

Proceedings of the $4^{\text {th }}$ Croatian Combinatorial Days CroCoDays 2022
September 22 - 23, 2022

On circumradius equations of cyclic polygons

Dragutin Svrtan

Abstract

Finding formulas for the area or circumradius of polygons inscribed in a circle in terms of side lengths is a classical subject. For the area of a triangle we have the famous Heron's formula and for cyclic quadrilaterals we have the Brahmagupta's formula. A three decades ago D. P. Robbins found the minimal equations of degree 7 satisfied by the squared area of cyclic pentagons and hexagons by a method of undetermined coefficients and he wrote the result in a nice compact form. For the circumradius of cyclic pentagons and hexagons he did not publish the formulas because he was not able to put them into a compact form (in this paper we describe our compact form also for a heptagon and octagon). The Robbins approach could hardly be used for heptagons due to computational complexity of the approach (leading to a system with 143307 equations). In another approach with two collaborators a concise heptagon/octagon area formula was obtained in 2004. (not long after D. P. Robbins premature death) in the form of a quotient of two resultants (the quotient still hard to be written explicitly because it would have about one million terms-this approach uses covariants of binary quintics). It is not clear if this approach could be effectively used for cyclic polygons with nine or more sides. A nice survey on this and other Robbins conjectures is written by I. Pak. In this paper we shall explain a simple quadratic system, which seems to be new, for the circumradius and area of arbitrary cyclic polygons based on a Wiener-Hopf factorization of our new Laurent polynomial invariant of cyclic polygons. Explicit formulas, of degree 38, for the squared circumradius (and less explicit for the squared area) of cyclic heptagons /octagons are obtained. By solving our system in certain algebraic extensions we found a compact form of our circumradius heptagon/octagon formulas with remarkably small coefficients. In 2005. we have presented an intrinsic proof of the Robbins formulas for the area (and also for the circumradius and area times circumradius) of cyclic hexagons based on an intricate direct elimination of diagonals (the case of pentagon was treated in Ref. [7]) and using a new algorithm from Ref. [11]. In the early stage we used computations with MAPLE (which sometimes lasted several days!).

[^0]
1 Introduction

Cyclic polygons are the polygons inscribed in a circle. In terms of their side lengths $a_{1}, a_{2}, \ldots, a_{n}$, their area S and circumradius r are given in case of triangles and quadrilaterals explicitly by the following well known formulas: the Heron's formula (60 B.C.) for the area and the circumradius r of triangles (by letting $\left.A=(4 S)^{2}, \rho=1 / r^{2}\right):$

$$
\begin{align*}
& A-(a+b+c)(a+b-c)(a-b+c)(-a+b+c)=0 \\
& a^{2} b^{2} c^{2} \rho-(a+b+c)(a+b-c)(a-b+c)(-a+b+c)=0 \tag{1}
\end{align*}
$$

and the Brahmagupta's formula, (7 th c. A.D.) for the area and the circumradius of convex $(\varepsilon=1)$ and nonconvex $(\varepsilon=-1)$ quadrilaterals:

$$
\begin{align*}
A_{\varepsilon}- & (a+b+c-\varepsilon d)(a+b-c+\varepsilon d)(a-b+c+\varepsilon d)(-a+b+c+\varepsilon d)=0, \tag{2}\\
& (a b+\varepsilon c d)(a c+\varepsilon b d)(b c+\varepsilon a d) \rho_{\varepsilon}- \\
& (a+b+c-\varepsilon d)(a+b-c+\varepsilon d)(a-b+c+\varepsilon d)(-a+b+c+\varepsilon d)=0 . \tag{3}
\end{align*}
$$

(Note that for $\varepsilon=0$ (or $d=0$) Brahmagupta's formula transforms into Heron's formula.) In a masterfully written (in german language) thirty pages long paper (and published in 1828 in Crelle's Journal) A. F. Möbius studied some properties of the polynomial equations for the circumradius of arbitrary cyclic polygons (convex and nonconvex) and produced a polynomial of degree $\delta_{n}=\frac{n}{2}\binom{n-1}{\llcorner(n-1) / 2\rfloor}-2^{n-2}$ that relates the square of a circumradius $\left(r^{2}\right)$ of a cyclic polygon to the squared side lengths. He also showed that the squared area rationally depends on $r^{2}, a_{1}, a_{2}, \ldots, a_{n}$. His approach is based, by a clever use of trigonometry, on the rationalization (in terms of the squared sines) of the sine of a sum of n angles (peripheral angles of a cyclic polygon). In this way one obtains a polynomial relating the circumradius to the side lengths squared. These polynomials, known also as generalized Heron r-polynomials, are a kind of generalized (symmetric) multivariable Chebyshev polynomials and are quite difficult to be computed explicitly. Möbius obtained nice form for the leading and constant terms for pentagons and hexagons, but no complete answer even for pentagons. By an argument involving series expansions (cf. [8]) he proved that the r^{2}-degree for cyclic n-polygon is equal to δ_{n}. In the final part of the paper he obtained for the squared area a rational function in $r^{2}, a_{1}, a_{2}, \ldots, a_{n}$ involving partial derivatives, with respect to side length variables, of all the coefficients of the Heron r-polynomial. So, in principle, one could get from this formula the area polynomial by using Viete formulas together with a heavy use of symmetric functions.
About thirty years ago David Robbins ($[3,4]$) obtained, for the first time, concise explicit formulas for the areas of cyclic pentagons and hexagons (he mentioned that he computed also the circumradius polynomials for cyclic pentagons and hexagons but was not able to put either formula into a sensible compact form). In [3] two general conjectures (Conjecture1 and Conjecture2), naturally extending nice Möbius product formulas for the leading and constant terms for pentagons and hexagons are given. We shall give a verification of these conjectures up to $n=8$.
One of the Additional Conjectures of Robbins, stating that the degree of the minimal A-polynomial equation for cyclic n-polygons $\alpha_{n}\left(16 S^{2}, a_{1}^{2}, \ldots, a_{n}^{2}\right)=0$, (i.e. of the
generalized Heron A - polynomial), is equal to δ_{n} was established in [FP] first (by relating it to the Sabitov theory of volume polynomials of polyhedra, see nice survey article by Pak) and later in [8] (obtained by reviving the argument of Möbius and reproving the Robbins lower bound on the degrees of minimal polynomials, c.f. [17]). In Robbins work a method of undetermined coefficients is used for pentagons (70 unknowns) and hexagons (134 unknowns). This method seems to be inadequate for heptagons because one would need to handle a linear system with 143307 undetermined coefficients. By using a clever substitution (Robbins t_{i} 's) he was able to write the pentagon and hexagon area equations in a compact form. He wrote his formulas also as a discriminant of some (still mysterious) qubic. Along these lines in [8] it is found that for $(2 m+1)$-gon or $(2 m+2)-$ gon, the generalized Heron A-polynomial is the defining polynomial of a certain variety of binary ($2 m-1$)-forms with $m-1$ double roots (in some sense it demystify Robbins cubic but its role is still mysterious). In [8] a formula for the area polynomial for heptagons and octagons is found in the form of a quotient of two resultants, one of which could be expanded explicitly so far. This exiting result was finished by two of the Robbins collaborators just few months later after Robbins passed away.
Another approach, which uses elimination of diagonals in cyclic polygons, is treated at length in [5] where among numerous results one also finds an explicit derivation of the Robbins area polynomial for pentagons by using some general properties, developed in that paper, together with a little use of one undetermined coefficient. Independently in [7], where an almost forgotten elegant Gauss quadratic pentagon area equation is revived, the Robbins pentagon area formula was obtained with a simpler system of equations by a direct elimination (and MAPLE of course) with no assistance of undetermined coefficient method. In [7] also the circumradius and the area times circumradius formulas for pentagons, in terms of symmetric functions of the side lengths squared, are explicitly computed. The diagonal elimination approach seems to be better suited for circumradius computations than for the area computations. By introducing diagonals into play the original side length variables are separated into groups (symmetry breaking) and, after eliminating diagonals, one needs to use immense computations with symmetric functions to regain the symmetry. In $[11,18]$ we have designed an algorithm, which generalizes the basic algorithm for writing symmetric functions in terms of the elementary symmetric functions, which does not expresses everything in terms of the original variables. Instead it goes only down to the level of symmetric functions of the partial alphabets and leads to global symmetric function expansion. This enabled us to get r-polynomials for hexagons (and hopefully more in the future).
In this paper we illustrate yet another approach to the Robbins problem, especially well suited for obtaining Heron r-polynomials. We have discovered that Robbins problem is somehow related to a Wiener-Hopf factorization. We first associate a Laurent polynomial L_{P} to a cyclic polygon P , which is invariant under similarity of cyclic polygons (it is a kind of "conformal invariant"). Then there exists a (WienerHopf) factorization of L_{P} into a product of two polynomials, $\gamma_{+}(1 / z)$ and $\gamma_{-}(z)$, (in our case it will be $\gamma_{-}=\gamma_{+}=: \gamma$) providing a complex realization of \mathbf{P} is given. The factorization (i.e. $\gamma(z)$) is then given in terms of the elementary symmetric functions e_{k} of the vertex quotients, if we regard vertices of (a realization of) P as complex
numbers of equal moduli $(=r)$. For $\left(e_{k}\right)$'s, viewed as the unknowns, we then obtain a system of n quadratic equations, arising from our Wiener-Hopf factorization, with $n-1$ unknowns (note that e_{n} is necessarily equal to 1 as a product of all the vertex quotients (we call this a "cocycle property" or simply "cocyclicity")). The consistency condition (obtained by eliminating all $e_{k}, k=1 . . n-1$) for our "overdetermined" system will then give a relation between the coefficients of our conformal invariant L_{P}, which in turn will be nothing but the equation relating the inverse square radius of P with the elementary symmetric polynomials in the squares of the sides.
During of these investigations we found another type of substitutions by expressing the coefficients of L_{P} in terms of the inverse radius squared (ρ) and the elementary symmetric functions of side lengths squared. By using this substitutions, our Heron ρ-polynomials get remarkably small coefficients. Further simplifications we have obtained by doing computations in some quadratic algebraic extensions. In such quadratic extensions we can simplify our original system (having all but one equations quadratic) by replacing two quadratic equations by two linear ones). Also the final result can be written in a more compact form $\rho_{n}=A_{n}^{2}-\Delta_{n} B_{n}^{2}$ (a Pell equation). Thus the number of terms is the final formula is roughly a square root of the number of terms in the fully expanded formula. With such tricks we have obtained so far, down to earth, explicit formulas for Heron ρ-polynomials, up to $n=8$.

2 Equations for cyclic polygons via Wiener-Hopf factorization

Assume that a cyclic polygon P has its vertices on a circle centered at the origin in the complex plane. Suppose that these vertices are in order v_{1}, \ldots, v_{n} and that the radius of the circle is r. Also let $v_{n+1}=v_{1}$ and define the vertex quotients by

$$
\begin{equation*}
q_{j}=\frac{v_{j+1}}{v_{j}} \tag{4}
\end{equation*}
$$

The geometric meaning of these vertex quotients are $q_{j}=\cos \varphi_{j}+I \sin \varphi_{j}=e^{I \varphi_{j}}$, where φ_{j} denotes the central angle $\varangle\left(v_{j} O v_{j+1}\right)$ of P. Then we have the following Cocycle identity:

$$
\begin{equation*}
\prod_{j=1}^{n} q_{j}=1 \tag{5}
\end{equation*}
$$

The side lengths $a_{j}\left(=\right.$ the distance from v_{j} to $\left.v_{j+1}\right)$ of P are given by

$$
\begin{align*}
a_{j}^{2} & =\left|v_{j}-v_{j+1}\right|^{2}=\left(v_{j}-v_{j+1}\right) \overline{\left(v_{j}-v_{j+1}\right)}=r^{2}\left(2-\frac{v_{j+1}}{v_{j}}-\frac{v_{j}}{v_{j+1}}\right) \tag{6}\\
& =r^{2}\left(2-\left(q_{j}+q_{j}^{-1}\right)\right)
\end{align*}
$$

Now we associate to a cyclic polygon P, with side lengths a_{1}, \ldots, a_{n}, a Laurent polynomial $L_{P}(z)$ defined by the following formula:

$$
\begin{equation*}
L_{P}(z):=\prod_{j=1}^{n}\left(z+z^{-1}+2-a_{j}^{2} \rho\right) \in \mathbb{C}\left[z, z^{-1}\right] \tag{7}
\end{equation*}
$$

where $\rho=1 / r^{2}$ denotes the squared curvature of the circle circumscribed to P.
Note that this polynomial is a conformal invariant in the sense that if cyclic polygons P_{1} and P_{2} are similar, then $L_{P_{1}}(z)=L_{P_{2}}(z)$.
Basic notations:
Denote by e_{k} the elementary symmetric functions of q_{1}, \ldots, q_{n} (vertex variables):

$$
\begin{equation*}
1+e_{1} t+e_{2} t^{2}+\cdots+e_{n} t^{n}=\prod_{j=1}^{n}\left(1+q_{j} t\right) \tag{8}
\end{equation*}
$$

and by ε_{k} the elementary symmetric functions of $a_{1}^{2}, \ldots, a_{n}^{2}$ (side lengths squared):

$$
\begin{equation*}
1+\varepsilon_{1} t+\varepsilon_{2} t^{2}+\cdots+\varepsilon_{n} t^{n}=\prod_{j=1}^{n}\left(1+a_{j}^{2} t\right) \tag{9}
\end{equation*}
$$

Lemma 1. (Additive form of L_{P}). We have

$$
\begin{equation*}
L_{P}(z)=\sum_{-n \leq k \leq n} \lambda_{k} z^{k}=\lambda_{0}+\sum_{k=0}^{n} \lambda_{k}\left(z^{k}+z^{-k}\right), \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{-k}=\lambda_{k}=\sum_{i=k}^{n}\binom{2 i}{i-k}(-1)^{n-i} \varepsilon_{n-i} \rho^{n-i} \quad(0 \leq k \leq n) . \tag{11}
\end{equation*}
$$

(Note that $\lambda_{N}=\lambda_{-n}=1$.)
Proof. We compute

$$
\begin{aligned}
L_{P}(z) & =\prod_{j=1}^{n}\left(z+z^{-1}+2-a_{j}^{2} \rho\right)=\prod_{j=1}^{n}\left((1+z)^{2} z^{-1}-a_{j}^{2} \rho\right) \\
& =\sum_{0 \leq i \leq n}(1+z)^{2 i} z^{-i} e_{n-i}\left(a_{1}^{2}, \ldots, a_{n}^{2}\right)(-\rho)^{n-i} \\
& =\sum_{0 \leq i \leq n}\left(\sum_{0 \leq j \leq 2 i}\binom{2 i}{j} z^{i-j} \varepsilon_{n-i}(-\rho)^{n-i}\right) \\
& =\sum_{0 \leq i \leq n}\binom{2 i}{i} \varepsilon_{n-i}(-\rho)^{n-i}+\sum_{1 \leq k \leq n}\left(\sum_{k \leq i \leq n}\binom{2 i}{i-k} \varepsilon_{n-i}(-\rho)^{n-i}\right)\left(z^{k}+z^{-k}\right) .
\end{aligned}
$$

By equating the coefficients the result follows.
If we know the vertex coordinates v_{1}, \ldots, v_{n} of P then in terms of the vertex quotients $q_{j}=v_{j+1} / v_{j}$ we can factor its Laurent polynomial L_{P} into a product of two polynomials, one in z and the other in z^{-1}.

Lemma 2. (Multiplicative form of L_{P}) We have

$$
\begin{equation*}
L_{P}(z)=\gamma\left(z^{-1}\right) \gamma(z) \tag{12}
\end{equation*}
$$

where $\gamma(z)$ is the following polynomial

$$
\begin{equation*}
\gamma(z)=1+e_{1} z+e_{2} z^{2}+\cdots+e_{n} z^{n} \tag{13}
\end{equation*}
$$

with e_{1}, \ldots, e_{n} denoting the elementary symmetric functions of vertex quotients q_{1}, \ldots, q_{n} of the cyclic polygon P (note that $e_{n}=q_{1} \cdots q_{n}=1$).

Proof. We apply the identity

$$
\begin{equation*}
z+z^{-1}+q+q^{-1}=q^{-1}\left(1+q z^{-1}\right)(1+q z) \tag{14}
\end{equation*}
$$

to each factor of the defining formula (7) of $L_{P}(z)$ and then use the cocycle identity (7).

