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Abstract
A graph is locally irregular if the degrees of the end-vertices of every edge
are distinct. An edge coloring of a graph G is locally irregular if every color
induces a locally irregular subgraph of G. A colorable graph G is any graph
which admits a locally irregular edge coloring. The locally irregular chromatic
index χ′

irr(G) of a colorable graph G is the smallest number of colors required
by a locally irregular edge coloring of G. The Local Irregularity Conjecture
claims that all colorable graphs require at most 3 colors for a locally irregular
edge coloring.
In this extended abstract, we summarize our results on the mentioned conjec-
ture for the class of cactus graphs. First, we established that the conjecture
holds for unicyclic graphs and cacti with vertex disjoint cycles. Then we ob-
served that there exists a cactus graph, the so called bow-tie graph B, which
is colorable and requires at least 4 colors for a locally irregular edge color-
ing [8]. As B is a cactus graph and all non-colorable graphs are also cacti,
the class of cactus graphs seems to be a relevant for the Local Irregularity
Conjecture. By further researching this class, we established that 4 colors are
the maximum number of colors required by a locally irregular edge coloring
of any colorable cactus graph [9]. Using the same approach, but with the
more elaborated argument, we established that the bow-tie graph B is the
only connected colorable cactus graph which requires 4 colors for a locally
irregular edge coloring [10]. Our last result indicates that B is possibly the
only connected graph with χ′

irr(B) = 4, and consequently it could be the only
graph which contradicts the present form of the Local Irregularity Conjecture.
Keywords: locally irregular edge coloring; Local Irregularity Conjecture; cac-
tus graphs.
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1 Introduction
For all graphs mentioned in this paper it is tacitly assumed they are simple, finite
and connected. A locally irregular graph is any graph in which the two end-vertices
of every edge have distinct degrees. A locally irregular k-edge coloring (also called
k-liec for short) is any k-edge coloring of G such that every color induces locally
irregular subgraph of G. We say that a graph G is colorable if it admits a locally
irregular edge coloring. For a colorable graph G, the smallest number k such that
G admits a k-liec is called the locally irregular chromatic index of G and denoted
by χ′

irr(G). Since isolated vertices of G do not influence the local irregularity of an
edge coloring, if such vertices arise in a graph by edge deletion we will ignore them.
We first need to establish which graphs are colorable. For that purpose, any graph
with edge disjoint cycles is called a cactus graph. We define a class T of cacti as
follows:

• the triangle K3 belongs to T,

• for every graph G in T, a graph H which is also from T is obtained as: let v
be a vertex of G of degree 2 from a triangle in G, and let w be a vertex of
degree one in a path of even length or in a graph consisting of a triangle and
an odd-length path pending on one vertex of the triangle, then identifying v
and w yields H.

Obviously, every graph G in T is a special kind of cactus graph in which every cycle
is a triangle, all triangles are vertex disjoint, and all vertices in G are of degree ≤ 3.
Also, every vertex of degree 3 belongs to a triangle, a pair of triangles is connected
by a path of odd length and there may be paths of even length pending at a vertex
of a triangle. It is known [1] that paths of odd length, cycles of odd length and
cactus graphs from T are the only non-colorable connected graphs. As for colorable
graphs, the following conjecture was proposed [1].

Conjecture 1 (Local Irregularity Conjecture). For every colorable connected graph
G, χ′

irr(G) ≤ 3.

Many partial results support this conjecture, the conjecture is true for trees [2],
graphs with vertex disjoint cycles [8], graphs in which the minimum degree is at
least 1010 [7], k-regular graphs for k ≥ 107 [1]. For general graphs, the first constant
upper bound on χ′

irr(G) that was found is 328 [4], and then it was decreased to
220 [6].

2 Preliminaries
Let us introduce some basic notions and notation related to colorings, which are
already introduced in literature, mainly in [2].
The number of a-colored edges incident to a vertex u is called the a-degree of u and
it is denoted by da

G(u). Similarly we have b-degree, c-degree, etc. The a-sequence of
a vertex u ∈ V (G) is defined as da

