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On circumradius equations of cyclic polygons

Dragutin Svrtan

Abstract
Finding formulas for the area or circumradius of polygons inscribed in a circle
in terms of side lengths is a classical subject. For the area of a triangle we
have the famous Heron’s formula and for cyclic quadrilaterals we have the
Brahmagupta’s formula. A three decades ago D. P. Robbins found the min-
imal equations of degree 7 satisfied by the squared area of cyclic pentagons
and hexagons by a method of undetermined coefficients and he wrote the re-
sult in a nice compact form. For the circumradius of cyclic pentagons and
hexagons he did not publish the formulas because he was not able to put
them into a compact form (in this paper we describe our compact form also
for a heptagon and octagon). The Robbins approach could hardly be used
for heptagons due to computational complexity of the approach (leading to a
system with 143307 equations). In another approach with two collaborators a
concise heptagon/octagon area formula was obtained in 2004. (not long after
D. P. Robbins premature death) in the form of a quotient of two resultants
(the quotient still hard to be written explicitly because it would have about
one million terms–this approach uses covariants of binary quintics). It is not
clear if this approach could be effectively used for cyclic polygons with nine
or more sides. A nice survey on this and other Robbins conjectures is written
by I. Pak. In this paper we shall explain a simple quadratic system, which
seems to be new, for the circumradius and area of arbitrary cyclic polygons
based on a Wiener-Hopf factorization of our new Laurent polynomial invariant
of cyclic polygons. Explicit formulas, of degree 38, for the squared circumra-
dius (and less explicit for the squared area) of cyclic heptagons /octagons are
obtained. By solving our system in certain algebraic extensions we found a
compact form of our circumradius heptagon/octagon formulas with remark-
ably small coefficients. In 2005. we have presented an intrinsic proof of the
Robbins formulas for the area (and also for the circumradius and area times
circumradius) of cyclic hexagons based on an intricate direct elimination of
diagonals (the case of pentagon was treated in Ref. [7]) and using a new algo-
rithm from Ref. [11]. In the early stage we used computations with MAPLE
(which sometimes lasted several days!).

(Dragutin Svrtan) Faculty of Science, Department of Mathematics, Zagreb, Croatia,
dragutin.svrtan@gmail.com
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1 Introduction
Cyclic polygons are the polygons inscribed in a circle. In terms of their side
lengths a1, a2, . . . , an, their area S and circumradius r are given in case of trian-
gles and quadrilaterals explicitly by the following well known formulas: the Heron’s
formula ( 60 B.C.) for the area and the circumradius r of triangles (by letting
A = (4S)2, ρ = 1/r2) :

A − (a + b + c)(a + b − c)(a − b + c)(−a + b + c) = 0,
a2b2c2ρ − (a + b + c)(a + b − c)(a − b + c)(−a + b + c) = 0 (1)

and the Brahmagupta’s formula, (7 th c. A.D.) for the area and the circumradius
of convex (ε = 1) and nonconvex (ε = −1) quadrilaterals:

Aε − (a + b + c − εd)(a + b − c + εd)(a − b + c + εd)(−a + b + c + εd) = 0, (2)

(ab + εcd)(ac + εbd)(bc + εad)ρε−
(a + b + c − εd)(a + b − c + εd)(a − b + c + εd)(−a + b + c + εd) = 0.

(3)

(Note that for ε = 0 (or d = 0) Brahmagupta’s formula transforms into Heron’s
formula.) In a masterfully written (in german language) thirty pages long paper (and
published in 1828 in Crelle’s Journal) A. F. Möbius studied some properties of the
polynomial equations for the circumradius of arbitrary cyclic polygons (convex and
nonconvex) and produced a polynomial of degree δn = n