By combining both Lemma 1 and Lemma 2 we obtain the following
Theorem 1. The quantities $e_{0}=1, e_{1}, e_{2}, \ldots, e_{n-1}, e_{n}=1$, associated to a cyclic polygon P, defined by (8) satisfy the following quadratic system of equations:

$$
\begin{equation*}
\sum_{j=0}^{k} e_{k-j} e_{n-j}=c_{k}, \quad k=1 . . n \tag{15}
\end{equation*}
$$

or more explicitly:

$$
\begin{gather*}
e_{1}+e_{n-1}=c_{1}, \\
e_{2}+e_{1} e_{n-1}+e_{n-2}=c_{2} \tag{15’}\\
\vdots \\
e_{n-1}+e_{n-2} e_{n-1}+\cdots+e_{1} e_{2}+e_{1}=c_{n-1}, \\
1+e_{1}^{2}+e_{2}^{2}+\cdots+e_{n-1}^{2}+1=c_{n}
\end{gather*}
$$

with $c_{k}=\lambda_{n-k}$, where the lambda's are defined by (11).
Proof. By comparing the coefficients of $z^{n-1}, z^{n-2}, \ldots, z, 1$ in the factorization resulting Lemma 1 and Lemma 2 which explicitly looks as:

$$
\begin{aligned}
& \left(1+\frac{e_{1}}{z}+\frac{e_{2}}{z^{2}}+\cdots+\frac{e_{n}}{z^{n}}\right)\left(1+e_{1} z+e_{2} z^{2}+\cdots+e_{n} z^{n}\right)= \\
& c_{n}+c_{n-1}\left(z+z^{-1}\right)+c_{n-2}\left(z^{2}+z^{-2}\right)+\cdots+c_{0}\left(z^{n}+z^{-n}\right)
\end{aligned}
$$

and using that $e_{0}=e_{n}=1$.
Example 1. For $n=3$ we get the following system:

$$
\begin{align*}
& e_{1}+e_{2}=c_{1} \\
& e_{2}+e_{1} e_{2}+e_{1}=c_{2} \tag{Eq3}\\
& e_{1}^{2}+e_{2}^{2}+2=c_{3}
\end{align*}
$$

with

$$
\begin{align*}
& c_{1}=\sum_{i=2}^{3}\binom{2 i}{i-2}(-1)^{3-i} \varepsilon_{3-i} \rho^{3-i}=-\varepsilon_{1} \rho+6, \\
& c_{2}=\sum_{i=1}^{3}\binom{2 i}{i-1}(-1)^{3-i} \varepsilon_{3-i} \rho^{3-i}=\varepsilon_{2} \rho^{2}-4 \varepsilon_{1} \rho+15, \tag{C3}\\
& c_{3}=\sum_{i=0}^{3}\binom{2 i}{i}(-1)^{3-i} \varepsilon_{3-i} \rho^{3-i}=-\varepsilon_{3} \rho^{3}+2 \varepsilon_{2} \rho^{2}-6 \varepsilon_{1} \rho+20 .
\end{align*}
$$

By eliminating e_{1}, e_{2} from the (dependent!) system (Eq3) above we obtain

$$
\begin{equation*}
c_{1}^{2}+2 c_{1}-2 c_{2}+2-c_{3}=0 \tag{16}
\end{equation*}
$$

By substituting for c_{1}, c_{2}, c_{3} from (C3) into (16) we obtain

$$
\rho^{2}\left(\varepsilon_{3} \rho+\varepsilon_{1}^{2}-4 \varepsilon_{2}\right)=0 .
$$

Since $\rho\left(=1 / r^{2}\right)$ is nonzero we end up with the Heron formula (1) for inverse radius squared:

$$
\varepsilon_{3} \rho+\varepsilon_{1}^{2}-4 \varepsilon_{2}=0
$$

written in terms of elementary symmetric functions $\varepsilon_{1}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}, \varepsilon_{2}=a_{1}^{2} a_{2}^{2}+$ $a_{2}^{2} a_{3}^{2}+a_{1}^{2} a_{3}^{2}, \varepsilon_{2}=a_{1}^{2} a_{2}^{2} a_{3}^{2}$.
This example shows the main feature of our Wiener-Hopf type approach to Robbins circumradius of cyclic polygons problem. We may hope that simply by eliminating e_{1}, \ldots, e_{n-1} from the system (15) of Theorem 1 we would get an equation for the circumradius of general cyclic polygons. But elimination from such a "simple" quadratic system may be computationally very demanding even for a very powerful computers today. Further notation: The special values for $z= \pm 1$ of the polynomial $\gamma_{P}(z)$ we denote by

$$
\begin{gather*}
Y_{n}:=\gamma_{P}(1)=2+e_{1}+e_{2}+\cdots+e_{n-1}, \tag{17}\\
\Theta_{n}:=\gamma_{P}(-1)=1+(-1)^{n}-e_{1}+e_{2}+\cdots+(-1)^{n-1} e_{n-1}, \tag{18}\\
\Delta_{n}=\sum_{j=0}^{n} 4^{n-j}(-1)^{j} \varepsilon_{j} \rho^{j} .
\end{gather*}
$$

Then, from the factorization $L_{P}(\pm 1)=\gamma_{P}(\pm 1)^{2}$ we immediately get

$$
\begin{gather*}
Y_{n}^{2}=2\left(c_{1}+c_{2}+\cdots+c_{n-2}+c_{n-1}+1\right)+c_{n}=\Delta_{n} \tag{19}\\
\Theta_{n}^{2}=(-1)^{n} \varepsilon_{n} \rho^{n} . \tag{20}
\end{gather*}
$$

If we adjoin to our quadratic system, from Theorem 1 , two linear equations, resulting from (17) and (18):
Auxiliary equations:

$$
\begin{align*}
e_{1}+e_{2}+\cdots+e_{n-1} & =Y_{n}-2, \\
-e_{1}+e_{2}+\cdots+(-1)^{n-1} e_{n-1} & =\Theta_{n}-1-(-1)^{n} \tag{21}
\end{align*}
$$

For example for $n=3$ the two auxiliary equations are:

$$
\begin{align*}
e_{1}+e_{2} & =Y_{3}-2 & & \text { with } Y_{3}^{2}=2\left(c_{1}+c_{2}+1\right)+c_{3} \\
-e_{1}+e_{2} & =\Theta_{3} & & \text { with } \Theta_{3}^{2}=-\varepsilon_{3} \rho^{3} \tag{22}
\end{align*}
$$

and we obtain immediately

$$
\begin{equation*}
c_{1}+2-Y_{3}=0 \tag{23}
\end{equation*}
$$

This gives us a new form of the classical Heron formula for the circumradius:

$$
\begin{equation*}
\rho_{3}=\rho^{-2}\left(A_{3}^{2}-\Delta_{3} B_{3}^{2}\right)=0 \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{3}:=c_{1}+2, \quad B_{3}=1, \text { and } \Delta_{3}=Y_{3}^{2}=2\left(c_{1}+c_{2}+1\right)+c_{3} . \tag{25}
\end{equation*}
$$

This new derivation of the classical Heron formula explains some features of our approach to Robbins problem. We are intending to write a final result in the form

$$
\begin{equation*}
\rho_{n}=\rho^{-2^{n-2}}\left(A_{n}^{2}-\Delta_{n} B_{n}^{2}\right)=0, \tag{26}
\end{equation*}
$$

which is much shorter than if we would expand A_{n}^{2} and B_{n}^{2}. Without auxiliary equations we would get the formula in the expanded form which may not be explicitly computable on a computer at our disposal.

Cyclic quadrilaterals ($n=4$)

Now by eliminating e_{1}, e_{2}, e_{3} from the basic system
$E q 4=\left\{e_{1}+e_{3}-c_{1}, e_{2}+e_{1} e_{3}+e_{2}-c_{2}, e_{3}+e_{2} e_{3}+e_{1} e_{2}+e_{1}-c_{3}, e_{1}^{2}+e_{2}^{2}+e_{3}^{2}-c_{4}\right\}$
we obtain

$$
c_{1}^{4}-2 c_{1}^{2} c_{2}-c_{1}^{2} c_{4}-c_{1}^{2}+2 c_{1} c_{3}+c_{3}^{2}=0 .
$$

With only first auxiliary equations

$$
e_{1}+e_{2}+e_{3}=Y_{4}-2, \quad Y_{4}^{2}=2\left(c_{1}+c_{2}+c_{3}+1\right)+c_{4}
$$

we get

$$
\rho_{4}=\rho^{-4}\left(A_{4}^{2}-\Delta_{4} B_{4}^{2}\right)=0
$$

where

$$
A_{4}:=c_{1}^{2}+c_{1}+c_{3}, \quad B_{4}=c_{1} .
$$

Remark 1. If we substitute $c_{1}=8-\varepsilon_{1} \rho, c_{2}=\varepsilon_{2} \rho^{2}-6 \varepsilon_{1} \rho+28, c_{3}=-\varepsilon_{3} \rho^{3}+4 \varepsilon_{2} \rho^{2}-$ $15 \varepsilon_{1} \rho+56, c_{4}=\varepsilon_{4} \rho^{4}-2 \varepsilon_{3} \rho^{3}+6 \varepsilon_{2} \rho^{2}-20 \varepsilon_{1} \rho+70$, and $\varepsilon_{4}=\eta_{4}^{2}$ we obtain

$$
\begin{aligned}
\rho_{4} & =\left(\varepsilon_{3} \rho+\varepsilon_{1}^{2}-4 \varepsilon_{2}+\eta_{4}\left(8-\varepsilon_{1} \rho\right)\right)\left(\varepsilon_{3} \rho+\varepsilon_{1}^{2}-4 \varepsilon_{2}-\eta_{4}\left(8-\varepsilon_{1} \rho\right)\right) \\
& =\rho_{4}^{+} \rho_{4}^{-}
\end{aligned}
$$

where ρ_{4}^{+}corresponds to convex quadrilaterals and ρ_{4}^{-}to nonconvex quadrilaterals. Note also the following property:

$$
\rho_{4}=\rho_{3}^{2}-\varepsilon_{4}\left(8-\varepsilon_{1} \rho\right)^{2} .
$$

Note that $8-\varepsilon_{1} \rho$ can be interpreted as $-\rho_{2}$ (for a digon).

Cyclic pentagons $(n=5)$

By eliminating e_{1}, \ldots, e_{4} from the basic system for cyclic pentagon we obtain a polynomial in c_{1}, \ldots, c_{5} having 119 terms and coefficients between -20 and 32 . By substituting $c_{5-k}=\sum_{i=k}^{5}\binom{2 i}{i-k}(-1)^{5-i} \varepsilon_{5-i} \rho^{5-i}(0 \leq k \leq 4)$ we obtain a ρ^{8} times a polynomial of degree 7 in ρ having 81 terms and coefficients between -16384 and 8192.

By using auxiliary equations we obtain a much shorter expression (with coefficients $\pm 1, \pm 2, \pm 3, \pm 4)$

$$
\rho_{5}=\rho^{-8}\left(A_{5}^{2}-B_{5}^{2} \Delta_{5}\right)
$$

where

$$
\begin{aligned}
A_{5}= & c_{1}^{4}+\left(-3 c_{2}+2 c_{3}+c_{4}-3\right) c_{1}^{2}+\left(-2 c_{2}-4 c_{4}+2\right) c_{1}+ \\
& +2 c_{2}^{2}+\left(-2 c_{3}-2 c_{4}+4\right) c_{2}+c_{3}^{2}+2 c_{3}-2 c_{4}+\left(c_{2}+3\right) c_{5}+2, \\
B_{5}= & -c_{1}^{3}+2 c_{1}^{2}+\left(2 c_{2}-c_{3}\right) c_{1}-2 c_{2}+2 c_{4}-c_{5}-2, \\
\Delta_{5}= & Y_{5}^{2}=2\left(c_{1}+c_{2}+c_{3}+c_{4}+1\right)+c_{5}
\end{aligned}
$$

```
\rho
\rho}\mp@subsup{}{}{14}\mp@subsup{\epsilon}{5}{3}+(-2\mp@subsup{\epsilon}{1}{}\mp@subsup{\epsilon}{3}{}\mp@subsup{\epsilon}{5}{2}+\mp@subsup{\epsilon}{2}{2}\mp@subsup{\epsilon}{5}{2}-4\mp@subsup{\epsilon}{4}{}\mp@subsup{\epsilon}{5}{2})\mp@subsup{\rho}{}{12}+(2\mp@subsup{\epsilon}{1}{3}\mp@subsup{\epsilon}{5}{2}-2\mp@subsup{\epsilon}{1}{2}\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{4}{}\mp@subsup{\epsilon}{5}{}+\mp@subsup{\epsilon}{1}{2}\mp@subsup{\epsilon}{3}{2}\mp@subsup{\epsilon}{5}{}-8\mp@subsup{\epsilon}{1}{}\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{5}{2}+8\mp@subsup{\epsilon}{1}{}\mp@subsup{\epsilon}{3}{}\mp@subsup{\epsilon}{4}{}\mp@subsup{\epsilon}{5}{}-2\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{3}{2}\mp@subsup{\epsilon}{5}{}+32\mp@subsup{\epsilon}{3}{}\mp@subsup{\epsilon}{5}{2})\mp@subsup{\rho}{}{10}
```



```
-16 \epsilon}\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{3}{3}+256\mp@subsup{\epsilon}{1}{}\mp@subsup{\epsilon}{5}{2}+128\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{4}{}\mp@subsup{\epsilon}{5}{}+224\mp@subsup{\epsilon}{3}{2}\mp@subsup{\epsilon}{5}{})\mp@subsup{\rho}{}{6}+(-2\mp@subsup{\epsilon}{1}{6}\mp@subsup{\epsilon}{4}{}-64\mp@subsup{\epsilon}{1}{}\mp@subsup{}{}{5}\mp@subsup{\epsilon}{5}{}+16\mp@subsup{\epsilon}{1}{4}\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{4}{}+6\mp@subsup{\epsilon}{1}{4}\mp@subsup{\epsilon}{3}{2}+128\mp@subsup{\epsilon}{1}{}\mp@subsup{}{}{3}\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{5}{}+64\mp@subsup{\epsilon}{1}{}\mp@subsup{}{}{3}\mp@subsup{\epsilon}{3}{}\mp@subsup{\epsilon}{4}{}-32\mp@subsup{\epsilon}{1}{}\mp@subsup{}{}{2}\mp@subsup{\epsilon}{2}{2}\mp@subsup{}{}{2}\mp@subsup{\epsilon}{4}{}
-48 \epsilon1 2 }\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{3}{2}-576 \mp@subsup{\epsilon}{1}{2}\mp@subsup{\epsilon}{3}{}\mp@subsup{\epsilon}{5}{}+384\mp@subsup{\epsilon}{1}{2}\mp@subsup{\epsilon}{4}{2}+512 \mp@subsup{\epsilon}{1}{}\mp@subsup{\epsilon}{2}{2}\mp@subsup{}{}{2}\mp@subsup{\epsilon}{5}{}-256\mp@subsup{\epsilon}{1}{}\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{3}{}\mp@subsup{\epsilon}{4}{}+96\mp@subsup{\epsilon}{2}{2}\mp@subsup{\epsilon}{3}{2}-512\mp@subsup{\epsilon}{1}{}\mp@subsup{\epsilon}{4}{}\mp@subsup{\epsilon}{5}{}-768\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{3}{}\mp@subsup{\epsilon}{5}{}-128\mp@subsup{\epsilon}{3}{2}\mp@subsup{\epsilon}{4}{}-768\mp@subsup{\epsilon}{5}{2})\mp@subsup{\rho}{}{4}
+(4\mp@subsup{\epsilon}{1}{}\mp@subsup{}{}{6}\mp@subsup{\epsilon}{3}{}+32\mp@subsup{\epsilon}{1}{}\mp@subsup{}{}{5}\mp@subsup{\epsilon}{4}{}-48\mp@subsup{\epsilon}{1}{4}\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{3}{}+736\mp@subsup{\epsilon}{1}{4}\mp@subsup{\epsilon}{5}{4}-256\mp@subsup{\epsilon}{1}{3}\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{4}{}+192\mp@subsup{\epsilon}{1}{2}\mp@subsup{\epsilon}{2}{2}\mp@subsup{}{}{2}\mp@subsup{\epsilon}{3}{}-2816 \mp@subsup{\epsilon}{1}{2}\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{5}{}-256 \mp@subsup{\epsilon}{1}{2}\mp@subsup{\epsilon}{3}{}\mp@subsup{\epsilon}{4}{}+512\mp@subsup{\epsilon}{1}{}\mp@subsup{\epsilon}{2}{2}\mp@subsup{\epsilon}{4}{}-256\mp@subsup{\epsilon}{2}{}\mp@subsup{}{}{3}\mp@subsup{\epsilon}{3}{}+
```



```
+1024\epsilon1 2 ' }\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{4}{}+256\mp@subsup{\epsilon}{2}{4}+8192\mp@subsup{\epsilon}{1}{}\mp@subsup{\epsilon}{2}{}\mp@subsup{\epsilon}{5}{}-2048\mp@subsup{\epsilon}{2}{2}\mp@subsup{\epsilon}{4}{2}-16384\mp@subsup{\epsilon}{3}{}\mp@subsup{\epsilon}{5}{}+4096\mp@subsup{\epsilon}{4}{}\mp@subsup{}{}{2
```

