesis.
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