2

(
n−1

⌊(n−1)/2⌋

)
−2n−2 that relates

the square of a circumradius (r2) of a cyclic polygon to the squared side lengths.
He also showed that the squared area rationally depends on r2, a1, a2, . . . , an. His
approach is based, by a clever use of trigonometry, on the rationalization (in terms
of the squared sines ) of the sine of a sum of n angles (peripheral angles of a cyclic
polygon ). In this way one obtains a polynomial relating the circumradius to the side
lengths squared. These polynomials, known also as generalized Heron r-polynomials,
are a kind of generalized (symmetric) multivariable Chebyshev polynomials and are
quite difficult to be computed explicitly. Möbius obtained nice form for the leading
and constant terms for pentagons and hexagons, but no complete answer even for
pentagons. By an argument involving series expansions (cf. [8]) he proved that
the r2-degree for cyclic n-polygon is equal to δn. In the final part of the paper he
obtained for the squared area a rational function in r2, a1, a2, . . . , an involving partial
derivatives, with respect to side length variables, of all the coefficients of the Heron
r-polynomial. So, in principle, one could get from this formula the area polynomial
by using Viete formulas together with a heavy use of symmetric functions.
About thirty years ago David Robbins ( [3, 4]) obtained, for the first time, concise
explicit formulas for the areas of cyclic pentagons and hexagons (he mentioned that
he computed also the circumradius polynomials for cyclic pentagons and hexagons
but was not able to put either formula into a sensible compact form). In [3] two
general conjectures (Conjecture1 and Conjecture2), naturally extending nice Möbius
product formulas for the leading and constant terms for pentagons and hexagons
are given. We shall give a verification of these conjectures up to n = 8.
One of the Additional Conjectures of Robbins, stating that the degree of the minimal
A-polynomial equation for cyclic n-polygons αn (16S2, a2

1, . . . , a2
n) = 0, (i.e. of the
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generalized Heron A− polynomial), is equal to δn was established in [FP] first (by
relating it to the Sabitov theory of volume polynomials of polyhedra, see nice survey
article by Pak ) and later in [8] (obtained by reviving the argument of Möbius and
reproving the Robbins lower bound on the degrees of minimal polynomials, c.f. [17]).
In Robbins work a method of undetermined coefficients is used for pentagons (70
unknowns) and hexagons (134 unknowns). This method seems to be inadequate for
heptagons because one would need to handle a linear system with 143307 undeter-
mined coefficients. By using a clever substitution (Robbins ti ’s) he was able to
write the pentagon and hexagon area equations in a compact form. He wrote his
formulas also as a discriminant of some (still mysterious) qubic. Along these lines
in [8] it is found that for (2m + 1)-gon or (2m + 2)− gon, the generalized Heron
A-polynomial is the defining polynomial of a certain variety of binary (2m−1)-forms
with m−1 double roots (in some sense it demystify Robbins cubic but its role is still
mysterious). In [8] a formula for the area polynomial for heptagons and octagons is
found in the form of a quotient of two resultants, one of which could be expanded
explicitly so far. This exiting result was finished by two of the Robbins collaborators
just few months later after Robbins passed away.
Another approach, which uses elimination of diagonals in cyclic polygons, is treated
at length in [5] where among numerous results one also finds an explicit derivation
of the Robbins area polynomial for pentagons by using some general properties,
developed in that paper, together with a little use of one undetermined coefficient.
Independently in [7], where an almost forgotten elegant Gauss quadratic pentagon
area equation is revived, the Robbins pentagon area formula was obtained with a
simpler system of equations by a direct elimination (and MAPLE of course) with
no assistance of undetermined coefficient method. In [7] also the circumradius and
the area times circumradius formulas for pentagons, in terms of symmetric func-
tions of the side lengths squared, are explicitly computed. The diagonal elimination
approach seems to be better suited for circumradius computations than for the area
computations. By introducing diagonals into play the original side length variables
are separated into groups (symmetry breaking) and, after eliminating diagonals, one
needs to use immense computations with symmetric functions to regain the symme-
try. In [11,18] we have designed an algorithm, which generalizes the basic algorithm
for writing symmetric functions in terms of the elementary symmetric functions,
which does not expresses everything in terms of the original variables. Instead it
goes only down to the level of symmetric functions of the partial alphabets and leads
to global symmetric function expansion. This enabled us to get r-polynomials for
hexagons (and hopefully more in the future).
In this paper we illustrate yet another approach to the Robbins problem, especially
well suited for obtaining Heron r-polynomials. We have discovered that Robbins
problem is somehow related to a Wiener-Hopf factorization. We first associate a
Laurent polynomial LP to a cyclic polygon P, which is invariant under similarity of
cyclic polygons ( it is a kind of "conformal invariant"). Then there exists a (Wiener-
Hopf ) factorization of LP into a product of two polynomials, γ+(1/z) and γ−(z), ( in
our case it will be γ− = γ+ =: γ ) providing a complex realization of P is given. The
factorization (i.e. γ(z)) is then given in terms of the elementary symmetric functions
ek of the vertex quotients, if we regard vertices of (a realization of) P as complex
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numbers of equal moduli (= r). For (ek)’s, viewed as the unknowns, we then obtain
a system of n quadratic equations, arising from our Wiener-Hopf factorization, with
n − 1 unknowns (note that en is necessarily equal to 1 as a product of all the vertex
quotients (we call this a "cocycle property" or simply "cocyclicity")). The consistency
condition (obtained by eliminating all ek, k = 1..n − 1 ) for our "overdetermined"
system will then give a relation between the coefficients of our conformal invariant
LP , which in turn will be nothing but the equation relating the inverse square radius
of P with the elementary symmetric polynomials in the squares of the sides.
During of these investigations we found another type of substitutions by expressing
the coefficients of LP in terms of the inverse radius squared (ρ) and the elemen-
tary symmetric functions of side lengths squared. By using this substitutions, our
Heron ρ-polynomials get remarkably small coefficients. Further simplifications we
have obtained by doing computations in some quadratic algebraic extensions. In
such quadratic extensions we can simplify our original system (having all but one
equations quadratic) by replacing two quadratic equations by two linear ones). Also
the final result can be written in a more compact form ρn = A2