Cyclic heptagons ($n=7$)
In this case we have $\rho_{7}=\rho^{-64}\left(A_{7}^{2}-\Delta_{7} B_{7}^{2}\right)$ (where here we have $\rho=r^{-1}$), $\Delta_{7}=$ $2\left(c_{1}+c_{2}+\cdots+c_{5}+c_{6}+1\right)+c_{7}$.

```
[> CYCLIC HEPTAGON RADIUS EQUATION 20230519
\(\Rightarrow>\) The inverse circumradius equation for cyclic heptagon will be in the form
\(\left[>\rho[7]=A[7]^{2}-\Delta[7] \cdot B[7]^{2}\right.\) with notations
\(\square>\varepsilon[k]:=\) the \(k\) _th elem. symm.poly. of side lengths \(a[1]^{2}, . ., a[7]^{2}: \varepsilon[0]:=1\) :
\(>\rho:=r^{-1}=\) inverse circumradius :
\(>\operatorname{for} k\) to 7 do \(c[k]=\operatorname{sum}\left(\operatorname{binomial}(2-7-2 \cdot j, k-j) \cdot(-1)^{j_{-}} \mathbf{e p s i l o n}[j] \cdot\right.\) rho \(\left.^{2 \cdot j}, j=0 . . k\right)\) od
                    \(-\rho^{2} \epsilon_{1}+14=-\rho^{2} \epsilon_{1}+14\)
        \(\rho^{4} \epsilon_{2}-12 \rho^{2} \epsilon_{1}+91=\rho^{4} \epsilon_{2}-12 \rho^{2} \epsilon_{1}+91\)
        \(-\rho^{6} \epsilon_{3}+10 \rho^{4} \epsilon_{2}-66 \rho^{2} \epsilon_{1}+364=-\rho^{6} \epsilon_{3}+10 \rho^{4} \epsilon_{2}-66 \rho^{2} \epsilon_{1}+364\)
    \(\rho^{8} \epsilon_{4}-8 \rho^{6} \epsilon_{3}+45 \rho^{4} \epsilon_{2}-220 \rho^{2} \epsilon_{1}+1001=\rho^{8} \epsilon_{4}-8 \rho^{6} \epsilon_{3}+45 \rho^{4} \epsilon_{2}-220 \rho^{2} \epsilon_{1}+1001\)
    \(-\rho^{10} \epsilon_{5}+6 \rho^{8} \epsilon_{4}-28 \rho^{6} \epsilon_{3}+120 \rho^{4} \epsilon_{2}-495 \rho^{2} \epsilon_{1}+2002=-\rho^{10} \epsilon_{5}+6 \rho^{8} \epsilon_{4}-28 \rho^{6} \epsilon_{3}+120 \rho^{4} \epsilon_{2}-495 \rho^{2} \epsilon_{1}+2002\)
\(\rho^{12} \epsilon_{6}-4 \rho^{10} \epsilon_{5}+15 \rho^{8} \epsilon_{4}-56 \rho^{6} \epsilon_{3}+210 \rho^{4} \epsilon_{2}-792 \rho^{2} \epsilon_{1}+3003=\rho^{12} \epsilon_{6}-4 \rho^{10} \epsilon_{5}+15 \rho^{8} \epsilon_{4}-56 \rho^{6} \epsilon_{3}+210 \rho^{4} \epsilon_{2}\)
    \(-792 \rho^{2} \epsilon_{1}+3003\)
\(-\rho^{14} \epsilon_{7}+2 \rho^{12} \epsilon_{6}-6 \rho^{10} \epsilon_{5}+20 \rho^{8} \epsilon_{4}-70 \rho^{6} \epsilon_{3}+252 \rho^{4} \epsilon_{2}-924 \rho^{2} \epsilon_{1}+3432=-\rho^{14} \epsilon_{7}+2 \rho^{12} \epsilon_{6}-6 \rho^{10} \epsilon_{5}+20 \rho^{8} \epsilon_{4}\)
    \(-70 \rho^{6} \epsilon_{3}+252 \rho^{4} \epsilon_{2}-924 \rho^{2} \epsilon_{1}+3432\)
\(\stackrel{ }{=}\)
    \(\Delta[7]=\operatorname{product}\left(4-a[k]^{2} \cdot \rho^{2}, k=1 . .7\right)=\operatorname{add}\left(4^{7-k} \cdot(-1)^{k} \cdot \rho^{2 \cdot k} \epsilon_{k}, k=0 . .7\right)=2+2 c_{1}+2 c_{2}\)
    \(+2 c_{3}+2 c_{4}+2 c_{5}+2 c_{6}+c_{7}\)
\(>\) Then in terms of elementary symmetric polynomialse[1],..,e[6] of vertex quotients \(q[1], . .\), \(q\) [7] our version of the
\begin{tabular}{l}
{\([>\) New \(\rho-\) Robbins system for cyclicheptagons \(:\)} \\
\hline\(>\quad e[0]:=1: e[7]:=1: \varepsilon[0]:=1: c[0]:=1:\)
\end{tabular}
\(>\) fork to 7 do eq[k]:=sort(sum \((e[j] \cdot e[7-k+j], j=0 . . k)-c[k],[\operatorname{seq}(c[k], k=1 . .7)])\) od
\[
\begin{gather*}
e q_{1}:=-c_{1}+e_{6}+e_{1} \\
e q_{2}:=-c_{2}+e_{1} e_{6}+e_{2}+e_{5} \\
e q_{3}:=-c_{3}+e_{1} e_{5}+e_{2} e_{6}+e_{3}+e_{4} \\
e q_{4}:=-c_{4}+e_{1} e_{4}+e_{2} e_{5}+e_{3} e_{6}+e_{3}+e_{4} \\
e q_{5}:=-c_{5}+e_{1} e_{3}+e_{2} e_{4}+e_{3} e_{5}+e_{4} e_{6}+e_{2}+e_{5} \\
e q_{6}:=-c_{6}+e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{4}+e_{4} e_{5}+e_{5} e_{6}+e_{1}+e_{6} \\
e q_{7}:=-c_{7}+e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}+e_{5}^{2}+e_{6}^{2}+2 \tag{2}
\end{gather*}
\]
\(>E q[0]:=\operatorname{add}(e[j], j=1 . .6)+2-Y[7]\)
\[
\begin{equation*}
E q_{0}:=e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+e_{6}+2-Y_{7} \tag{3}
\end{equation*}
\]
\(>\operatorname{Fq}[0]:=\operatorname{add}\left((-1)^{j-1} \cdot e[j], j=1 . .6\right)-\Theta[7]\)
\[
\begin{equation*}
F q_{0}:=e_{1}-e_{2}+e_{3}-e_{4}+e_{5}-e_{6}-\Theta_{7} \tag{4}
\end{equation*}
\]
```

```
\(>\) Remarks: 1) \(\boldsymbol{Y}[7]^{\mathbf{2}}=\Delta[7]=2 \cdot(1+\operatorname{add}(c[k], k=1 . .6))+c[7]:\)
\([\mathbf{>} \quad 2) \quad \boldsymbol{\Theta}_{7}^{\mathbf{2}}=2 c_{1}-2 c_{2}+2 c_{3}-2 c_{4}+2 \cdot c_{5}-2 \cdot c_{6}+c_{7}-2=-\varepsilon_{7} \cdot \rho^{14}\)
So, we intendto work in a double quadratic extension defined by adjoining \(Y[7]\) and \(\Theta_{7}\) :
\(>\) The elimination of all variables \([e[6], e[5], e[4], e[3], e[2], e[1]]\) from the \(\boldsymbol{\rho}-\boldsymbol{S y s t e m} 7=\{\boldsymbol{s e q}(\boldsymbol{e q}[\boldsymbol{k}], \boldsymbol{k}\)
\(=\mathbf{1} . .7\) ), Eq[0],Fq[0]\} lasted only \(t 7=3035.781\), on a Xeon WS ( with 256 GB RAM ).
>> The implicit inverseradius equation isobtainedas op ( 2 , op (K7[2]), where
\(\stackrel{>}{>}\) st \(:=\) time ( ) : K7:=map (factor, eliminate ( \(\{\operatorname{seq}(e q[k], k=1 . .7), E q[0], F q[0]\},[e[6], e[5], e[4]\), \(e[3], e[2], e[1]])[2]) ; t 7=\operatorname{time}()-s t ;\)
\[
\begin{equation*}
t 7=3035.781 \tag{5}
\end{equation*}
\]
\(\stackrel{-}{>} o p(1, K 7), o p(1, o p(2, K 7))\)
\(\left(\Theta_{7}^{2}-Y_{7}^{2}+4 c_{2}+4 c_{4}+4 c_{6}+4\right)\left(-c_{1}^{3}+2 c_{1}^{2}+4 c_{1} c_{2}+8 Y_{7}-8 c_{1}-8 c_{2}-8 c_{3}-16\right),-c_{1}^{3}+2 c_{1}^{2}\)
```

$$
+4 c_{1} c_{2}+8 Y_{7}-8 c_{1}-8 c_{2}-8 c_{3}-16
$$

 \(b 1:=\operatorname{sort}(\operatorname{collect}(\operatorname{op}(2, K 7[2])\), Theta[7]), Theta[7] \(): \operatorname{length}(b 1)\)
 363028