G(v1), . . . , da
G(vk) where v1, . . . , vk are all neighbors
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of u. We usually assume that neighbors vi of u are denoted so that the a-sequence
is non-increasing.
For a graph G and a subgraph G0 of G, a k-liec ϕ of G is said to be an extension of
k-liec ϕ0 of G0 if ϕ(e) = ϕ0(e) for every e ∈ E(G0).
Let G be a colorable graph which admits a k-liec for k ≥ 3. If G contains a leaf u,
then a graph G′ obtained from G by appending an even length path P at u also
admits a k-liec. An ear of a graph G is any subgraph P of G such that P is a
path and for any internal vertex u ∈ V (P ) it holds that dG(u) = 2. If G contains
an ear Pq = u0u1 . . . uq of length q ≥ 3, then at least one internal vertex ui of Pq is
bichromatic by a k-liec of G, so if G′ is obtained from G by replacing an ear Pq by
an ear Pq+2r of the length q + 2r, then G′ also admits a k-liec. In both situations
we say G is obtained by trimming G′.
Remark 1. Let G′ be a colorable graph which admits a k-liec for k ≥ 3. If G is
obtained by trimming G′, then G also admits a k-liec.
A graph G is totally trimmed if it does not contain a pending path of length ≥ 3
and an ear of length ≥ 5. Because of Observation 1, in the rest of the paper we will
tacitly assume every graph G is totally trimmed.
A shrub is any tree rooted at its leaf. An almost locally irregular k-edge coloring of
a shrub G, or k-aliec for short, is any k-liec of G or any edge coloring of G such that
only the edge incident to the root is locally regular. The following are useful results
for trees from [2].

Theorem 1. Every shrub admits a 2-aliec.

Theorem 2. Every colorable tree T satisfies χ′
irr(T ) ≤ 3. Moreover, if ∆(T ) ≥ 5,

then χ′
irr(T ) ≤ 2.

Let T be a tree with χ′
irr(T ) = 3 and ϕ a 3-liec of T. If there is precisely one vertex

u in T which is incident to edges of all three colors, and every shrub rooted at u
is colored by at most two colors, than ϕ is called a special coloring and u is called
the rainbow root of ϕ. The proof of Theorems 1 and 2 from [2] implies the following
observation.
Remark 2. Let T be a colorable tree with χ′

irr(T ) = 3. Every vertex of maximum
degree in T is a neighbor of another vertex of maximum degree in T. Let u be a
vertex of maximum degree in T, then there exists a special 3-liec of T for which u
is the rainbow root. Also, for any shrub Ti of T rooted at u, there exists a 3-liec of
T which uses color c only in Ti.

3 Our results
In this section we will present our results on unicyclic graphs and cacti from [8], [9]
and [10]. Since the Local Irregularity Conjecture holds for trees, we first investigated
unicyclic graphs given that they are obtained from trees by introducing a single edge.
In [8] the following result is established.

Theorem 3. Every colorable unicyclic graph G sattisfies χ′
irr(G) ≤ 3.
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A natural question that arises from this result is whether the bound χ′
irr(G) ≤ 3 is

tight, i.e. are there colorable unicyclic graphs which are not 2-colorable. The family
of cycles of length 4k + 2 are such graphs, but this family is not an isolated case,
there exist other unicyclic graphs which require three colors, for example the graph
from Figure 1. One can assure infinitely many such graphs for example by taking
longer threads of suitable parity in the given graph.

Figure 1: A colorable unicyclic graph distinct from cycle which requires 3 colors for
locally irregular edge coloring.

The approach for unicyclic graphs usually extends to cactus graphs, so we further
investigated that class of graphs. Let G be a cactus graph with at least two cycles,
let C be a cycle in G and let u be a vertex from C. We say that u is a root vertex
of C if the connected component of G − E(C) which contains u is a cyclic graph.
A cycle C of G is a proper end-cycle if G − V (C) contains at most one cyclic
connected component. Every cactus graph with vertex disjoint cycles contains at
least two proper end-cycles, given it is not a unicyclic graph. Focusing the attention
to a proper end-cycle of a cactus graph with vertex disjoint cycles, we obtained the
following result [8].

Theorem 4. Every colorable cactus graph G with vertex disjoint cycles satisfies
χ′

irr(G) ≤ 3.

The attempt to extend the approach to cacti in which cycles may share a vertex
yielded the so called bow-tie graph B, illustrated by Figure 2, and the following
result.

Figure 2: The bow-tie graph B and a locally irregular 4-edge coloring of it.