n − ∆nB2
n (a Pell

equation). Thus the number of terms is the final formula is roughly a square root
of the number of terms in the fully expanded formula. With such tricks we have
obtained so far, down to earth, explicit formulas for Heron ρ-polynomials, up to
n = 8.

2 Equations for cyclic polygons via Wiener-Hopf
factorization

Assume that a cyclic polygon P has its vertices on a circle centered at the origin in
the complex plane. Suppose that these vertices are in order v1, . . . , vn and that the
radius of the circle is r. Also let vn+1 = v1 and define the vertex quotients by

qj = vj+1

vj

. (4)

The geometric meaning of these vertex quotients are qj = cos φj + I sin φj = eIφj ,
where φj denotes the central angle ∢ (vjOvj+1) of P . Then we have the following
Cocycle identity:

n∏
j=1

qj = 1. (5)

The side lengths aj (= the distance from vj to vj+1) of P are given by

a2
j = |vj − vj+1|2 = (vj − vj+1) (vj − vj+1) = r2

(
2 − vj+1

vj

− vj

vj+1

)
= r2

(
2 −

(
qj + q−1

j

))
.

(6)

Now we associate to a cyclic polygon P , with side lengths a1, . . . , an, a Laurent
polynomial LP (z) defined by the following formula:
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LP (z) :=
n∏

j=1

(
z + z−1 + 2 − a2

jρ
)

∈ C
[
z, z−1

]
, (7)

where ρ = 1/r2 denotes the squared curvature of the circle circumscribed to P .
Note that this polynomial is a conformal invariant in the sense that if cyclic polygons
P1 and P2 are similar, then LP1(z) = LP2(z).
Basic notations:
Denote by ek the elementary symmetric functions of q1, . . . , qn (vertex variables):

1 + e1t + e2t
2 + · · · + entn =

n∏
j=1

(1 + qjt) (8)

and by εk the elementary symmetric functions of a2
1, . . . , a2

n (side lengths squared):

1 + ε1t + ε2t
2 + · · · + εntn =

n∏
j=1

(
1 + a2

j t
)

. (9)

Lemma 1. (Additive form of LP ). We have

LP (z) =
∑

−n≤k≤n

λkzk = λ0 +
n∑

k=0
λk

(
zk + z−k

)
, (10)

where

λ−k = λk =
n∑

i=k

(
2i

i − k

)
(−1)n−iεn−iρ

n−i (0 ≤ k ≤ n). (11)

(Note that λN = λ−n = 1.)

Proof. We compute

LP (z) =
n∏

j=1

(
z + z−1 + 2 − a2

jρ
)

=
n∏

j=1

(
(1 + z)2z−1 − a2

jρ
)

=
∑

0≤i≤n

(1 + z)2iz−ien−i

(
a2

1, . . . , a2
n

)
(−ρ)n−i

=
∑

0≤i≤n

 ∑
0≤j≤2i

(
2i

j

)
zi−jεn−i(−ρ)n−i


=

∑
0≤i≤n

(
2i

i

)
εn−i(−ρ)n−i +

∑
1≤k≤n

( ∑
k≤i≤n

(
2i

i−k

)
εn−i(−ρ)n−i

) (
zk + z−k

)
.

By equating the coefficients the result follows.