$\left\{\Theta_{7}, Y_{7}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}\right\}, 179163,10$
$b 3:=\operatorname{map}($ factor, collect $(b 2$, Theta[7] $)): \operatorname{length}(b 3)$
Note that b3 depends linearly on $Y[7]$
$b 30:=\operatorname{coeff}(b 3, Y[7], 0): b 31:=\operatorname{coeff}(b 3, Y[7]):$ length $(b 30)$, length $(b 31)$
173880,107654
$a 7:=2^{-8} \cdot \operatorname{simplify}\left(b 30,\left\{\Theta_{7}^{2}=2 c_{1}-2 c_{2}+2 c_{3}-2 c_{4}+2 c_{5}-2 c_{6}+c_{7}-2\right\}\right): b 7:=2^{-8} .($ simplify $(b 31$, $\left.\left\{\Theta_{7}^{2}=2 c_{1}-2 c_{2}+2 c_{3}-2 c_{4}+2 c_{5}-2 c_{6}+c_{7}-2\right\}\right):$
indets $([a 7, b 7])$, length $(a 7)$, length $(b 7)$
$\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\right\}, 216981,137841$
\rightarrow Thus a7 and $b 7$ do not dependon Theta[7] any more. By writing $c[k]$ simply asck, $k=1$.. k
$a 7 e:=\operatorname{subs}(\operatorname{seq}(c[k]=c \| k, k=1 . .7), a 7): b 7 e:=\operatorname{subs}(\operatorname{seq}(c[k]=c \| k, k=1 . .7), b 7):$
map (length, $[a 7, a 7 e, b 7, b 7 e, A 7 h, B 7 h])$
[216981, 121216, 137841, 77021, 57588, 35958]
>> and converting to Horner form we obtain "shorter polynomials" $A 7 h$ and $B 7 h$:
$>$ A7h $=$ convert $(a 7 e$, horner $)$
$A 7 h:=8+(8+(-10+(-28+(-15-c 7) c 7) c 7) c 7) c 7+(12+(28+(11+(-4-c 7) c 7) c 7) c 7+(-8+(24+(18+5 c 7) c 7) c 7+(-16$$+20 c 7) c 7+((8+5 c 7) c 7+(8 c 7-4 c 6) c 6) c 6) c 6+(8+(-4+(-28+4 c 7) c 7) c 7+(8+(-64-26 c 7) c 7+(-4 c 7-8$$-8 c 6) c 6) c 6+(60+(-2-25 c 7) c 7+(50 c 7+36+24 c 6) c 6+(12 c 6+4 c 7+36+(6 c 6+c 7-7-2 c 5) c 5) c 5) c 5) c 5+(-32$$+(8+(36+3 c 7) c 7) c 7+(-36+(-16-22 c 7) c 7+(-12 c 7+4 c 6) c 6) c 6+(-48+(20+2 c 7) c 7+(68 c 7-16+8 c 6) c 6+($$-52+(-4+c 7) c 7+(-4 c 7-48-12 c 6) c 6+(8 c 6-4 c 7-28-2 c 5) c 5) c 5) c 5+(36+(-8+(8-c 7) c 7) c 7+(-24+(16$$-2 c 7) c 7+(-28+4 c 7+8 c 6) c 6) c 6+(40+(-16+6 c 7) c 7+(8 c 7-24-8 c 6) c 6+(16 c 6-8 c 7+20) c 5) c 5+(24+(-4$$+2 c 7) c 7+(-8 c 7+40-24 c 6) c 6+(16 c 6-8 c 7+8-4 c 5) c 5+(-8 c 5+24 c 6+4 c 7-16-8 c 4) c 4) c 4) c 4) c 4) c 4+(-8+($$-20+(-22+(-13-5 c 7) c 7) c 7) c 7+(-8+(-8+(-8-11 c 7) c 7) c 7+((20-4 c 7) c 7+(24 c 7-8-8 c 6) c 6) c 6) c 6+\left(\left(15 c 7^{2}\right.\right.$$-4) c 7+(48+(-32+2 c 7) c 7+(44 c 7-16-32 c 6) c 6) c 6+(20+(-12-21 c 7) c 7+(8 c 7+36-24 c 6) c 6+((10-c 7) c 7+($$-4-4 c 6) c 6+(6 c 7+4) c 5) c 5) c 5) c 5+(-8+(60+(108+42 c 7) c 7) c 7+(-24+(-24-2 c 7) c 7+(-12 c 7-24-8 c 6) c 6) c 6$$+(-16+(-20+(-50+3 c 7) c 7) c 7+(-104+(-24+2 c 7) c 7+(-4 c 7+8 c 6) c 6) c 6+(-52+(8-6 c 7) c 7+(-20+8 c 6) c 6$$+(-16 c 6+4 c 7-12-6 c 5) c 5) c 5) c 5+(56+(-12+(2+2 c 7) c 7) c 7+(16+(-4-8 c 7) c 7+(-24 c 7-16) c 6) c 6+(56+(28$$-6 c 7) c 7+(24 c 7+72+24 c 6) c 6+(-24 c 6-4 c 7+28+12 c 5) c 5) c 5+(-24+(-104+2 c 7) c 7+(40 c 7+56+8 c 6) c 6+($$-24 c 6-12 c 7-8+24 c 5) c 5+(-8 c 5-16 c 6-16 c 7-24+8 c 4) c 4) c 4) c 4) c 4+(-16+(-8+(-8-5 c 7) c 7) c 7+(4+(-30$$+(-11-3 c 7) c 7) c 7+(16+(12-3 c 7) c 7+(6 c 7+12) c 6) c 6) c 6+(-8+(16+(-12+3 c 7) c 7) c 7+(12+(-12+8 c 7) c 7$$+(4 c 7-48-12 c 6) c 6) c 6+(-12+(40-11 c 7) c 7+(-11 c 7+20+8 c 6) c 6+(8 c 6-c 7-6+2 c 5) c 5) c 5) c 5+(44+(30$$+(23+4 c 7) c 7) c 7+(4+(-6+14 c 7) c 7+(-4 c 7+4-12 c 6) c 6) c 6+(-16+(16-11 c 7) c 7+(16 c 7+92+12 c 6) c 6+($$-20 c 6+19 c 7+8+8 c 5) c 5) c 5+(-12+(-114-25 c 7) c 7+(2 c 7+32-12 c 6) c 6+(-36 c 6+8 c 7+44+8 c 5) c 5+(-20 c 5$$+20 c 6+8 c 7+36 c 4) c 4) c 4) c 4+(12+(16+(11+2 c 7) c 7) c 7+(16+(-24+c 7) c 7+(-16 c 7-4+16 c 6) c 6) c 6+(-16$$+(10+3 c 7) c 7+(-34 c 7+8+16 c 6) c 6+(18 c 6-4 c 7-28-2 c 5) c 5) c 5+\left(15 c 7^{2}+8+(12 c 7+36-20 c 6) c 6+(32 c 6\right.$$-2 c 7+32-10 c 5) c 5+(-56 c 5+32 c 6-20 c 7-56+12 c 4) c 4) c 4+(6+(-9+(-16-c 6) c 6) c 6+(c 7+4+(3 c 7+20) c 6$$+(-3 c 6-1-2 c 5) c 5) c 5+(-31+(-1-3 c 7) c 7+(c 7+24+3 c 6) c 6+(2 c 6+c 7-26+c 5) c 5+(2 c 5-3 c 6-3 c 7-4$$+9 c 4) c 4) c 4+(-8+(6-c 7) c 7+(-4+2 c 7-4 c 6) c 6+(-2 c 6+6 c 7-2) c 5+(-14 c 5+2 c 6+2 c 7+2-2 c 4) c 4+(-4 c 4$$-2 c 5+8 c 6-c 7+(2-c 3) c 3+(-4+(-24+(-41+(-25-2 c 7) c 7) c 7) c 7+(8+(-28+(-38$$-9 c 7) c 7) c 7+(24+(16-15 c 7) c 7+(20 c 7+8-4 c 6) c 6) c 6) c 6+(24+(44+(52+38 c 7) c 7) c 7+((40+40 c 7) c 7+(20 c 7$$-72-48 c 6) c 6) c 6+(12+(26+(-11-c 7) c 7) c 7+(-16+(-20-4 c 7) c 7+(2 c 7+12 c 6) c 6) c 6+(-16+(-28-3 c 7) c 7+($$-8 c 7+16) c 6+(7 c 7+15+2 c 5) c 5) c 5) c 5) c 5+(-24+(12+(38+(13-c 7) c 7) c 7) c 7+(40+(-36+(-36+c 7) c 7) c 7+(88$$+(-20+12 c 7) c 7+(4 c 7+8-16 c 6) c 6) c 6) c 6+\left(-80+(-68+(-48+c 7) c 7) c 7+\left(-4 c 7^{2}-16+(-20 c 7-16 c 6) c 6\right) c 6+(\right.$$-84+(-18+10 c 7) c 7+(8 c 7-32+4 c 6) c 6+(-8 c 6+24 c 7+36-10 c 5) c 5) c 5) c 5+(108+(4+(-10-2 c 7) c 7) c 7+(-40$$+(36-16 c 7) c 7+(-28+48 c 6) c 6) c 6+(104+(-8+10 c 7) c 7+(8 c 7+16+24 c 6) c 6+(-36 c 6-2 c 7+60-24 c 5) c 5) c 5$$+(-16+(-4+10 c 7) c 7+(-4 c 7+80-56 c 6) c 6+(-16 c 6-12 c 7-32+12 c 5) c 5+(8 c 5+32 c 6-56-8 c 4) c 4) c 4) c 4) c 4$
$+\left(-16+(-14+(-13-2 c 7) c 7) c 7^{2}+((-76+(-40-9 c 7) c 7) c 7+(40+(-24-2 c 7) c 7+(12 c 7+16-8 c 6) c 6) c 6) c 6+(8\right.$ $+(64+(8 c 7+16) c 7) c 7+(16+(32+40 c 7) c 7+(24 c 7-8-32 c 6) c 6) c 6+(-4+(28-16 c 7) c 7+(-28 c 7+80+4 c 6) c 6$ $+(-12+14 c 5) c 5) c 5) c 5+(88+(44+(82-3 c 7) c 7) c 7+(8+(128+6 c 7) c 7+(-20 c 7-8+24 c 6) c 6) c 6+(-128+(-144$ $-36 c 7) c 7+(-48 c 7-16+48 c 6) c 6+(-80 c 6+28 c 7-92+56 c 5) c 5) c 5+(-48+(-76-18 c 7) c 7+(20 c 7+112) c 6+($ $-96 c 6+64 c 7+160+92 c 5) c 5+(-24 c 6+76 c 7-56+8 c 4) c 4) c 4) c 4+(12+(22+(23-7 c 7) c 7) c 7+(-44+(-18$ $+2 c 7) c 7+(-52 c 7-4+28 c 6) c 6) c 6+\left(29 c 7^{2}-72+(-24 c 7+36+68 c 6) c 6+(-40-9 c 7+(-c 7+4) c 6+(4 c 6-c 7-18\right.$ $+2 c 5) c 5) c 5) c 5+(-8+(48+46 c 7) c 7+(50 c 7+20+(2 c 7-40+4 c 6) c 6) c 6+(84+(-60+c 7) c 7+(-8 c 7+28-8 c 6) c 6$ $+(4 c 6-7 c 7+52+4 c 5) c 5) c 5+(-100+(-34+6 c 7) c 7+(-68-12 c 6) c 6+(16 c 6+4 c 7-56+4 c 5) c 5+(-24 c 5+12 c 6$ $+6 c 7-8-36 c 4) c 4) c 4) c 4+\left(2 c 7^{2}+20+(-24+(48-5 c 7) c 7+(-4 c 7-32+4 c 6) c 6) c 6+(48+(-48+5 c 7) c 7+(14 c 7\right.$ $-24+8 c 6) c 6+(-10 c 6-8 c 7-18-6 c 5) c 5) c 5+(-84+(-16-c 7) c 7+(4 c 7+52-8 c 6) c 6+(-8 c 6-14 c 7-24$ $+26 c 5) c 5+(40 c 5-4 c 6-16 c 7-44+24 c 4) c 4) c 4+(-1+(15-5 c 7) c 7+(13 c 7-4-7 c 6) c 6+(-26 c 6+21 c 7+26$ $+21 c 5) c 5+(-20 c 5-26 c 6+6 c 7+28+25 c 4) c 4+(-8 c 4-10 c 5+14 c 6-14 c 7-2+(8 c 4+2 c 5-c 7+4-2 c 3) c 3) c 3)$ c3) $c 3) c 3) c 3+(-28+(-16+(21+(20+2 c 7) c 7) c 7) c 7+(-20+(-72+(-12+5 c 7) c 7) c 7+(16+(-52-c 7) c 7+(-8 c 7$ $+4-4 c 6) c 6) c 6) c 6+(-8+(4+(30+3 c 7) c 7) c 7+(56+(36+16 c 7) c 7+(8 c 7+32-8 c 6) c 6) c 6+(-16+(-24-35 c 7) c 7$ $+(-38 c 7-16-16 c 6) c 6+(-12 c 6-4 c 7-44+(-c 6+9-2 c 5) c 5) c 5) c 5) c 5+(108+(32-22 c 7) c 7+(-56+(24$ $+8 c 7) c 7+(-12 c 7-68+24 c 6) c 6) c 6+(104+(-40-40 c 7) c 7+(32 c 7+136+88 c 6) c 6+(64 c 7+56+(2 c 7+8+4 c 6) c 6$ $+(4 c 6+4 c 7+48-5 c 5) c 5) c 5) c 5+(-116+(-4-22 c 7) c 7+(100+(8-c 7) c 7+(-4 c 7-4-4 c 6) c 6) c 6+(-104+(12$ $-2 c 7) c 7+(-4 c 7-88) c 6+(-4 c 6+2 c 7+8-4 c 5) c 5) c 5+(-60+(8+3 c 7) c 7+(16 c 7-40+20 c 6) c 6+(-16 c 6-4 c 7$ $+16+8 c 5) c 5+(16 c 5-28 c 6-12 c 7+24+12 c 4) c 4) c 4) c 4) c 4+(24+(-12+(-40-19 c 7) c 7) c 7+(-16+(12-14 c 7) c 7$ $+(-32 c 7+16+32 c 6) c 6) c 6+(-24+(-52+4 c 7) c 7+(128+(64+2 c 7) c 7+(104-8 c 6) c 6) c 6+(8+(64+c 7) c 7+(-20$ $-12 c 6) c 6+(12 c 6+10 c 7-40) c 5) c 5) c 5+\left(-48+(12+(-54+c 7) c 7) c 7+\left(10 c 7^{2}+16+(20 c 7-32+8 c 6) c 6\right) c 6+(96\right.$ $+(-4-10 c 7) c 7+(-24 c 7-88-8 c 6) c 6+(12 c 6-48-20 c 5) c 5) c 5+(-96+(108-14 c 7) c 7+(-44 c 7-80-16 c 6) c 6$ $+(16 c 6+8 c 7-72+8 c 5) c 5+(48 c 5+24 c 6+32 c 7+72-16 c 4) c 4) c 4) c 4+(32+(4+(-28-c 7) c 7) c 7+(-36+(60$ $-15 c 7) c 7+(-12 c 7-64+4 c 6) c 6) c 6+(36+(-36+9 c 7) c 7+(16 c 7-152+20 c 6) c 6+(4 c 6-18 c 7-36-42 c 5) c 5) c 5$ $+(-44+(134+19 c 7) c 7+(30 c 7+108+12 c 6) c 6+(20 c 6-16 c 7-72-48 c 5) c 5+(40 c 6-6 c 7+8-32 c 4) c 4) c 4+(-8$ $+(-8-13 c 7) c 7+(-4-4 c 6) c 6+(-48 c 6+34 c 7+24+56 c 5) c 5+(-40 c 5-52 c 6+24 c 7+64-16 c 4) c 4+(-11 c 7-5$ $+(35-c 6) c 6+(2 c 7+10-2 c 5) c 5+(-12 c 5+2 c 6+6 c 7-3-21 c 4) c 4+(12 c 4-4 c 5-4 c 7-6) c 3) c 3) c 3) c 3) c 3+(28$ $+(48+(30+10 c 7) c 7) c 7+(-56+(64+(38-c 7) c 7) c 7+(-68+(28-2 c 7) c 7+(4 c 7+8 c 6) c 6) c 6) c 6+((-32+(-30$ $-2 c 7) c 7) c 7+(24+(-16-6 c 7) c 7+(32+8 c 6) c 6) c 6+(36+(-6 c 7+4) c 7+(-12 c 7+4-8 c 6) c 6+(16 c 6+12 c 7+4$ $+7 c 5) c 5) c 5) c 5+(-104+(-20+(-26+4 c 7) c 7) c 7+(56+(-20+10 c 7) c 7+(-16 c 7-16-40 c 6) c 6) c 6+(28 c 7-80$ $+(8 c 7-64) c 6+(32 c 6+22 c 7+4-12 c 5) c 5) c 5+(12+(12-5 c 7) c 7+(20 c 7-56+60 c 6) c 6+(-8 c 6-12 c 7+8$ $-36 c 5) c 5+(16 c 5-48 c 6-16 c 7+64+20 c 4) c 4) c 4) c 4+((24+(-32+7 c 7) c 7) c 7+(-16+(-12+16 c 7) c 7+(12 c 7-48$ $-16 c 6) c 6) c 6+(24+(16+10 c 7) c 7+(-8 c 7-48-8 c 6) c 6+(48 c 6+96-36 c 5) c 5) c 5+(-104+(-28+8 c 7) c 7+(-56 c 7$ $-120-16 c 6) c 6+(32 c 6-24 c 7-144-76 c 5) c 5+(-16 c 5+48 c 6-40 c 7+176-32 c 4) c 4) c 4+(-16+(-36+c 7) c 7+($ $-46 c 7+36) c 6+(-36 c 6+20 c 7+4+(-c 7+68+2 c 5) c 5) c 5+(-12 c 7+92+(2 c 7+36+4 c 6) c 6+(-4 c 6-8 c 7+68$ $+8 c 5) c 5+(20 c 5-8 c 6-10 c 7+8+20 c 4) c 4) c 4+(16+(-16-2 c 7) c 7+24 c 6+(32+6 c 5) c 5+(16 c 5+4 c 6+16 c 7+76$ $-20 c 4) c 4+(-2 c 4-12 c 5+10 c 6-2 c 7-27+4 c 3) c 3) c 3) c 3) c 3+(-4+(4+(2+c 7) c 7) c 7+(68+(16+5 c 7) c 7+(8 c 7$ $+28-12 c 6) c 6) c 6+(-56+(-28-12 c 7) c 7+(-44 c 7-88-40 c 6) c 6+(4 c 6-4+(-16-c 5) c 5) c 5) c 5+(36+(-20$ $+3 c 7) c 7+(-8 c 7-32+36 c 6) c 6+(32 c 6+44 c 7+40+(4 c 6+2 c 7-12-4 c 5) c 5) c 5+\left(-c 7^{2}+60+(-4 c 7-8-4 c 6) c 6\right.$ $+(4 c 7+8 c 6-8 c 5) c 5+(-8 c 5+8 c 6+4 c 7-8-4 c 4) c 4) c 4) c 4+((-4+36 c 7) c 7+(12 c 7+32+40 c 6) c 6+(-56+(40$ $+2 c 7) c 7+(-16-8 c 6) c 6+(4 c 7+4) c 5) c 5+(128+(-32+4 c 7) c 7+(24+8 c 7) c 6+(32-12 c 5) c 5+(-16 c 5-8 c 6$ $-12 c 7-48+8 c 4) c 4) c 4+((-4 c 7-32) c 7+(6 c 7-48+4 c 6) c 6+(-12 c 6-16 c 7-20) c 5+(32 c 5-32 c 6+8+8 c 4) c 4$ $+(-16 c 4-8 c 5+12 c 6-28+3 c 3) c 3) c 3) c 3+(12+(-16+(1-c 7) c 7) c 7+((-4-2 c 7) c 7+(4 c 7+20+8 c 6) c 6) c 6+(24$ $+(12-2 c 7) c 7+(-8 c 7+8-8 c 6) c 6+(4 c 6+6 c 7+4 c 5) c 5) c 5+(8+(-8 c 7-16 c 6) c 6+(16 c 6+16 c 7+16) c 5+(-16 c 5$ $+16 c 6+8 c 7-32-8 c 4) c 4) c 4+(32+(16-2 c 7) c 7+(16 c 7+16+8 c 6) c 6+(16 c 6-8 c 7+48-4 c 5) c 5+(16 c 5-16 c 6$ $-64+16 c 4) c 4+(-4 c 4+4 c 5-2 c 7-4-4 c 3) c 3) c 3+(-12+(-3 c 7-4) c 7+(-4 c 7-12-12 c 6) c 6+(8 c 6-4 c 7+16$ $-8 c 5) c 5+(-8 c 5+8 c 6+4 c 7-20) c 4+(8 c 4-8 c 6-4 c 7-32-8 c 3) c 3+(8 c 4-4+4 c 2) c 2+(8$ $+(-8+(-58+(-50-12 c 7) c 7) c 7) c 7+(-8+(60+(96+40 c 7) c 7) c 7+(-48+(8+44 c 7) c 7+(-44 c 7-40$ $-8 c 6) c 6) c 6) c 6+(-16+(4+(44+(15+c 7) c 7) c 7) c 7+(8+(-100+(-44-c 7) c 7) c 7+(-136 c 7+24+(24+8 c 7$ $-8 c 6) c 6) c 6) c 6+(16+(-36+(22-4 c 7) c 7) c 7+(-4+(-4-10 c 7) c 7+(24 c 7+68-16 c 6) c 6) c 6+((22-11 c 7) c 7$ $+(26 c 7+40-12 c 6) c 6+(-4 c 6+12 c 7-18+6 c 5) c 5) c 5) c 5) c 5+(-32+(4+(58+(2 c 7+8) c 7) c 7) c 7+(-80+(48+($ $-36-4 c 7) c 7) c 7+(-64+(4-16 c 7) c 7-16 c 6) c 6) c 6+(64+(-40+(-42+4 c 7) c 7) c 7+(-56+(16+6 c 7) c 7+(64 c 7+56$ $+16 c 6) c 6) c 6+(36+(8-30 c 7) c 7+(132-56 c 6) c 6+(-64 c 6+14 c 7-56+42 c 5) c 5) c 5) c 5+(-40+(112+(42$ $+2 c 7) c 7) c 7+(16+(-104+4 c 7) c 7+(8 c 7+16-16 c 6) c 6) c 6+(-120+(56+12 c 7) c 7+(24 c 7+80-40 c 6) c 6+(-88 c 6$ $-4 c 7-160+76 c 5) c 5) c 5+(96+(-16-6 c 7) c 7+(-8 c 7+16+8 c 6) c 6+(16 c 6-24 c 7+96+88 c 5) c 5+(-48 c 5+32 c 6$ $-8-24 c 4) c 4) c 4) c 4) c 4+(-8+(-24+(-14-20 c 7) c 7) c 7+(16+(104+(-22+14 c 7) c 7) c 7+((72+6 c 7) c 7$ $\left.\left.-8 c 6^{2}\right) c 6\right) c 6+(28+(-36+(25+3 c 7) c 7) c 7+(-76+(84-57 c 7) c 7+(-16 c 7+76+4 c 6) c 6) c 6+(-56+(-14-3 c 7) c 7$ $+(44 c 7+20+28 c 6) c 6+(-18 c 6+27 c 7-26+(-c 7-14+2 c 5) c 5) c 5) c 5) c 5+(72+(232+(76+22 c 7) c 7) c 7+(-40+($ $-240-54 c 7) c 7+(-8 c 7+56+24 c 6) c 6) c 6+(8+(-60-34 c 7) c 7+(32 c 7+144+24 c 6) c 6+(116+(10-c 7) c 7+(4 c 7$ $+28+4 c 6) c 6+(-8 c 6-4 c 7-18+4 c 5) c 5) c 5) c 5+(8+(-160-8 c 7) c 7+(48+(2 c 7+8) c 7+(-24-8 c 6) c 6) c 6+(60$ $+(44-8 c 7) c 7+(8 c 7+156) c 6+(-16 c 6+12 c 7-16+8 c 5) c 5) c 5+(-248+(-96-10 c 7) c 7+(16 c 7+72+24 c 6) c 6+($