Proposition 1. For the bow-tie graph B, it holds that χ′
irr(B) = 4.
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Proof. The edge coloring of the graph B shown in Figure 2 is locally irregular and
it uses 4 colors, thus χ′

irr(G) ≤ 4. It remains to establish that B does not admit a
locally irregular coloring with less than 4 colors. Let u and v denote two vertices
of degree 5 in B. Let u1, . . . , u4 (resp. v1, . . . , v4) be the four vertices neighboring
u (resp. v) distinct from v (resp. u), so that u1 and u2 (resp. v1 and v2) belong
to a same triangle of B. Let ϕ be a locally irregular edge coloring of B which uses
less than 4 colors. Notice that ϕ(u1u2) must be equal to precisely one of ϕ(u1u)
and ϕ(u2u), we may assume ϕ(u1u2) = ϕ(u1u) ̸= ϕ(u2u). Similarly, we may assume
ϕ(u3u4) = ϕ(u3u) ̸= ϕ(u4u). Let us denote a = ϕ(uv).
If ϕ(u1u2) = ϕ(u3u4), then it must hold a = ϕ(u1u2) = ϕ(u3u4), otherwise ϕ would
not be locally irregular. Thus, the a-degree of u by ϕ equals 3.
If ϕ(u1u2) ̸= ϕ(u3u4), then it must hold ϕ(u2u) = ϕ(u4u), otherwise ϕ would use at
least 4 colors. Notice that ϕ(u1u2) = a or ϕ(u3u4) = a would imply ϕ is not a liec,
thus it must be a = ϕ(u2u) = ϕ(u4u), so again we obtain the a-degree of u by ϕ
equals 3.
The analogous analisys of the edges in the two triangles of B containing v yields
that a-degree of v also equals 3. Since uv is an edge in B colored by a and a-degree
of both u and v equals 3, this is a contradiction with ϕ being locally irregular.

The above result implies that B contradicts the Local Irregularity Conjecture. This
gives rise to the following questions: are 4 colors now enough for a liec of all colorable
graphs, and are there other graphs beside B which require 4 colors. Since the class
of cactus graphs yielded the first known counterexample, we attempted to answer
these two questions for that class.
To establish that all colorable cacti admit a 4-liec, we need the following definitions.
A grape G is any cactus graph with at least one cycle in which all cycles share a
vertex u, and the vertex u is called the root of G. A berry Gi of a grape G is any
subgraph of G induced by V (G′

i)∪{u}, where u is the root of G and G′
i a connected

component of G−u. Notice that a berry Gi can be either a unicyclic graph in which
u is of degree 2 or a tree in which u is a leaf, so such berries will be called unicyclic
berries and acyclic berries, respectively. A unicyclic berry Gi is said to be triangular
if its cycle is the triangle.
An end-grape Gu of a cactus graph G is any subgraph of G such that:

• Gu is a grape rooted at u where u is the only vertex of Gu incident to edges
from G − E(Gu), and

• u is incident to either one edge from G − E(Gu) or two such edges which then
must belong to a same cycle of G − E(Gu), and such edges are called the exit
edges of Gu.

This notion is illustrated by Figure 3. Also, for an end-grape Gu rooted at u, the
graph G0 = G−E(Gu) will be called the root component of Gu. In [9], we established
the following theorem.

Theorem 5. Every colorable cactus graph G satisfies χ′
irr(G) ≤ 4.
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Figure 3: A cactus graph G with five cycles which contains two end-grapes, Gu1

and Gu8 . The end-grape Gu1 has two unicyclic berries and one exit edge u1u2. The
end-grape Gu8 consists of one unicyclic and one acyclic berry and it has two exit
edges u8u7 and u8u9. Notice that the cycle C3 is not an end-grape of G since it has
two exit edges u4u3 and u4u5 and they do not belong to the same cycle.

The result of Theorem 5 is obtained by induction on the number of cycles in G, using
Theorem 3 as the basis of the induction. This approach enables one to assume that
the root component G0 of an end-grape Gu is already colored by a locally irregular
edge coloring and then one has to extend such a coloring to the end-grape Gu by
using at most 4 colors in all. This is done by removing precisely one edge incident
to the root vertex u from every unicyclic berry of Gu, denote such set by Eu. Notice
that Gu − Eu becomes a tree and thus admits a 3-liec in colors a, b and c, the edges
of Eu can then be colored by the fourth color d. The problem with local irregularity
can thus arise only on edges incident to u in G. This is avoided by carefuly chosing
the coloring of the tree T = Gu − Eu using Observation 2.
This result can be further extended to a claim that every colorable cactus graph
distinct from B requires at most three colors for the locally irregular edge coloring.
Our argument of this claim is lengthy but uses the same approach as Theorem 5.
The main difference is that in proving Theorem 5, no special attention needs to be
given to the a- and b-degrees of the neighbors of u in T since there is fourth color d
to use it for at least one of the two edges incident to u in G0. When the fourth color
must not be used, then a great care has to be taken of these a- and b-degrees in T
because the same colors must be used for both edges incident to u in G0. So, one
has to avoid colors a and b for edges incident to u in Gu to spare them for G0. That
is not always possible, so special berries and alternative colorings for them need to
be introduced, which is done in [10].