If we know the vertex coordinates v1, . . . , vn of P then in terms of the vertex quo-
tients qj = vj+1/vj we can factor its Laurent polynomial LP into a product of two
polynomials, one in z and the other in z−1.
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Lemma 2. (Multiplicative form of LP ) We have

LP (z) = γ
(
z−1

)
γ(z), (12)

where γ(z) is the following polynomial

γ(z) = 1 + e1z + e2z
2 + · · · + enzn (13)

with e1, . . . , en denoting the elementary symmetric functions of vertex quotients
q1, . . . , qn of the cyclic polygon P (note that en = q1 · · · qn = 1).

Proof. We apply the identity

z + z−1 + q + q−1 = q−1
(
1 + qz−1

)
(1 + qz) (14)

to each factor of the defining formula (7) of LP (z) and then use the cocycle identity
(7).

By combining both Lemma 1 and Lemma 2 we obtain the following
Theorem 1. The quantities e0 = 1, e1, e2, . . . , en−1, en = 1, associated to a cyclic
polygon P , defined by (8) satisfy the following quadratic system of equations:

k∑
j=0

ek−jen−j = ck, k = 1..n, (15)

or more explicitly:

e1 + en−1 = c1,

e2 + e1en−1 + en−2 = c2,

...
en−1 + en−2en−1 + · · · + e1e2 + e1 = cn−1,

1 + e2
1 + e2

2 + · · · + e2
n−1 + 1 = cn

(15’)

with ck = λn−k, where the lambda’s are defined by (11).

Proof. By comparing the coefficients of zn−1, zn−2, . . . , z, 1 in the factorization re-
sulting Lemma 1 and Lemma 2 which explicitly looks as:(

1 + e1

z
+ e2

z2 + · · · + en

zn

) (
1 + e1z + e2z

2 + · · · + enzn
)

=

cn + cn−1
(
z + z−1

)
+ cn−2

(
z2 + z−2

)
+ · · · + c0

(
zn + z−n

)
and using that e0 = en = 1.
Example 1. For n = 3 we get the following system:

e1 + e2 = c1

e2 + e1e2 + e1 = c2

e2
1 + e2

2 + 2 = c3

(Eq3)
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with

c1 =
3∑

i=2

(
2i

i − 2

)
(−1)3−iε3−iρ

3−i = −ε1ρ + 6,

c2 =
3∑

i=1

(
2i

i − 1

)
(−1)3−iε3−iρ

3−i = ε2ρ
2 − 4ε1ρ + 15,

c3 =
3∑

i=0

(
2i

i

)
(−1)3−iε3−iρ

3−i = −ε3ρ
3 + 2ε2ρ

2 − 6ε1ρ + 20.

(C3)

By eliminating e1, e2 from the (dependent!) system (Eq3) above we obtain

c2
1 + 2c1 − 2c2 + 2 − c3 = 0. (16)

By substituting for c1, c2, c3 from (C3) into (16) we obtain

ρ2
(
ε3ρ + ε2

1 − 4ε2
)

= 0.

Since ρ (= 1/r2) is nonzero we end up with the Heron formula (1) for inverse radius
squared:

ε3ρ + ε2
1 − 4ε2 = 0

written in terms of elementary symmetric functions ε1 = a2
1 + a2

2 + a2
3, ε2 = a2

1a
2
2 +

a2
2a

2
3 + a2

1a
2
3, ε2 = a2

1a
2
2a

2
3.

This example shows the main feature of our Wiener-Hopf type approach to Robbins
circumradius of cyclic polygons problem. We may hope that simply by eliminat-
ing e1, . . . , en−1 from the system (15) of Theorem 1 we would get an equation for
the circumradius of general cyclic polygons. But elimination from such a "simple"
quadratic system may be computationally very demanding even for a very powerful
computers today. Further notation: The special values for z = ±1 of the polynomial
γP (z) we denote by

Yn := γP (1) = 2 + e1 + e2 + · · · + en−1, (17)
Θn := γP (−1) = 1 + (−1)n − e1 + e2 + · · · + (−1)n−1en−1, (18)

∆n =
n∑

j=0
4n−j(−1)jεjρ

j.