$-32 c 6+24 c 7-120-4 c 5) c 5+(-56 c 6+32+40 c 4) c 4) c 4) c 4) c 4+(12+(-48+(-83-22 c 7) c 7) c 7+(24+(16-9 c 7) c 7$ $+(32 c 7+76-8 c 6) c 6) c 6+(32+(6+41 c 7) c 7+(-40+(108+c 7) c 7+(-4 c 7-24) c 6) c 6+(38+(-23+5 c 7) c 7+(-6 c 7$ $-36+8 c 6) c 6+(8 c 6-14 c 7-42+6 c 5) c 5) c 5) c 5+(44+(-40+(36-5 c 7) c 7) c 7+(12+(4 c 7-12) c 7+(12 c 7$
$-32) c 6) c 6+(8+(-60+17 c 7) c 7+(-4 c 7-184-24 c 6) c 6+(8 c 6-10 c 7-136+8 c 5) c 5) c 5+(-96+(104-12 c 7) c 7+($ $-40 c 7+40-16 c 6) c 6+(48 c 6+24 c 7-32 c 5) c 5+(-56 c 5+32 c 6+44 c 7+120+16 c 4) c 4) c 4) c 4+(-16+(-30+(9$ $-4 c 7) c 7) c 7+(-32+(-66-2 c 7) c 7+(-4 c 7+48+8 c 6) c 6) c 6+(-10+(-13+24 c 7) c 7+(-9 c 7-8-10 c 6) c 6+(-2 c 6$ $-20 c 7+20+12 c 5) c 5) c 5+(16+(120+27 c 7) c 7+(-2 c 7-120) c 6+(48 c 6-45 c 7-48+22 c 5) c 5+(-22 c 5+16 c 6$ $-30 c 7-16-56 c 4) c 4) c 4+(-16+(-5-c 7) c 7+(9 c 7-8) c 6+(-28 c 6-12 c 7+16-14 c 5) c 5+(60 c 5+6 c 6+11 c 7+14$ $+6 c 4) c 4+(17 c 7+26+(-c 7-38) c 6+(4 c 6-c 7-4+2 c 5) c 5+(4 c 6-3 c 7+30-12 c 4) c 4+(-2 c 4+10 c 5+2 c 6-6 c 7$ $-4+4 c 3) c 3) c 3) c 3) c 3) c 3) c 3+(16+(-52+(-54+(-4+4 c 7) c 7) c 7) c 7+(40+(96+(-2+14 c 7) c 7) c 7+(64+(68$ $-16 c 7) c 7+(-8 c 7+72+32 c 6) c 6) c 6) c 6+(16+(176+(154+12 c 7) c 7) c 7+(-240+(4-58 c 7) c 7+(-92 c 7-104$ $+56 c 6) c 6) c 6+(-68+(-60-22 c 7) c 7+(-28 c 7-8+124 c 6) c 6+(40+(-40+3 c 7) c 7+(2 c 7+44-4 c 6) c 6+(-4 c 6-2$ $-4 c 5) c 5) c 5) c 5) c 5+(8+(-8+(-82-40 c 7) c 7) c 7+(264+(-240-46 c 7) c 7+(64 c 7+232+24 c 6) c 6) c 6+(-144+($ $-144+(22-c 7) c 7) c 7+(144+(156-6 c 7) c 7+(-8 c 7-32) c 6) c 6+(76+(76+8 c 7) c 7+(8 c 7+8+8 c 6) c 6+(24 c 6+2 c 7$ $-20-12 c 5) c 5) c 5) c 5+(152+(-16+(-8+2 c 7) c 7) c 7+(-88+(72+12 c 7) c 7+(24 c 7-16+16 c 6) c 6) c 6+(160+(56$ $-10 c 7) c 7+(-56 c 7-72-48 c 6) c 6+(32 c 6-24 c 7-132-4 c 5) c 5) c 5+(-184+(136-4 c 7) c 7+(-16 c 7-56-16 c 6) c 6$ $+(64 c 6-192+56 c 5) c 5+(48 c 5-16 c 6-8 c 7+16+16 c 4) c 4) c 4) c 4) c 4+(48+(-28+(-46-15 c 7) c 7) c 7+(8+(-44$ $+(54+3 c 7) c 7) c 7+(-8+(116+2 c 7) c 7+(-4 c 7-40+8 c 6) c 6) c 6) c 6+(100+(124+(99-2 c 7) c 7) c 7+(-156+(92$ $-7 c 7) c 7+(-28 c 7-204+20 c 6) c 6) c 6+(100+(-170+21 c 7) c 7+(-4 c 7-116+20 c 6) c 6+(-12 c 6-22 c 7+42$ $-24 c 5) c 5) c 5) c 5+(-96+(-64+(-10 c 7+8) c 7) c 7+((-8 c 7+16) c 7+(-40 c 7-176-16 c 6) c 6) c 6+(-404+(-264$ $+43 c 7) c 7+(-20 c 7-472+20 c 6) c 6+(80 c 6-16 c 7-64-60 c 5) c 5) c 5+(-56+(348+16 c 7) c 7+(4 c 7-24+120 c 6) c 6$ $+(188 c 6+40 c 7+284-124 c 5) c 5+(-164 c 5-128 c 6+40 c 7+176-80 c 4) c 4) c 4) c 4+(-140+(-56+(-22-20 c 7) c 7) c 7$ $+(-68+(-140+32 c 7) c 7+(52 c 7-24-24 c 6) c 6) c 6+(120+(104+61 c 7) c 7+(30 c 7+112-112 c 6) c 6+(-60 c 6-29 c 7$ $+182+40 c 5) c 5) c 5+(20+(248+3 c 7) c 7+(-120 c 7-452+8 c 6) c 6+(120 c 6-150 c 7-80+140 c 5) c 5+(72 c 5-136 c 6$ $-56 c 7+164-120 c 4) c 4) c 4+(-48+(26-50 c 7) c 7+(-40 c 7+56+64 c 6) c 6+(-22 c 7-30+(-c 7+60-2 c 6) c 6+(2 c 6$ $+4 c 7+14) c 5) c 5+(152+(-4+3 c 7) c 7+(6 c 7+104) c 6+(-24 c 6+3 c 7+268-18 c 5) c 5+(10 c 5-16 c 6+6 c 7+56$ $+48 c 4) c 4) c 4+(130+(17-3 c 7) c 7+(-10 c 7-70+8 c 6) c 6+(14 c 6-30-20 c 5) c 5+(-18 c 5+4 c 6+22 c 7+64$ $-4 c 4) c 4+(-16 c 4+32 c 5-8 c 6-7 c 7-34+4 c 3) c 3) c 3) c 3) c 3) c 3+((-40+(42+(23+c 7) c 7) c 7) c 7+(80+(-132+(-2$ $+7 c 7) c 7) c 7+(16+(-16+6 c 7) c 7+(-8 c 6-12 c 7-48) c 6) c 6) c 6+(104+(104+(20-15 c 7) c 7) c 7+(96+(104$ $-36 c 7) c 7+(-4 c 7-24+32 c 6) c 6) c 6+(-116+(-148-c 7) c 7+(52 c 7-140+44 c 6) c 6+(16 c 6+30 c 7-18 c 5) c 5) c 5) c 5$ $+(40+(-136+(-150+6 c 7) c 7) c 7+(-232+(16+26 c 7) c 7+(-144-24 c 6) c 6) c 6+(208+(4+26 c 7) c 7+(8 c 7+112$ $-96 c 6) c 6+(-36 c 6+48 c 7+224-88 c 5) c 5) c 5+(-328+(92+14 c 7) c 7+(-16 c 7-96+24 c 6) c 6+(24 c 6-76 c 7-296$ $-152 c 5) c 5+(56 c 5-24 c 6-76 c 7+200+32 c 4) c 4) c 4) c 4+(-120+(-228+(-126-13 c 7) c 7) c 7+(152+(56+24 c 7) c 7$ $+(60 c 7+40-64 c 6) c 6) c 6+(160+(104+37 c 7) c 7+(64 c 7+116-212 c 6) c 6+(-236 c 6+42 c 7-124+(-2 c 6-c 7+18$ $+2 c 5) c 5) c 5) c 5+(72+(128-70 c 7) c 7+(-80 c 7-152+168 c 6) c 6+(68+(24-c 7) c 7+(4 c 7+32+12 c 6) c 6+(-4 c 6$ $-6 c 7+68+6 c 5) c 5) c 5+(464+(124-6 c 7) c 7+(-16 c 7+16-8 c 6) c 6+(204+12 c 5) c 5+(4 c 5+32 c 6+24 c 7+40$ $-24 c 4) c 4) c 4) c 4+(-100+(72-56 c 7) c 7+(16+(-60+3 c 7) c 7+(4 c 7+216-4 c 6) c 6) c 6+(-280+(98-8 c 7) c 7+($ $-18 c 7+280-8 c 6) c 6+(28 c 6-2 c 7-14+34 c 5) c 5) c 5+\left(17 c 7^{2}+568+(36 c 7+132+20 c 6) c 6+(-16 c 6-14 c 7+8\right.$ $+8 c 5) c 5+(-64 c 5-60 c 6-32 c 7-20-4 c 4) c 4) c 4+(80+(-130-3 c 7) c 7+(-34 c 7-80+16 c 6) c 6+(76 c 6-13 c 7$ $-190-46 c 5) c 5+(-60 c 5-8 c 6+28 c 7-192-16 c 4) c 4+(-24 c 4+58 c 5-56 c 6+40 c 7-10-16 c 3) c 3) c 3) c 3) c 3+($ $-56+(72+(58+18 c 7) c 7) c 7+(-200+(80+8 c 7) c 7+(-24 c 7-144-32 c 6) c 6) c 6+(88+(-56-40 c 7) c 7+(-92 c 7+24$ $-40 c 6) c 6+(-20+(-60+3 c 7) c 7+(4 c 7-40-4 c 6) c 6+(-12 c 6+80-4 c 5) c 5) c 5) c 5+(-144+(-12+(70-c 7) c 7) c 7$ $+(80+(40-6 c 7) c 7+(-12 c 7+72-8 c 6) c 6) c 6+(-104+(48+12 c 7) c 7+(36 c 7+112+24 c 6) c 6+(-16 c 6+4 c 7+140$ $-20 c 5) c 5) c 5+(360+(-140+2 c 7) c 7+(80+8 c 7+8 c 6) c 6+(-32 c 6-12 c 7+80-44 c 5) c 5+(-24 c 5+8 c 6+4 c 7-72$ $-8 c 4) c 4) c 4) c 4+(-80+(-8+(30+c 7) c 7) c 7+(-64+(-76+10 c 7) c 7+(20 c 7+160+8 c 6) c 6) c 6+(176+(92$ $-13 c 7) c 7+(-40 c 7+444-28 c 6) c 6+(-4 c 6-22 c 7+204+54 c 5) c 5) c 5+(64+(-376+4 c 7) c 7+(-48 c 7-224$ $-64 c 6) c 6+(-8 c 6-28 c 7-188+136 c 5) c 5+(76 c 5+72 c 6-28 c 7-80+32 c 4) c 4) c 4+(156+(-84+39 c 7) c 7+(4 c 7$ $+84-4 c 6) c 6+(104 c 6-48 c 7-16-62 c 5) c 5+(56 c 5+124 c 6-36 c 7-396+120 c 4) c 4+(32 c 4-10 c 5-160 c 6+66 c 7$ $+24-12 c 3) c 3) c 3) c 3+((40+(54-9 c 7) c 7) c 7+(104+(48-22 c 7) c 7+(4 c 7+88+24 c 6) c 6) c 6+(-160+(-60$ $-12 c 7) c 7+(20 c 7-72+40 c 6) c 6+(16 c 6+12 c 7-28+24 c 5) c 5) c 5+(272+(4 c 7+4) c 7+(16 c 7+104-16 c 6) c 6+($ $-24 c 6+60 c 7+192+60 c 5) c 5+(-8 c 5+32 c 7-232-8 c 4) c 4) c 4+(72+(76+44 c 7) c 7+(48 c 7-24-64 c 6) c 6+(-72 c 6$ $-52 c 7-188-116 c 5) c 5+(-140 c 5-16 c 6-48 c 7-336-32 c 4) c 4+(-108 c 4-120 c 5-112 c 6+84 c 7-224+72 c 3) c 3)$ $c 3+(64+(4-32 c 7) c 7+(-32 c 7-32 c 6) c 6+(-56 c 6-48 c 7-8) c 5+(24 c 5-24 c 6+28 c 7-200+32 c 4) c 4+(-16 c 4$ $+60 c 5+152 c 6+124 c 7+48+144 c 3) c 3+(40 c 3+56 c 4-24 c 5-16 c 6-16 c 7-56+24 c 2) c 2) c 2) c 2) c 2) c 2) c 2+(-28$ $+(-4+(-3+(-21-5 c 7) c 7) c 7) c 7+(-32+(158+(160+15 c 7) c 7) c 7+(-64+(-90-21 c 7) c 7+(-40 c 7-16$ $+28 c 6) c 6) c 6) c 6+(4+(-40+(-21-6 c 7) c 7) c 7+(76+(-268-38 c 7) c 7+(60 c 7+136+88 c 6) c 6) c 6+(44+(-2+(c 7$ -7) $c 7) c 7+(79 c 7+76+(-5 c 7-72-2 c 6) c 6) c 6+(8+(14+2 c 7) c 7+(4 c 7-110+10 c 6) c 6+(-4 c 6-4 c 7-27$ $-8 c 5) c 5) c 5) c 5) c 5+(-8+(138+(8+9 c 7) c 7) c 7+(-88+(12+(-22-c 7) c 7) c 7+(-136+(-4 c 7+80) c 7+(2 c 7-28$ $+12 c 6) c 6) c 6) c 6+(92+(-52+(-14+5 c 7) c 7) c 7+(24+(164+12 c 7) c 7+(-16 c 7-32-4 c 6) c 6) c 6+(8+(-79$ $+3 c 7) c 7+(-41 c 7-132+10 c 6) c 6+(36 c 6-17 c 7-24+2 c 5) c 5) c 5) c 5+(12+(58+(24-4 c 7) c 7) c 7+(-58 c 7-16+($ $-16 c 7+24-28 c 6) c 6) c 6+(-116+(12+27 c 7) c 7+(-60+44 c 6) c 6+(86 c 6-38 c 7-24-30 c 5) c 5) c 5+(104+(-70$
$-2 c 7) c 7+(-10 c 7-36+28 c 6) c 6+(68 c 6-20 c 7+124-70 c 5) c 5+(-92 c 5+12 c 6+16 c 7-36+8 c 4) c 4) c 4) c 4) c 4$ $+(24+(60+(-58+(8-2 c 7) c 7) c 7) c 7+(112+(40+(29+5 c 7) c 7) c 7+(-44+(48+2 c 7) c 7+(-8 c 7-92) c 6) c 6) c 6+($ $-32+(-98+(-37+3 c 7) c 7) c 7+(16+(-40-19 c 7) c 7+(-8 c 7-156+20 c 6) c 6) c 6+(-30+(43+15 c 7) c 7+(4 c 7-168$ $-6 c 6) c 6+(8 c 6-10 c 7+4-6 c 5) c 5) c 5) c 5+(104+(-104+(-21+12 c 7) c 7) c 7+(-276+(-160-19 c 7) c 7+(24 c 7$ $+100+24 c 6) c 6) c 6+(152+(90+12 c 7) c 7+(10 c 7+208-20 c 6) c 6+(86 c 6-76 c 7+220-38 c 5) c 5) c 5+(-272+(-116$ $+13 c 7) c 7+(20 c 7+16-76 c 6) c 6+(-28 c 6-26 c 7-84-88 c 5) c 5+(36 c 5-8 c 6-52 c 7-104+140 c 4) c 4) c 4) c 4+(32$ $+(-168+(-92+c 7) c 7) c 7+(92+(185+23 c 7) c 7+(12 c 7-24-28 c 6) c 6) c 6+(-18+(111-20 c 7) c 7+(-82 c 7-108$ $+4 c 6) c 6+(-66 c 7-32+(117-c 6) c 6+(2 c 7+66-2 c 5) c 5) c 5) c 5+(-88+(113+3 c 7) c 7+(-55 c 7+180+(-c 7$ $+60) c 6) c 6+(-32+(46+2 c 7) c 7+(2 c 7-82+2 c 6) c 6+(7-12 c 5) c 5) c 5+(139 c 7+332+(-8 c 7-80) c 6+(24 c 6$ $-18 c 7+98+c 5) c 5+(22 c 5+40 c 6-15 c 7+72-24 c 4) c 4) c 4) c 4+(-62+(-9+7 c 7) c 7+(-22+(-81+c 7) c 7+90 c 6) c 6$ $+(-22+(26-5 c 7) c 7+(-2 c 7+108) c 6+(-4 c 6+14 c 7+60-12 c 5) c 5) c 5+(150+(55-3 c 7) c 7+(8 c 7-122+6 c 6) c 6$ $+(-4 c 6+10 c 7-104-12 c 5) c 5+(52 c 5-40 c 7-120-22 c 4) c 4) c 4+(-45+(-37-8 c 7) c 7+(9 c 7+63-2 c 6) c 6+($ $-16 c 6+31 c 7+6-34 c 5) c 5+(26 c 5-16 c 6+8 c 7-9+10 c 4) c 4+(-8 c 4-14 c 5-18 c 6+21 c 7+18+(-c 4-2 c 5-c 6$ $-11) c 3$) $c 3) c 3) c 3) c 3) c 3+(32+(42+(-56+(11-6 c 7) c 7) c 7) c 7+(124+(38+(2-12 c 7) c 7) c 7+(24+(-74+6 c 7) c 7$ $+(10 c 7-24-4 c 6) c 6) c 6) c 6+(-64+(80+(61+4 c 7) c 7) c 7+(-348+(-308+42 c 7) c 7+(12 c 7-192-36 c 6) c 6) c 6$ $+(80+(-39+40 c 7) c 7+(19 c 7+204-38 c 6) c 6+(-16 c 6-9 c 7+108+6 c 5) c 5) c 5) c 5+(-12+(-402+(-66$ $-33 c 7) c 7) c 7+(216+(72+34 c 7) c 7+(88 c 7+260-48 c 6) c 6) c 6+(-292+(184+86 c 7) c 7+(-56 c 7-128-248 c 6) c 6$ $+(16 c 7-120+(-c 7-100) c 6+(4 c 6-c 7+18+2 c 5) c 5) c 5) c 5+(104+(196+14 c 7) c 7+(-60 c 7-100+(4 c 6+2 c 7$ $-12) c 6) c 6+(104+(-32+c 7) c 7+(-160-8 c 7-8 c 6) c 6+(4 c 6-7 c 7+74+4 c 5) c 5) c 5+(32+(106+6 c 7) c 7+(-104$ $-12 c 6) c 6+(16 c 6+4 c 7+156+4 c 5) c 5+(-24 c 5+12 c 6+6 c 7+88-36 c 4) c 4) c 4) c 4) c 4+(12+(-12+(144$ $+24 c 7) c 7) c 7+(-212+(280+12 c 7) c 