Primary coloring. A berry coloring by which all edges are incident to u have a
same color, say c, is a desirable coloring since it is very convenient when gathering
berries in a grape. For that purpose, it is also desirable that the c-degree of the
neighbors of u is ≤ 2.

Definition 1. Let G be a graph rooted at a vertex u with dG(u) ∈ {1, 2}. Let v be
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a neighbor of u and w the other neighbor of u if dG(u) = 2. A standard primary
coloring of G is any 3-edge coloring ϕa,b,c of G with the following properties:

• every edge non-incident to u is locally irregular by ϕa,b,c;

• u is monochromatic by ϕa,b,c, say ϕa,b,c(u) = {c};

• dc(v) ≤ 2 and dc(w) ≤ 2.

It would be convenient to use a standard primary coloring for all berries, but berries
B1, . . . , B7 from Figure 4 (dashed edges are not included in a berry) do not admit
such a coloring, so these berries are called alternative berries. For such berries, we
introduce an alternative primary coloring as follows.

B1 B2 B3

B4 B5

B6 B7

Figure 4: Alternative berries B1, . . . , B7 rooted at u. Dashed edges are not included
in the berry.

Definition 2. Let G be a graph rooted at a vertex u with dG(u) ∈ {1, 2}. Let v be a
neighbor of u and w the other neighbor of u if dG(u) = 2.

• If dG(u) = 1, an alternative primary coloring of G is any 3-liec ϕa,b,c of G
such that v is monochromatic by ϕa,b,c, say ϕa,b,c(v) = {c}.

• If dG(u) = 2, an alternative primary coloring of G is any 3-edge coloring ϕa,b,c

of G with the following properties:

– every edge e ̸= uv is locally irregular by ϕa,b,c;
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– u is bichromatic by ϕa,b,c, say ϕa,b,c(uv) = c and ϕa,b,c(uw) = a;
– dc(v) ≤ 2 and da(w) ∈ {2, 4};
– if dc(v) = 2 then da(w) = 4.

Alternative primary coloring of alternative berries is illustrated by Figure 4, all other
berries admit a standard primary coloring [10]. In the sequel we will say shortly
’primary coloring’, assuming standard primary coloring for standard berries and
alternative primary coloring for alternative berries.

Secondary and tertiary coloring. So far we have one kind of coloring for every
berry - a primary coloring. When we gather berries in an end-grape, if the problem
with local irregularity arises for edges incident to the root u, it is convenient to
have another kind of coloring for every berry, so that the change of coloring for
some berries changes the color degrees of u and its neighbors. For standard berries,
another kind of coloring is a so called secondary coloring, and for alternative berries
it is tertiary coloring.

Definition 3. Let G ̸= B7 be a graph rooted at a vertex u with dG(u) ∈ {1, 2}. Let
v be a neighbor of u and w the other neighbor of u if dG(u) = 2.

• If dG(u) = 1, a secondary coloring of G is any 3-edge coloring ϕa,b,c of G such
that all edges not incident to u are locally irregular and dc(v) ̸= 2 where c is
the color of uv by ϕa,b,c.

• If dG(u) = 2, a secondary coloring of G is any 3-edge coloring ϕa,b,c of G with
the following properties:

– every edge e ̸= uv is locally irregular by ϕa,b,c;
– u is bichromatic by ϕa,b,c, say ϕa,b,c(uv) = c and ϕa,b,c(uw) = a;
– dc(v) ≤ 2;
– if dc(v) = 2 then da(w) ≥ 3.

We exclude B7 from the above definition, since we always want an alternative pri-
mary coloring of it.

Definition 4. Let G be a graph rooted at a vertex u with dG(u) = 2. Let v and w
be the neighbors of u. A tertiary coloring of G is any 3-edge coloring ϕa,b,c of G with
the following properties:

• every edge e ̸= uv is locally irregular by ϕa,b,c;

• u is monochromatic by ϕa,b,c, say ϕa,b,c(u) = {c};

• dc(v) ≤ 2 and dc(w) ∈ {3, 4}.
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B2 B3

B4 B5

B6

Figure 5: A tertiary coloring of berries B2, . . . , B6 and its closures.

A tertiary coloring of B2, . . . , B6 is shown in Figure 5 (without dashed lines). Notice
that B1 is the only berry which admits only one coloring.