Then, from the factorization LP (±1) = γP (±1)2 we immediately get

Y 2
n = 2 (c1 + c2 + · · · + cn−2 + cn−1 + 1) + cn = ∆n, (19)

Θ2
n = (−1)nεnρn. (20)

If we adjoin to our quadratic system, from Theorem 1, two linear equations, resulting
from (17) and (18):
Auxiliary equations:

e1 + e2 + · · · + en−1 = Yn − 2,

−e1 + e2 + · · · + (−1)n−1en−1 = Θn − 1 − (−1)n.
(21)
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For example for n = 3 the two auxiliary equations are:

e1 + e2 = Y3 − 2 with Y 2
3 = 2 (c1 + c2 + 1) + c3,

−e1 + e2 = Θ3 with Θ2
3 = −ε3ρ

3 (22)

and we obtain immediately

c1 + 2 − Y3 = 0. (23)

This gives us a new form of the classical Heron formula for the circumradius:

ρ3 = ρ−2 (A2
3 − ∆3B

2
3) = 0 (24)

where

A3 := c1 + 2, B3 = 1, and ∆3 = Y 2
3 = 2 (c1 + c2 + 1) + c3. (25)

This new derivation of the classical Heron formula explains some features of our
approach to Robbins problem. We are intending to write a final result in the form

ρn = ρ−2n−2 (A2
n − ∆nB2

n) = 0 , (26)

which is much shorter than if we would expand A2
n and B2

n. Without auxiliary
equations we would get the formula in the expanded form which may not be
explicitly computable on a computer at our disposal.

Cyclic quadrilaterals (n = 4)

Now by eliminating e1, e2, e3 from the basic system

Eq4 =
{
e1 + e3 − c1, e2 + e1e3 + e2 − c2, e3 + e2e3 + e1e2 + e1 − c3, e2

1 + e2
2 + e2

3 − c4
}

we obtain
c4

1 − 2c2
1c2 − c2

1c4 − c2
1 + 2c1c3 + c2

3 = 0 .

With only first auxiliary equations

e1 + e2 + e3 = Y4 − 2, Y 2
4 = 2 (c1 + c2 + c3 + 1) + c4

we get

ρ4 = ρ−4
(
A2

4 − ∆4B
2
4

)
= 0

where

A4 := c2
1 + c1 + c3, B4 = c1.
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Remark 1. If we substitute c1 = 8−ε1ρ, c2 = ε2ρ
2 −6ε1ρ+28, c3 = −ε3ρ

3 +4ε2ρ
2 −

15ε1ρ + 56, c4 = ε4ρ
4 − 2ε3ρ

3 + 6ε2ρ
2 − 20ε1ρ + 70, and ε4 = η2

4 we obtain

ρ4 =
(
ε3ρ + ε2

1 − 4ε2 + η4 (8 − ε1ρ)
) (

ε3ρ + ε2
1 − 4ε2 − η4 (8 − ε1ρ)

)
= ρ+

4 ρ−
4

where ρ+
4 corresponds to convex quadrilaterals and ρ−

4 to nonconvex quadrilaterals.
Note also the following property:

ρ4 = ρ2
3 − ε4 (8 − ε1ρ)2 .

Note that 8 − ε1ρ can be interpreted as −ρ2 (for a digon).

Cyclic pentagons (n = 5)

By eliminating e1, . . . , e4 from the basic system for cyclic pentagon we obtain a
polynomial in c1, . . . , c5 having 119 terms and coefficients between -20 and 32. By
substituting c5−k = ∑5

i=k

(
2i
i−k

)
(−1)5−iε5−iρ

5−i(0 ≤ k ≤ 4) we obtain a ρ8 times a
polynomial of degree 7 in ρ having 81 terms and coefficients between -16384 and
8192.
By using auxiliary equations we obtain a much shorter expression (with coefficients
±1, ±2, ±3, ±4 )

ρ5 = ρ−8
(
A2

5 − B2
5∆5

)
where

A5 =c4
1 + (−3c2 + 2c3 + c4 − 3) c2

1 + (−2c2 − 4c4 + 2) c1+
+ 2c2

2 + (−2c3 − 2c4 + 4) c2 + c2
3 + 2c3 − 2c4 + (c2 + 3) c5 + 2,

B5 = − c3
1 + 2c2

1 + (2c2 − c3) c1 − 2c2 + 2c4 − c5 − 2,

∆5 =Y 2
5 = 2 (c1 + c2 + c3 + c4 + 1) + c5.