7+(-28 c 7-100-20 c 6) c 6) c 6+(-128+(286-34 c 7) c 7+(-236+(-306-c 7) c 7$ $+(4 c 7+28+4 c 6) c 6) c 6+(92+(-116-7 c 7) c 7+(378-4 c 6) c 6+(-8 c 6+6 c 7+186+8 c 5) c 5) c 5) c 5+(-460+(196+($ $-44+3 c 7) c 7) c 7+(316+(-52-5 c 7) c 7+(-24 c 7+208-12 c 6) c 6) c 6+(-348+(114-2 c 7) c 7+(34 c 7+536+36 c 6) c 6$ $+(-18 c 6+16 c 7+356+18 c 5) c 5) c 5+(852+(-96+23 c 7) c 7+(52 c 7-112+24 c 6) c 6+(-124 c 6-38 c 7+276-26 c 5) c 5$ $+(-4 c 5-52 c 6-28 c 7-236-72 c 4) c 4) c 4) c 4+(-72+(87+(36+c 7) c 7) c 7+(60+(26+15 c 7) c 7+(23 c 7+100$ $-8 c 6) c 6) c 6+(418+(157-48 c 7) c 7+(-8 c 7+182-10 c 6) c 6+(2 c 6+60 c 7-71+36 c 5) c 5) c 5+(132+(-397$ $-45 c 7) c 7+(-30 c 7-396-64 c 6) c 6+(-152 c 6+82 c 7-332+36 c 5) c 5+(250 c 5+32 c 6+37 c 7-444+152 c 4) c 4) c 4$ $+(52+(-110-9 c 7) c 7+(51 c 7+152-4 c 6) c 6+(-16 c 6+114 c 7-34-120 c 5) c 5+(-40 c 5+16 c 6-37 c 7-38$ $+120 c 4) c 4+(2 c 6-24 c 7-59+(-2 c 6-c 7-64+2 c 5) c 5+(16 c 5+4 c 6+3 c 7-86+12 c 4) c 4+(2 c 4-6 c 5-4 c 6+6 c 7$ $-12-5 c 3) c 3) c 3) c 3) c 3) c 3+(12+(-138+(31-9 c 7) c 7) c 7+(88+(-124-88 c 7) c 7+(164+(-52+c 7) c 7+(-4 c 7+60$ $-12 c 6) c 6) c 6) c 6+(-52+(164+(-57+c 7) c 7) c 7+(136+(24+6 c 7) c 7+(24 c 7+220) c 6) c 6+(-228+(13-6 c 7) c 7$ $+(14 c 7+168-14 c 6) c 6+(-38 c 6-3 c 7-6-2 c 5) c 5) c 5) c 5+(-96+(-60+(-70+5 c 7) c 7) c 7+(152 c 7-32+(22 c 7$ $+108+44 c 6) c 6) c 6+(632+(188-26 c 7) c 7+(-44 c 7+424-36 c 6) c 6+(-44 c 6-10 c 7+112+68 c 5) c 5) c 5+(-108+($ $-138+5 c 7) c 7+(-22 c 7-100-52 c 6) c 6+(4 c 6-72 c 7-396+142 c 5) c 5+(208 c 5+132 c 6-24 c 7+36) c 4) c 4) c 4+(52$ $+(-28+(-14+9 c 7) c 7) c 7+(472+(284-47 c 7) c 7+(-64 c 7+80+28 c 6) c 6) c 6+(-64+(18-69 c 7) c 7+(26 c 7-432$ $+152 c 6) c 6+(2 c 6+35 c 7-800+22 c 5) c 5) c 5+(688+(-252-35 c 7) c 7+(140 c 7+348+88 c 6) c 6+(-112 c 6+136 c 7$ $+152-110 c 5) c 5+(-40 c 5+168 c 6+156 c 7-480+44 c 4) c 4) c 4+(108+(-119+61 c 7) c 7+(134 c 7-124-132 c 6) c 6+($ $-228 c 6+84 c 7-228+(-c 6-308-2 c 5) c 5) c 5+(-54 c 7-288+(-c 7-168) c 6+(14 c 6+6 c 7-628-5 c 5) c 5+(-42 c 5$ $-4 c 6-9 c 7-144-36 c 4) c 4) c 4+(-572+(-105+4 c 7) c 7+(4 c 7+176-4 c 6) c 6+(-16 c 6-8 c 7+152) c 5+(12 c 5+6 c 6$ $-20 c 7-172-6 c 4) c 4+(28 c 4-12 c 5-8 c 6+5 c 7+170-10 c 3) c 3) c 3) c 3) c 3+(-20+(216+(60+21 c 7) c 7) c 7+(-304$ $+(-60-8 c 7) c 7+(-56 c 7-208+32 c 6) c 6) c 6+(224+(-136-17 c 7) c 7+(52 c 7+176+196 c 6) c 6+(124 c 6-27 c 7+20$ $+48 c 5) c 5) c 5+(-80+(-92+76 c 7) c 7+(24 c 7+40-180 c 6) c 6+(-72 c 6-84 c 7-200+(-c 7-156+2 c 5) c 5) c 5+($ $-170 c 7-228+(116+2 c 7+4 c 6) c 6+(-4 c 6-8 c 7-260+8 c 5) c 5+(20 c 5-8 c 6-10 c 7-112+20 c 4) c 4) c 4) c 4+(200$ $+(-236+34 c 7) c 7+(-68 c 7-216-384 c 6) c 6+(700+(-94-c 7) c 7+(4 c 7-300+4 c 6) c 6+(-12 c 6+2 c 7-32$ $-8 c 5) c 5) c 5+(-1336+(40-12 c 7) c 7+(-24 c 7-108-8 c 6) c 6+(40 c 6+36 c 7-156+34 c 5) c 5+(36 c 5+36 c 6+16 c 7$ $+176+20 c 4) c 4) c 4+(-172+(227+6 c 7) c 7+(13 c 7+472) c 6+(-30 c 6+14 c 7+762+15 c 5) c 5+(16 c 5+56 c 6-12 c 7$ $+488-28 c 4) c 4+(48 c 4-32 c 5+34 c 6-28 c 7+184+8 c 3) c 3) c 3) c 3+(68+(80+22 c 7) c 7+(20+(6+c 7) c 7+(-4 c 7$ $-112-12 c 6) c 6) c 6+(-308+(-92+4 c 7) c 7+(28 c 7-268+8 c 6) c 6+(-32 c 6+c 7-92-26 c 5) c 5) c 5+(100+(258$ $-3 c 7) c 7+(24 c 7+232+20 c 6) c 6+(-64 c 6+20 c 7+196-48 c 5) c 5+(-52 c 5-76 c 6+2 c 7-52+4 c 4) c 4) c 4+(-448$ $+(152-28 c 7) c 7+(-20 c 7-120+16 c 6) c 6+(-96 c 6+20 c 7-96+38 c 5) c 5+(-48 c 5-80 c 6+20 c 7+568-100 c 4) c 4$ $+(-24 c 4-22 c 5+128 c 6-51 c 7-124+22 c 3) c 3) c 3+(12+(2-35 c 7) c 7+(6 c 7+76+96 c 6) c 6+(36 c 6+28 c 7+40$ $+104 c 5) c 5+(124 c 5-32 c 6+50 c 7+204+36 c 4) c 4+(28 c 4+44 c 5+108 c 6-60 c 7+484-32 c 3) c 3+(-108 c 3+12 c 4$ $-60 c 5-92 c 6-90 c 7-36-40 c 2) c 2) c 2) c 2) c 2) c 2) c 2+(-28+(64+(45-11 c 7) c 7) c 7+(-28+(12+(58+4 c 7) c 7) c 7$ $+(-116+(-152-c 7) c 7+(4 c 7+16-4 c 6) c 6) c 6) c 6+(32+(-198+(-67-8 c 7) c 7) c 7+(108+(8-2 c 7) c 7+(70 c 7$ $+260-52 c 6) c 6) c 6+(-18+(121-23 c 7) c 7+(47 c 7+26-116 c 6) c 6+(-46+(48-c 7) c 7+(16+2 c 6) c 6+40 c 5) c 5) c 5)$ $c 5+(44+(120+(12+22 c 7) c 7) c 7+(-232+(132-16 c 7) c 7+(-16 c 7-104-44 c 6) c 6) c 6+(-20+(34-23 c 7) c 7+(172$ $+(-2+3 c 7) c 7+(-4+2 c 7-4 c 6) c 6) c 6+(-44+(-76-3 c 7) c 7+(-6 c 7+36-4 c 6) c 6+(4 c 6+2 c 7+124+8 c 5) c 5) c 5)$ $c 5+(-16+(-28+(10-3 c 7) c 7) c 7+(28+(-4 c 7-44) c 7+(4 c 7+4) c 6) c 6+(-40+(40+7 c 7) c 7+(24 c 7+100+4 c 6) c 6$ $+(-24 c 6+2 c 7+88-6 c 5) c 5) c 5+(68+(-60-4 c 7) c 7+(76-16 c 6) c 6+(-28 c 6+14 c 7+52-4 c 5) c 5+(-4 c 5+12 c 7$ $-48+16 c 4) c 4) c 4) c 4) c 4+(40+(-46+(8 c 7-9) c 7) c 7+(-12+(84-16 c 7) c 7+(40+(-28-c 7) c 7+(8-4 c 6) c 6) c 6) c 6$ $+(-154+(-29-54 c 7) c 7+(254+(2-2 c 7) c 7+(20 c 7+136) c 6) c 6+(-2+(142-10 c 7) c 7+(6 c 7+42-20 c 6) c 6+($
$-4 c 6+12 c 7-32+16 c 5) c 5) c 5) c 5+(-44+(-160+(22+4 c 7) c 7) c 7+(36+(-14-10 c 7) c 7+(16 c 7+84+8 c 6) c 6) c 6$ $+(488+(53-22 c 7) c 7+(39 c 7+128-38 c 6) c 6+(-82 c 6+30 c 7-142+32 c 5) c 5) c 5+(-292+(-20 c 7-56) c 7+(38 c 7$ $+64-56 c 6) c 6+(-136 c 6+63 c 7-284+94 c 5) c 5+(142 c 5+8 c 6-26 c 7+44+44 c 4) c 4) c 4) c 4+((-12+(-6$ $+6 c 7) c 7) c 7+(246+(182+c 7) c 7+(-114-25 c 7-6 c 6) c 6) c 6+(-84+(-94-11 c 7) c 7+(-20 c 7-222+56 c 6) c 6$ $+(20 c 6+4 c 7-166-20 c 5) c 5) c 5+(174+(-2+c 7) c 7+(24 c 7+74+40 c 6) c 6+(-50 c 6+116 c 7-152-76 c 5) c 5+($ $-66 c 5+18 c 6+21 c 7+200-124 c 4) c 4) c 4+(26+(-34+31 c 7) c 7+(-14 c 7-74-22 c 6) c 6+(-32 c 6-36 c 7-12+(-c 7$ $-8+2 c 5) c 5) c 5+(-190+(-34-c 7) c 7+32 c 6+(4 c 6+2 c 7-60+8 c 5) c 5+(-12 c 5-8 c 6-86-8 c 4) c 4) c 4+(-38 c 7$ $-84+(3 c 7+48-2 c 6) c 6+(-4 c 6-2 c 7+36+14 c 5) c 5+(-4 c 5-8 c 6-3 c 7+62-6 c 4) c 4+(2 c 4-4 c 5+10 c 6+4 c 7$ $+10+6 c 3) c 3) c 3) c 3) c 3) c 3+(16+(16+(25-15 c 7) c 7) c 7+(-100+(40+(-3 c 7-4) c 7) c 7+(52+(12+c 7) c 7+(8 c 7$ $+140+4 c 6) c 6) c 6) c 6+(-204+(-52+(44+6 c 7) c 7) c 7+(-160+(-136+17 c 7) c 7+(-22 c 7+136-20 c 6) c 6) c 6+(328$ $+(54-c 7) c 7+(-32 c 7+240+20 c 6) c 6+(-12 c 6-14 c 7-44-8 c 5) c 5) c 5) c 5+(-52+(-16+(78-14 c 7) c 7) c 7+(544$ $+(144-10 c 7) c 7+(40-12 c 7+16 c 6) c 6) c 6+(-260+(102-8 c 7) c 7+(-70 c 7-704+120 c 6) c 6+(60 c 6+15 c 7-446$ $+36 c 5) c 5) c 5+(388+(128-18 c 7) c 7+(-16 c 7-64+96 c 6) c 6+(68 c 6+32 c 7+160+120 c 5) c 5+(-24 c 5+56 c 7-68$ $-100 c 4) c 4) c 4) c 4+(-76+(528+(196+14 c 7) c 7) c 7+(-240+(-202-23 c 7) c 7+(-48 c 7-308+68 c 6) c 6) c 6+(60+($ $-345+20 c 7) c 7+(-13 c 7-428+154 c 6) c 6+(42 c 6-16 c 7+294-192 c 5) c 5) c 5+(20+(-250+8 c 7) c 7+(86 c 7-224$ $-92 c 6) c 6+(9 c 7-278+(-c 7+112-2 c 6) c 6+(2 c 6+4 c 7-248) c 5) c 5+(-108+(-306+3 c 7) c 7+(6 c 7+36) c 6+($ $-24 c 6+3 c 7-386-18 c 5) c 5+(10 c 5-16 c 6+6 c 7-436+48 c 4) c 4) c 4) c 4+(366+(-10+42 c 7) c 7+(-200+(96-c 7) c 7$ $+(-c 7-282+2 c 6) c 6) c 6+(390+(-136+7 c 7) c 7+(4 c 7-394+2 c 6) c 6+(-8 c 6-14 c 7+20-8 c 5) c 5) c 5+(-1266+($ $-210-3 c 7) c 7+(-26 c 7+240-18 c 6) c 6+(26 c 6+4 c 7+522-8 c 5) c 5+(-32 c 5+66 c 6+67 c 7+170+86 c 4) c 4) c 4+(88$ $+(134+11 c 7) c 7+(12 c 7+158+6 c 6) c 6+(-12 c 6-54 c 7+316+84 c 5) c 5+(-56 c 5+12 c 6-52 c 7+506-22 c 4) c 4+($ $-24 c 4-12 c 5+82 c 6-52 c 7-92+44 c 3) c 3) c 3) c 3) c 3+(52+(-112+(-103-21 c 7) c 7) c 7+(376+(-304+16 c 7) c 7$ $+(48 c 7+184-8 c 6) c 6) c 6+(-32+(-64+41 c 7) c 7+(168 c 7-76-72 c 6) c 6+(-118+(114-c 7) c 7+(-c 7-182$ $+2 c 6) c 6+(4 c 6-210) c 5) c 5) c 5+(248+(-128-50 c 7) c 7+(-224+(20+2 c 7) c 7+(8 c 7-228+8 c 6) c 6) c 6+(448+($ $-90-10 c 7) c 7+(-32 c 7-436-20 c 6) c 6+(32 c 6+5 c 7-256+24 c 5) c 5) c 5+(-20 c 6+68 c 7-736+(32 c 6-172$ $+22 c 5) c 5+(4 c 5-8 c 6+208) c 4) c 4) c 4+(324+(64+(-88+c 7) c 7) c 7+(168+(136-11 c 7) c 7+(-24 c 7-172$ $-4 c 6) c 6) c 6+(-1152+(-131+26 c 7) c 7+(41 c 7-514+34 c 6) c 6+(4 c 6-12 c 7-140-48 c 5) c 5) c 5+(192+(464$ $+7 c 7) c 7+(40 c 7+1092+68 c 6) c 6+(48 c 6-8 c 7+1276-166 c 5) c 5+(-358 c 5-140 c 6+46 c 7+392-84 c 4) c 4) c 4+($ $-364+(251-17 c 7) c 7+(-54 c 7-34+6 c 6) c 6+(-4 c 6-100 c 7-116+262 c 5) c 5+(-46 c 5-174 c 6+32 c 7+378$ $-168 c 4) c 4+(-36 c 4+124 c 5+184 c 6-48 c 7-148+42 c 3) c 3) c 3) c 3+(-16+(-8+(-33+9 c 7) c 7) c 7+(-440+(-152$ $+30 c 7) c 7+(-104-32 c 6) c 6) c 6+(336+(-20+18 c 7) c 7+(-24 c 7+648-68 c 6) c 6+(-32 c 6-31 c 7+428-24 c 5) c 5) c 5$ $+(-688+(36+20 c 7) c 7+(-48 c 7-136-40 c 6) c 6+(64 c 6-90 c 7-188-46 c 5) c 5+(12 c 5+12 c 6-80 c 7+312$ $+60 c 4) c 4) c 4+(-100+(-52-75 c 7) c 7+(-122 c 7+144+152 c 6) c 6+(320 c 6-7 c 7+756+444 c 5) c 5+(618 c 5+32 c 6$ $+206 c 7-12+344 c 4) c 4+(194 c 4-22 c 5-140 c 6+33 c 7+1278-330 c 3) c 3) c 3+(-164+(128+32 c 7) c 7+(60 c 7+28$ $+160 c 6) c 6+(192 c 6+74 c 7-312+8 c 5) c 5+(-20 c 5-8 c 6+20 c 7+804-124 c 4) c 4+(-236 c 4-862 c 5-844 c 6-266 c 7$ $-204-496 c 3) c 3+(184 c 3-140 c 4+36 c 5+68 c 6-28 c 7+280-212 c 2) c 2) c 2) c 2) c 2) c 2+(18+(30+(23+(-3$ $+2 c 7) c 7) c 7) c 7+(-69+(-62+(21+2 c 7) c 7) c 7+(-38+(-17-7 c 7) c 7+(-c 7+28+2 c 6) c 6) c 6) c 6+(18+(-88+(-56$ $-c 7) c 7) c 7+(256+(160-11 c 7) c 7+(14 c 7+2+2 c 6) c 6) c 6+(-55+(25-16 c 7) c 7+(2 c 7-296+8 c 6) c 6+(18 c 6-c 7$ $-56-10 c 5) c 5) c 5) c 5+(17+(143+(17+16 c 7) c 7) c 7+(-134+(1-15 c 7) c 7+(-25 c 7-160+24 c 6) c 6) c 6+(108+($ $-129-5 c 7) c 7+(10 c 7+56+98 c 6) c 6+(20 c 6-82 c 7+4-26 c 5) c 5) c 5+\left(-30+(-104+2 c 7) c 7+\left(-c 6^{2}+5 c 7+3\right) c 6\right.$ $+(13 c 7-2+(3 c 7+70) c 6+(-3 c 6-121-2 c 5) c 5) c 5+(-23+(-48-3 c 7) c 7+(c 7+48+3 c 6) c 6+(2 c 6+c 7-108$ $+c 5) c 5+(2 c 5-3 c 6-3 c 7-30+9 c 4) c 4) c 4) c 4) c 4+(-14+(-95+(-39-3 c 7) c 7) c 7+(114+(-86-8 c 7) c 7+(-4 c 7$ $-18+14 c 6) c 6) c 6+(80+(-82-7 c 7) c 7+(71 c 7+24+(-c 7+28) c 6) c 6+(-116+(31+2 c 7) c 7+(-132+2 c 6) c 6+($ $-3 c 7-52-2 c 5) c 5) c 5) c 5+(42+(-75+32 c 7) c 7+(-10+(-11+c 7) c 7+(2 c 7-68) c 6) c 6+(-109 c 7+214+(-6 c 7$ $-164-4 c 6) c 6+(4 c 6-6 c 7-120-4 c 5) c 5) c 5+(-364+(51-10 c 7) c 7+(-6 c 7+18+12 c 6) c 6+(46 c 6+5 c 7-6$ $+2 c 5) c 5+(-10 c 5+18 c 6-16 c 7+194-2 c 4) c 4) c 4) c 4+(8+(40+(-17-c 7) c 7) c 7+(19+(12-c 7) c 7+(-6 c 7-47$ $+2 c 6) c 6) c 6+(-322+(-82+16 c 7) c 7+(-6 c 7+102+10 c 6) c 6+(6 c 6-24 c 7+140-10 c 5) c 5) c 5+(231+(122$ $+12 c 7) c 7+(-18 c 7+82+26 c 6) c 6+(78 c 6-35 c 7+164-24 c 5) c 5+(-86 c 5+18 c 6-25 c 7+149-66 c 4) c 4) c 4+(-54$ $+(37+11 c 7) c 7+(-17 c 7-2 c 6) c 6+(10 c 6-52 c 7+54+30 c 5) c 5+(40 c 5+24 c 6+17 c 7-160+28 c 4) c 4+(-26 c 6$ $+17 c 7+52+(-14-c 5) c 5+(-2 c 5-c 7+50-2 c 4) c 4+(2 c 5+2 c 6-c 7-16+2 c 3) c 3) c 3) c 3) c 3) c 3+(-45+(81+(24$ $-5 c 7) c 7) c 7+(-82+(-14+37 c 7) c 7+(5 c 7-46+(c 7-30+6 c 6) c 6) c 6) c 6+(44+(-89+69 c 7) c 7+(-198+(-68$ $-c 7) c 7+(-22 c 7-186-2 c 6) c 6) c 6+(222+(-21+9 c 7) c 7+(-4 c 7-52+22 c 6) c 6+(14 c 6-c 7+22-10 c 5) c 5) c 5) c 5$ $+(132+(239+(26-3 c 7) c 7) c 7+(94+(-69+10 c 7) c 7+(-5 c 7-86-14 c 6) c 6) c 6+(-724+(-9+17 c 7) c 7+(-20 c 7$ $-324+14 c 6) c 6+(42 c 6-2 c 7+150-26 c 5) c 5) c 5+(275+(81+5 c 7) c 7+(-2 c 7+78+15 c 6) c 6+(7 c 7+488-71 c 5) c 5$ $+(-142 c 5-76 c 6+21 c 7-66-27 c 4) c 4) c 4) c 4+(-66+(245+(47-10 c 7) c 7) c 7+(-708+(-351+13 c 7) c 7+(42 c 7$ $+124-6 c 6) c 6) c 6+(246+(-27+41 c 7) c 7+(6 c 7+824-128 c 6) c 6+(-24 c 6+862+2 c 5) c 5) c 5+(-456+(45$ $+16 c 7) c 7+(-33 c 7-62-124 c 6) c 6+(36 c 6-82 c 7+54+148 c 5) c 5+(78 c 5-84 c 6-73 c 7-68+92 c 4) c 4) c 4+(21$ $+(122-49 c 7) c 7+(-22 c 7+56+56 c 6) c 6+(106 c 6-3 c 7+324+224 c 5) c 5+(38 c 6+134 c 7-234+(-2 c 6-c 7+438$ $+2 c 5) c 5+(16 c 5+4 c 6+3 c 7+346+12 c 4) c 4) c 4+(678+(176-c 7) c 7+(-c 7-244+2 c 6) c 6+(6 c 6+6 c 7-326$ $-8 c 5) c 5+(-4 c 5-4 c 6+3 c 7+20) c 4+(-14 c 4+4 c 5-2 c 6-2 c 7-186+2 c 3) c 3) c 3) c 3) c 3+(59+(-357+(-113$ $-26 c 7) c 7) c 7+(384+(103+11 c 7) c 7+(56 c 7+394-43 c 6) c 6) c 6+(-264+(264-2 c 7) c 7+(-11 c 7+44-152 c 6) c 6+($ $-67 c 6+63 c 7-121+18 c 5) c 5) c 5+(128+(134-62 c 7) c 7+(c 7+92+159 c 6) c 6+(2 c 6+7 c 7+272+307 c 5) c 5+(232 c 7$