Even with all these kinds of colorings, it turns out that the coloring of the root
component G0 cannot be extended to all possible end-grapes. To be more precise,
there are six end-grapes to which it is not always possible to extend a coloring of
G0, we denote them by A1, . . . , A6 and they are shown in Figure 6. For all other
end-grapes, the following proposition [10] holds (here G′

0 denotes a graph obtained
from G0 by adding a leaf neighbor to u).

Proposition 2. Let G be a cactus graph with c ≥ 2 cycles which is not a grape and
which does not contain end-grapes A1, . . . , A6. For an end-grape Gu of G with a root
component G0, there exists a colorable graph G̃0 ∈ {G0, G′

0} such that every k-liec of
G̃0, for k ≥ 3, can be extended to k-liec of G in which every berry of Gu is colored
by a primary, secondary or tertiary coloring.

If a cactus graph G contains only end-grapes A1, . . . , A6, then by deleting an edge
in every triangle of such end-grapes one can obtain a tree, a unicyclic graph or
a cactus graph Gop which contains an end-grape distinct from A1, . . . , A6. A tree
and a unicyclic graph admit a 3-liec, and for Gop the induction hypothesis and
Proposition 2 assure the existance of a 3-liec in which every berry is colored by a
primary, secondary od tertiary coloring. Thus, it only remains to establish that a
3-liec of Gop can be extended to a 3-liec of G, i.e. to the removed edges of triangles
in end-grapes of G. Since every berry of Gop is colored by a primary, secondary
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A1 A2

A3 A4

A5 A6

Figure 6: The singular end-grapes A1, . . . , A6.

or tertiary coloring, the question reduces to whether such berry colorings can be
extended to the removed edges of G. The extension of alternative primary and
tertiary coloring is shown in Figures 4 and 5, and the existence of the extension
for a standard primary and a secondary coloring of standard berries is established
in [10]. This finally yields the following result [10].

Theorem 6. Let G ̸= B be a colorable cactus graph. Then χ′
irr(G) ≤ 3.

Our investigation of the Local Irregularity Conjecture makes us believe that B is
the only graph with χ′

irr(G) ≥ 4, so the following conjecture is proposed in [10].

Conjecture 2. The bow-tie graph B is the only colorable connected graph with
χ′

irr(B) > 3.

Acknowledgments
Both authors acknowledge partial support of the Slovenian research agency ARRS
program P1-0383 and ARRS project J1-1692. The first author also the support
of Project KK.01.1.1.02.0027, a project co-financed by the Croatian Government

120



Extended abstract on Local Irregularity Conjecture and cactus graphs

and the European Union through the European Regional Development Fund - the
Competitiveness and Cohesion Operational Programme.

References
[1] O. Baudon, J. Bensmail, J. Przybyło, M. Woźniak, On decomposing regular graphs

into locally irregular subgraphs, Eur. J. Combin. 49 (2015) 90–104.

[2] O. Baudon, J. Bensmail, É. Sopena, On the complexity of determining the irregular
chromatic index of a graph, J. Discret. Algorithms 30 (2015) 113–127.

[3] J. Bensmail, F. Dross, N. Nisse, Decomposing degenerate graphs into locally irregular
subgraphs, Graphs Combin. 36 (2020) 1869–1889.

[4] J. Bensmail, M. Merker, C. Thomassen, Decomposing graphs into a constant number
of locally irregular subgraphs, Eur. J. Combin. 60 (2017) 124–134.

[5] H. Lei, X. Lian, Y. Shi, R. Zhao, Graph classes with locally irregular chromatic index
at most 4, J. Optim. Theory Appl. 195 (2022) 903–918.

[6] B. Lužar, J. Przybyło, R. Soták, New bounds for locally irregular chromatic index of
bipartite and subcubic graphs, J. Comb. Optim. 36 (2018) 1425–1438.

[7] J. Przybyło, On decomposing graphs of large minimum degree into locally irregular
subgraphs, Electron. J. Combin. 23 (2016) 2–31.

[8] J. Sedlar, R. Škrekovski, Remarks on the Local Irregularity Conjecture, Mathematics
9(24) (2021) 3209.

[9] J. Sedlar, R. Škrekovski, A note on the locally irregular edge colorings of cacti, Discrete
Math. Lett. 11 (2023) 1–6.

[10] J. Sedlar, R. Škrekovski, Local Irregularity Conjecture vs. cacti, arXiv:2207.03941
[math.CO].

121


	 Jelena Sedlar, Riste Škrekovski  Extended abstract on Local Irregularity Conjecture and cactus graphs