ρelem
5 =

ρ14ϵ53+(−2 ϵ1ϵ3ϵ52+ϵ22ϵ52−4 ϵ4ϵ52)ρ12+(2 ϵ13ϵ52−2 ϵ12ϵ2ϵ4ϵ5+ϵ12ϵ32ϵ5−8 ϵ1ϵ2ϵ52+8 ϵ1ϵ3ϵ4ϵ5−2 ϵ2ϵ32ϵ5+32 ϵ3ϵ52)ρ10+

+(−2 ϵ14ϵ3ϵ5+ϵ14ϵ42+8 ϵ13ϵ4ϵ5+4 ϵ12ϵ2ϵ3ϵ5−2 ϵ12ϵ32ϵ4−16 ϵ12ϵ52−32 ϵ1ϵ32ϵ5+16 ϵ22ϵ3ϵ5+ϵ34−32 ϵ2ϵ52−64 ϵ3ϵ4ϵ5)ρ8+

+(ϵ16ϵ5+6 ϵ14ϵ2ϵ5−4 ϵ14ϵ3ϵ4+32 ϵ13ϵ3ϵ5−32 ϵ13ϵ42−32 ϵ12ϵ22ϵ5+16 ϵ12ϵ2ϵ3ϵ4+4 ϵ12ϵ33−32 ϵ12ϵ4ϵ5+32 ϵ1ϵ32ϵ4−32 ϵ23ϵ5−

−16 ϵ2ϵ33+256 ϵ1ϵ52+128 ϵ2ϵ4ϵ5+224 ϵ32ϵ5)ρ6+(−2 ϵ16ϵ4−64 ϵ15ϵ5+16 ϵ14ϵ2ϵ4+6 ϵ14ϵ32+128 ϵ13ϵ2ϵ5+64 ϵ13ϵ3ϵ4−32 ϵ12ϵ22ϵ4−

−48 ϵ12ϵ2ϵ32−576 ϵ12ϵ3ϵ5+384 ϵ12ϵ42+512 ϵ1ϵ22ϵ5−256 ϵ1ϵ2ϵ3ϵ4+96 ϵ22ϵ32−512 ϵ1ϵ4ϵ5−768 ϵ2ϵ3ϵ5−128 ϵ32ϵ4−768 ϵ52)ρ4+

+(4 ϵ16ϵ3+32 ϵ15ϵ4−48 ϵ14ϵ2ϵ3+736 ϵ14ϵ5−256 ϵ13ϵ2ϵ4+192 ϵ12ϵ22ϵ3−2816 ϵ12ϵ2ϵ5−256 ϵ12ϵ3ϵ4+512 ϵ1ϵ22ϵ4−256 ϵ23ϵ3+

+6144 ϵ1ϵ3ϵ5−2048 ϵ1ϵ42−512 ϵ22ϵ5+1024 ϵ2ϵ3ϵ4+2048 ϵ4ϵ5)ρ2+ϵ18−16 ϵ16ϵ2+96 ϵ14ϵ22−128 ϵ14ϵ4−256 ϵ12ϵ23−2048 ϵ13ϵ5+

+1024 ϵ12ϵ2ϵ4+256 ϵ24+8192 ϵ1ϵ2ϵ5−2048 ϵ22ϵ4−16384 ϵ3ϵ5+4096 ϵ42

Cyclic heptagons (n = 7)

In this case we have ρ7 = ρ−64 (A2
7 − ∆7B

2
7) (where here we have ρ = r−1), ∆7 =

2 (c1 + c2 + · · · + c5 + c6 + 1) + c7.
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In conclusion, we can interpret the quantity Q7 := (A7h)2 − ∆7 · (B7h)2 as a
kind of minimal condensed polynomial relation (among c1, . . . , c7), Q7 = 0. It
has only up to four-digit coefficients (between -1614 and 2180). Our formula for
ρel

7 , having 199695 monomial terms (with up to 22-digit coefficients), is expectedly
large (as a 2200 pages book!). From this formula one can get other expressions by
simple substitution (e.g., by side lengths - what might be unreasonable, instead one
might rewrite it in monomial or Schur basis of symmetric functions, etc.). Similar
explicit circumradius formulas we have obtained for cyclic octagons already in 2004
(see [9, 11, 14, 18]) (for partial results see [22]), but for heptagon area equation we
need to compute resultant of two polynomials of degree 11 and 12- not yet achievable
on our computer at hand.
Future research: One may expect, with more powerful computer system, to obtain
circumradius equation for cyclic nonagon (cyclic 9-gon) which has degree 187 in
circumradius squared.
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