$-43+(-22-c 6) c 6+(2 c 7+368-2 c 5) c 5+(-12 c 5+2 c 6+6 c 7+290-21 c 4) c 4) c 4) c 4+(-286+(213-82 c 7) c 7$ $+(75 c 7+324+430 c 6) c 6+(116 c 7-1320+(-c 7+326) c 6+(4 c 6-c 7-104+2 c 5) c 5) c 5+(2180+(102+3 c 7) c 7$ $+(10 c 7-78+8 c 6) c 6+(-20 c 6-25 c 7-362-8 c 5) c 5+(-40 c 6-22 c 7-294-36 c 4) c 4) c 4+(-236+(-181-5 c 7) c 7$ $+(-12 c 7-729-10 c 6) c 6+(24 c 6+21 c 7-1380-36 c 5) c 5+(42 c 5-32 c 6+22 c 7-947+22 c 4) c 4+(-12 c 4+24 c 5$ $-60 c 6+39 c 7+8-24 c 3) c 3) c 3) c 3+(-180+(-210+6 c 7) c 7+(-58 c 7-108+(c 7+69+6 c 6) c 6) c 6+(826+(39-c 7) c 7$ $+(-18 c 7+400-2 c 6) c 6+(20 c 6-c 7+63+14 c 5) c 5) c 5+(-434+(-324+4 c 7) c 7+(-24 c 7-704-8 c 6) c 6+(72 c 6$ $-26 c 7-816+56 c 5) c 5+(126 c 5+96 c 6-19 c 7+4+18 c 4) c 4) c 4+(696+(-279+31 c 7) c 7+(18 c 7+64-30 c 6) c 6$ $+(72 c 6+27 c 7+338-138 c 5) c 5+(68 c 5+112 c 6-20 c 7-550+98 c 4) c 4+(40 c 4-18 c 5-180 c 6+63 c 7+837$ $-36 c 3) c 3) c 3+(-64+(42+60 c 7) c 7+(4 c 7-155-139 c 6) c 6+(-96 c 6-12 c 7-236-238 c 5) c 5+(-280 c 5+2 c 6$ $-116 c 7+17-160 c 4) c 4+(-72 c 4+4 c 5-48 c 6+50 c 7-1446+158 c 3) c 3+(306 c 3+22 c 4+350 c 5+388 c 6+165 c 7$ $+211-35 c 2) c 2) c 2) c 2) c 2) c 2+(12+(-17+(4 c 7-12) c 7) c 7+(-4+(1-c 7) c 7+(16+(-4-c 7) c 7-30 c 6) c 6) c 6+(48$ $+(36-36 c 7) c 7+(136+(108-c 7) c 7+(6 c 7-66) c 6) c 6+(11 c 7-128+(2 c 7-74-8 c 6) c 6+(8 c 6+72) c 5) c 5) c 5+(-14$ $+(5+(-2+3 c 7) c 7) c 7+(-142+(-38-4 c 7) c 7+(-c 7-2 c 6) c 6) c 6+(134+(-56+9 c 7) c 7+(22 c 7+344-30 c 6) c 6+($ $-8 c 6-12 c 7+138+4 c 5) c 5) c 5+(-110+(-43+2 c 7) c 7+(7 c 7+50-38 c 6) c 6+(-10 c 6+24 c 7-16-34 c 5) c 5+(20 c 5$ $+4 c 6-6 c 7-6+40 c 4) c 4) c 4) c 4+(-8+(-165+(-43-2 c 7) c 7) c 7+(142+(49+6 c 7) c 7+(11 c 7+100-16 c 6) c 6) c 6$ $+(12+(111-14 c 7) c 7+(9 c 7+112-38 c 6) c 6+(-14 c 6+15 c 7-130+72 c 5) c 5) c 5+(-8+(95+9 c 7) c 7+(-12 c 7+82$ $+2 c 6) c 6+(-52 c 6+9 c 7+36+94 c 5) c 5+(102 c 7+(-50-c 7) c 6+(4 c 6-c 7+150+2 c 5) c 5+(4 c 6-3 c 7+140$ $-12 c 4) c 4) c 4) c 4+(-64+(10-10 c 7) c 7+(-20 c 7+2+58 c 6) c 6+(-202+(24-c 7) c 7+118 c 6+(4 c 7-22) c 5) c 5+(448$ $+(65+c 7) c 7+(2 c 7-118) c 6+(-8 c 6+2 c 7-238) c 5+(18 c 5-14 c 6-12 c 7-132-18 c 4) c 4) c 4+(-102+(-35$ $-2 c 7) c 7+(-34-4 c 6) c 6+(-4 c 6+18 c 7-86-20 c 5) c 5+(24 c 5-12 c 6+16 c 7-164+12 c 4) c 4+(2 c 4-2 c 5-24 c 6$ $+12 c 7+68-14 c 3) c 3) c 3) c 3) c 3+(-46+(111+(6 c 7+56) c 7) c 7+(-184+(110-3 c 7) c 7+(-11 c 7-52+12 c 6) c 6) c 6$ $+(46+(54+3 c 7) c 7+(-78 c 7-40+22 c 6) c 6+(114 c 6-51 c 7+106+76 c 5) c 5) c 5+(-22+(146-c 7) c 7+(-22 c 7-58$ $+(-c 7+140-2 c 6) c 6) c 6+(-438+(70+2 c 7) c 7+(6 c 7+192+2 c 6) c 6+(-8 c 6-2 c 7+130-4 c 5) c 5) c 5+(436+(-46$ $+3 c 7) c 7+(4 c 7-22-6 c 6) c 6+(-20 c 6+2 c 7+28-4 c 5) c 5+(2 c 5+2 c 6+9 c 7-196+6 c 4) c 4) c 4) c 4+(-120+(-131$ $+62 c 7) c 7+(-326+(-128+2 c 7) c 7+(8 c 7+110) c 6) c 6+(970+(38-14 c 7) c 7+(-7 c 7+128-14 c 6) c 6+(-2 c 6+16 c 7$ $-138+16 c 5) c 5) c 5+(-514+(-202-5 c 7) c 7+(8 c 7-610-26 c 6) c 6+(-52 c 6+11 c 7-936+66 c 5) c 5+(170 c 5+60 c 6$ $-3 c 7-326+66 c 4) c 4) c 4+(172+(-131-9 c 7) c 7+(28 c 7-82+4 c 6) c 6+(-18 c 6+82 c 7+192-136 c 5) c 5+(-18 c 5$ $+46 c 6-19 c 7+166+30 c 4) c 4+(-28 c 4-32 c 5-42 c 6-2 c 7+214) c 3) c 3) c 3+(48+(-126+(-23-2 c 7) c 7) c 7+(506$ $+(188-10 c 7) c 7+(10-3 c 7+14 c 6) c 6) c 6+(-398+(88-16 c 7) c 7+(-2 c 7-810+54 c 6) c 6+(24 c 6+14 c 7-542$ $+4 c 5) c 5) c 5+(510+(-7-20 c 7) c 7+(20 c 7+80+68 c 6) c 6+(-48 c 6+12 c 7+100+24 c 5) c 5+(-42 c 5-10 c 6+51 c 7$ $-12-68 c 4) c 4) c 4+(-106+(3+41 c 7) c 7+(64 c 7+38-86 c 6) c 6+(-200 c 6+22 c 7-794-378 c 5) c 5+(-580 c 5-16 c 6$ $-230 c 7+934-462 c 4) c 4+(-108 c 4+320 c 5+318 c 6-169 c 7-1614+380 c 3) c 3) c 3+(126+(-197+8 c 7) c 7+(-50 c 7$ $+22-200 c 6) c 6+(-132 c 6-56 c 7+740+38 c 5) c 5+(110 c 5+46 c 6-51 c 7-1170+194 c 4) c 4+(530 c 4+1550 c 5$ $+1108 c 6+174 c 7+628+376 c 3) c 3+(-978 c 3+48 c 4-118 c 5-110 c 6+83 c 7-406+548 c 2) c 2) c 2) c 2) c 2+(1+(-27$ $+(-16+3 c 7) c 7) c 7+(37+(-8 c 7+20) c 7+(2 c 7-9+(3-c 6) c 6) c 6) c 6+(8+(14-22 c 7) c 7+(33 c 7+2+(4 c 7$ $+20) c 6) c 6+(-79+(-8-2 c 7) c 7+(9-4 c 6) c 6+(6+2 c 5) c 5) c 5) c 5+(-41+(-87+4 c 7) c 7+(-32+(-9-3 c 7) c 7$ $+(2 c 7+17+2 c 6) c 6) c 6+(180+(-39-2 c 7) c 7+(10 c 7+82-4 c 6) c 6+(-10 c 6-101+4 c 5) c 5) c 5+(-90+(-4 c 7$ $-8) c 7+(c 7-22-2 c 6) c 6+(-2 c 6+6 c 7-134+6 c 5) c 5+(28 c 5+10 c 6-6 c 7+16+7 c 4) c 4) c 4) c 4+(20+(-68+(-13$ $+2 c 7) c 7) c 7+(180+(75-c 7) c 7+(-6 c 7-32) c 6) c 6+(-122+(11-9 c 7) c 7+(-222+24 c 6) c 6+(-2 c 7-188) c 5) c 5$ $+(100+(16-3 c 7) c 7+(-c 7-26+34 c 6) c 6+(-2 c 6+8 c 7-8-32 c 5) c 5+(-18 c 5+6 c 6+2 c 7+100-42 c 4) c 4) c 4+($ $-14+(-28+8 c 7) c 7+(-4 c 7+8-2 c 6) c 6+(-10 c 7-62-52 c 5) c 5+(-84 c 5+18 c 6-40 c 7+116+(-2 c 5-c 6-99$ $-c 4) c 4) c 4+(64 c 6-46 c 7-182+(96-c 7+2 c 5) c 5+24 c 4+(c 4+c 6+44) c 3) c 3) c 3) c 3+(-9+(184+(53+9 c 7) c 7) c 7$ $+(-210+(-51-7 c 7) c 7+(-22 c 7-171+20 c 6) c 6) c 6+(100+(-98+10 c 7) c 7+(-10 c 7-48+48 c 6) c 6+(24 c 6-32 c 7$ $+121-32 c 5) c 5) c 5+(-70+(-48+14 c 7) c 7+(-10 c 7-76-36 c 6) c 6+(24 c 6+12 c 7-46-126 c 5) c 5+(-164 c 5$ $-102 c 7+96+(2 c 5-c 7-152+8 c 4) c 4) c 4) c 4+(88+(-109+45 c 7) c 7+(-36 c 7-46-156 c 6) c 6+(-134 c 6-32 c 7$ $+846+64 c 5) c 5+(-44 c 7-1182+(-c 7+104-2 c 6) c 6+(2 c 6+4 c 7+330) c 5+(-10 c 5+16 c 6+9 c 7+208$ $+16 c 4) c 4) c 4+(312+(62+c 7) c 7+(2 c 7+292+6 c 6) c 6+(-4 c 6-14 c 7+696+16 c 5) c 5+(-28 c 5+12 c 6-12 c 7+512$ $-7 c 4) c 4+(-4 c 5+28 c 6-16 c 7-132+13 c 3) c 3) c 3) c 3+(107+(183-28 c 7) c 7+(83 c 7+199+(-33-c 6) c 6) c 6+(29 c 7$ $-734+(3 c 7-250) c 6+(-3 c 6+41-2 c 5) c 5) c 5+(493+(145-c 7) c 7+(9 c 7+540+c 6) c 6+(-30 c 6+9 c 7+714$ $-19 c 5) c 5+(-84 c 5-51 c 6+12 c 7+93-21 c 4) c 4) c 4+(-424+(159-10 c 7) c 7+(-7 c 7+42+14 c 6) c 6+(-20 c 6-32 c 7$ $-476+96 c 5) c 5+(-30 c 5-46 c 6+8 c 7+36-34 c 4) c 4+(-7 c 4+14 c 5+85 c 6-24 c 7-1035+16 c 3) c 3) c 3+(129+(-62$ $-37 c 7) c 7+(-5 c 7+74+81 c 6) c 6+(70 c 6-11 c 7+280+197 c 5) c 5+(254 c 5+26 c 6+105 c 7-470+193 c 4) c 4+(56 c 4$ $-108 c 5-74 c 6+23 c 7+1756-193 c 3) c 3+(-294 c 3-111 c 4-572 c 5-515 c 6-108 c 7-394+307 c 2) c 2) c 2) c 2) c 2+(6$ $+(-25-11 c 7) c 7+(40+(1-c 7) c 7+(-2+c 7-2 c 6) c 6) c 6+(-16+(-10-3 c 7) c 7+(14 c 7+14-2 c 6) c 6+(-12 c 6$ $+2 c 7-10-8 c 5) c 5) c 5+(-10+(-35+5 c 7) c 7+(2 c 7+54-22 c 6) c 6+(-20 c 6-10 c 7+98-32 c 5) c 5+(-74+(16$ $-c 7) c 7+(-c 7+4+2 c 6) c 6+(4 c 6+10) c 5+(-3 c 7+46-2 c 4) c 4) c 4) c 4+(22+(40-13 c 7) c 7+(30 c 7+84+(-22$ $-c 7) c 6) c 6+(-218+(4+2 c 7) c 7+(-16+2 c 6) c 6+(-3 c 7+60-2 c 5) c 5) c 5+(154+(28+c 7) c 7+(-4 c 7+86+4 c 6) c 6$ $+(12 c 6-2 c 7+184-8 c 5) c 5+(-22 c 5-6 c 6-3 c 7+68-14 c 4) c 4) c 4+(-32+(14+3 c 7) c 7+(-4 c 7+32-2 c 6) c 6$ $+(4 c 6-14 c 7-56+18 c 5) c 5+(8 c 5+4 c 7-96+4 c 4) c 4+(12 c 4+3 c 7-60-4 c 3) c 3) c 3) c 3+(-12+(73+18 c 7) c 7+($ $-222+(-80+c 7) c 7+(c 7+8-2 c 6) c 6) c 6+(188+(-40+7 c 7) c 7+(2 c 7+316-18 c 6) c 6+(-4 c 6-2 c 7+208) c 5) c 5+($ $-180+(-14+7 c 7) c 7+(-24-2 c 7-30 c 6) c 6+(8 c 6+10 c 7-36-4 c 5) c 5+(18 c 5+2 c 6-10 c 7-88+28 c 4) c 4) c 4+(72$
$+(-4-7 c 7) c 7+(-12 c 7-56+14 c 6) c 6+(32 c 6-2 c 7+284+124 c 5) c 5+(200 c 5-10 c 6+94 c 7-584+194 c 4) c 4$ $+(12 c 4-180 c 5-152 c 6+86 c 7+736-152 c 3) c 3) c 3+(-44+(129-20 c 7) c 7+(26 c 7-64+104 c 6) c 6+(38 c 6+18 c 7$ $-580-26 c 5) c 5+(-106 c 5-26 c 6+14 c 7+780-130 c 4) c 4+(-396 c 4-1010 c 5-570 c 6-51 c 7-552-64 c 3) c 3$ $+(1228 c 3+76 c 4+180 c 5+72 c 6-63 c 7+292-676 c 2) c 2) c 2) c 2+(1+(-29+(-c 7-8) c 7) c 7+(34+(10+c 7) c 7+(3 c 7$ $+20-3 c 6) c 6) c 6+(-20+(7-2 c 7) c 7+(3 c 7+12-6 c 6) c 6+(-3 c 6+4 c 7-21+6 c 5) c 5) c 5+(14+(-c 7+4) c 7+(2 c 7$ $+18+c 6) c 6+(-6 c 6-14+15 c 5) c 5+(26 c 5-c 6+14 c 7-18+(23-c 4) c 4) c 4) c 4+(-8+(21-8 c 7) c 7+(7 c 7-12$ $+18 c 6) c 6+(16 c 6+2 c 7-152-6 c 5) c 5+(-62 c 5-20 c 6+c 7+200+(2 c 5-2 c 6-c 7-42-2 c 4) c 4) c 4+(-9 c 7-71+($ $-32-c 6) c 6+(2 c 7-110-2 c 5) c 5+(4 c 5-2 c 6+2 c 7-84+c 4) c 4+(-4 c 6+2 c 7+36-2 c 3) c 3) c 3) c 3+(-30+(-62$ $+14 c 7) c 7+(-36 c 7-92+13 c 6) c 6+(74 c 6-20 c 7+270-37 c 5) c 5+(-27 c 7-202+(-c 7-158) c 6+(4 c 6-c 7-232$ $+2 c 5) c 5+(22 c 5+12 c 6-2 c 7-55+8 c 4) c 4) c 4+(130+(c 7-30) c 7+(-36+c 7-2 c 6) c 6+(2 c 6+10 c 7+204$ $-24 c 5) c 5+(4 c 5+6 c 6-c 7+90+4 c 4) c 4+(-4 c 4-2 c 5-16 c 6+3 c 7+434-2 c 3) c 3) c 3+(-80+(37+10 c 7) c 7+(c 7$ $-10-21 c 6) c 6+(-20 c 6+7 c 7-136-76 c 5) c 5+(-112 c 5-14 c 6-48 c 7+388-99 c 4) c 4+(-18 c 4+82 c 5+68 c 6$ $-32 c 7-1000+99 c 3) c 3+(128 c 3+118 c 4+418 c 5+318 c 6+30 c 7+322-430 c 2) c 2) c 2) c 2+((-11-3 c 7) c 7+(11 c 7$ $+32-2 c 6) c 6+(-28+(-c 7+4) c 7+(-38+2 c 6) c 6-26 c 5) c 5+(26+(-c 7+4) c 7+(2+4 c 6) c 6+(2-2 c 7) c 5+(-2 c 5$ $+22-4 c 4) c 4) c 4+(2 c 7-12+(c 7+8) c 6+(-c 7-30-14 c 5) c 5+(-24 c 5+4 c 6-13 c 7+94-26 c 4) c 4+(2 c 4+26 c 5$ $+22 c 6-12 c 7-110+20 c 3) c 3) c 3+(6+(-38+8 c 7) c 7+(-8 c 7+30-24 c 6) c 6+(-4 c 6-2 c 7+182+4 c 5) c 5+(36 c 5$ $+4 c 6+3 c 7-236+38 c 4) c 4+(124 c 4+280 c 5+126 c 6+9 c 7+188-16 c 3) c 3+(-650 c 3-68 c 4-102 c 5-20 c 6+19 c 7$ $-116+442 c 2) c 2) c 2+(3+(7-2 c 7) c 7+(5 c 7+13-2 c 6) c 6+(-8 c 6+3 c 7-34+6 c 5) c 5+(26 c 5+16 c 6+2 c 7+27+($ $-c 6+9-2 c 5-c 4) c 4) c 4+(6 c 6+c 7-16+(-c 7-26+2 c 5) c 5-20 c 4+(c 4+c 6-59) c 3) c 3+\left(21+(-10-c 7) c 7+2 c 6^{2}\right.$ $+(-c 7+28+2 c 6+14 c 5) c 5+(24 c 5+2 c 6+11 c 7-116+23 c 4) c 4+(2 c 4-22 c 5-20 c 6+10 c 7+264-23 c 3) c 3+($ $-26 c 3-55 c 4-154 c 5-101 c 6-3 c 7-131+273 c 2) c 2) c 2+((-c 7+4) c 7+(-4+c 7+2 c 6) c 6-20 c 5+(-4 c 5-c 7+26$ $-4 c 4) c 4+(-14 c 4-28 c 5-10 c 6-c 7-22+4 c 3) c 3+(156 c 3+20 c 4+24 c 5+2 c 6-2 c 7+24-156 c 2) c 2+(-2+c 7+($ $-2-c 5) c 5+(-2 c 5-c 7+12-2 c 4) c 4+(2 c 5+2 c 6-c 7-26+2 c 3) c 3+(2 c 3+12 c 4+28 c 5+16 c 6+26-90 c 2) c 2$ $+(28 c 2-14 c 3-2 c 4-2 c 5-2+(15 c 2-c 4-2 c 5-c 6-2+(-2-c 1) c 1$

$\boldsymbol{B 7 h}=\boldsymbol{c o n v e r t}(\mathrm{b} 7 \boldsymbol{e}$, horner $)$

B7h: $=-4+(-8+(11+(17+6 c 7) c 7) c 7) c 7+\left(-8+(-12+(-12-2 c 7) c 7) c 7+\left(-11 c 7^{2}+(4 c 7+8+4 c 6) c 6\right) c 6\right) c 6+(4+(-4$ $+(-17-11 c 7) c 7) c 7+(4+(-4-c 7) c 7+(16 c 7-4-4 c 6) c 6) c 6+(4+(10-5 c 7) c 7+(16+10 c 7-4 c 6) c 6+((4$ $+2 c 7) c 7+(-10-c 7-2 c 6) c 6+(4 c 6-3 c 7+3-c 5) c 5) c 5) c 5) c 5+(8+(12+(-16-8 c 7) c 7) c 7+(16+(-8+10 c 7) c 7$ $+(-20 c 7+8) c 6) c 6+(-20+(16+(29-c 7) c 7) c 7+(-4+(28-3 c 7) c 7+(20+4 c 6) c 6) c 6+(-28+(6 c 7-12) c 7+(2 c 7$ $-56-4 c 6) c 6+(12 c 6-7 c 7+6-6 c 5) c 5) c 5) c 5+(12+(-8+(-12+c 7) c 7) c 7+(16+(4 c 7+16) c 7+(4 c 7+4) c 6) c 6$ $+(36+(-4 c 7-28) c 7+(-20 c 7-12-24 c 6) c 6+(32 c 6+6 c 7+48-6 c 5) c 5) c 5+(-24+(8-2 c 7) c 7+(-8+8 c 6) c 6$ $+(20 c 6+12 c 7-20-20 c 5) c 5+(-16 c 6-4 c 7+8 c 4) c 4) c 4) c 4) c 4+(8+(16+(4+(3+c 7) c 7) c 7) c 7+(4+(2 c 7$ $\left.+17) c 7^{2}+(-12+(-3 c 7-4) c 7+(-4 c 7-4+4 c 6) c 6) c 6\right) c 6+(-8+(4+(4-5 c 7) c 7) c 7+(4+(-22+2 c 7) c 7+(2 c 7$ $-16+4 c 6) c 6) c 6+(-12+(6+9 c 7) c 7+(-11 c 7+2-2 c 6) c 6+(-2 c 6-4 c 7-8+4 c 5) c 5) c 5) c 5+(4+(-60+(-55$ $-11 c 7) c 7) c 7+(20+(28+5 c 7) c 7+(12 c 7-4-20 c 6) c 6) c 6+(44+(14+26 c 7) c 7+(6 c 7+4+8 c 6) c 6+(-4 c 6-15 c 7$ $+22+10 c 5) c 5) c 5+(-40+(4 c 7+52) c 7+(-28 c 7-4+44 c 6) c 6+(-28 c 6-24 c 7-60-18 c 5) c 5+(32 c 5-28 c 6+28 c 7$ $+28) c 4) c 4) c 4+((6+(c 7+4) c 7) c 7+(12+(-4+6 c 7) c 7+(-8+2 c 7-4 c 6) c 6) c 6+(-4+(2-2 c 7) c 7+(-12 c 7+32$ $-4 c 6) c 6+(10 c 6-5 c 7-4+(-c 6+c 7+8-c 5) c 5) c 5) c 5+(-32+(-6 c 7+18) c 7+(-14 c 7-32+16 c 6) c 6+(-4 c 7-28$ $+(-3 c 7+6+2 c 6) c 6+(4 c 6+2 c 7+22-c 5) c 5) c 5+(48+(36+3 c 7) c 7+(-2 c 7-40) c 6+(-4 c 6-7 c 7+6) c 5+(10 c 5$ $+8 c 6-2 c 7-20-8 c 4) c 4) c 4) c 4+(-8+(-10-8 c 7) c 7+(9 c 7+10+(3 c 7-2 c 6) c 6) c 6+(4+(10-3 c 7) c 7+(-4$ $-4 c 6) c 6+(4 c 6+5 c 7-4-2 c 5) c 5) c 5+(-6+(-7-c 7) c 7+(16+6 c 6) c 6+(-6 c 6+6 c 7-8-12 c 5) c 5+(14 c 5-10 c 6$ $+c 7-2 c 4) c 4) c 4+(5 c 7+3+(-8-5 c 7+5 c 6) c 6+(3 c 6-c 7-13-c 5) c 5+(5 c 5-10 c 6+6 c 7+24+c 4) c 4+(-8 c 4$ $+6 c 5+2 c 6-3 c 7-2+(c 4-c 5-c 6+c 7+1) c 3) c 3) c 3) c 3) c 3) c 3+(4+(20+(19+5 c 7) c 7) c 7+((8+(28+c 7) c 7) c 7+($ $-16+(-12+3 c 7) c 7+(-16-4 c 6) c 6) c 6) c 6+(-16+(-36+(-32-10 c 7) c 7) c 7+(8+(-32-10 c 7) c 7+(8 c 7+32$ $\left.+8 c 6) c 6) c 6+\left(15 c 7^{2}-4+(16+10 c 7-4 c 6) c 6+(-12 c 6+11 c 7-2+(-3+c 5) c 5) c 5\right) c 5\right) c 5+(8+(-20-22 c 7) c 7+($ $-16+(24+6 c 7) c 7+(4 c 7-40-16 c 6) c 6) c 6+(68+(60+17 c 7) c 7+(-16 c 7-20 c 6) c 6+(-4 c 6-26 c 7+20+(-4 c 6$ $-2 c 7+4+2 c 5) c 5) c 5) c 5+(-68+(20+8 c 7) c 7+(4 c 7-16+28 c 6) c 6+(-84+(-20+c 7) c 7+(4 c 7+8+4 c 6) c 6$ $+4 c 5) c 5+(48+(-24-2 c 7) c 7+(-8 c 7-24-8 c 6) c 6+(8 c 6+4 c 7+36-8 c 5) c 5+(-12 c 5+16 c 6+8 c 7+16$ $-8 c 4) c 4) c 4) c 4) c 4+(-4+(-4+(1+8 c 7) c 7) c 7+(12+(28+13 c 7) c 7+(4 c 7+4-12 c 6) c 6) c 6+(4+(-10-14 c 7) c 7$ $+(-34 c 7-20-8 c 6) c 6+(6+(-3-2 c 7) c 7+(3 c 7+26+6 c 6) c 6+(-8 c 6-2 c 7-14+2 c 5) c 5) c 5) c 5+\left(-18 c 7^{2}-48+(\right.$ $-12+(-84-c 7) c 7+(-4 c 7+48-4 c 6) c 6) c 6+(24+(88-2 c 7) c 7+(6 c 7+132+4 c 6) c 6+(-16 c 6+3 c 7-2$ $+20 c 5) c 5) c 5+(72+(4+9 c 7) c 7+(24 c 7-36+12 c 6) c 6+(-40 c 6-14 c 7-52+18 c 5) c 5+(20 c 5-28 c 6-28 c 7-32$ $+20 c 4) c 4) c 4) c 4+(-4+(-8+(-19+4 c 7) c 7) c 7+(8+(10+c 7) c 7+(2 c 7+44) c 6) c 6+(12+(26-13 c 7) c 7+(-3 c 7$ $-22-10 c 6) c 6+(22 c 6+14 c 7+2-3 c 5) c 5) c 5+(8+(-17 c 7-24) c 7+(-4 c 7-8 c 6) c 6+(16 c 6+24 c 7-84-54 c 5) c 5$ $+(6 c 5+32 c 6+4 c 7+44+24 c 4) c 4) c 4+(10+(-5+5 c 7) c 7+(-6 c 7-32+6 c 6) c 6+(2 c 6+6 c 7-4-24 c 5) c 5+(-16 c 5$ $-8 c 6+24 c 7+32-26 c 4) c 4+(-6 c 7-7+(-8+c 6) c 6+(-c 6-2 c 7+16+3 c 5) c 5+(5 c 5+2 c 6-3 c 7-4-3 c 4) c 4+($ $-2 c 4-4 c 5+3 c 7+8-c 3) c 3) c 3) c 3) c 3) c 3+(12+(4+(-22-9 c 7) c 7) c 7+(16+(40-2 c 7) c 7+(16 c 7+4) c 6) c 6+(8$ $+(16+(-3+c 7) c 7) c 7+(-44+(2 c 7-40) c 7+(-36-4 c 7-8 c 6) c 6) c 6+(16+(4 c 7+14) c 7+(10 c 7+44+4 c 6) c 6+($ $-6 c 6-9 c 7+8-c 5) c 5) c 5) c 5+(-64+(-12+(34-3 c 7) c 7) c 7+(8+(-16-8 c 7) c 7+(4 c 7+64+16 c 6) c 6) c 6+(-72$ $+(3 c 7+12) c 7+(12 c 7-4+12 c 6) c 6+(-24 c 6-22 c 7-60+14 c 5) c 5) c 5+(116+(-20+3 c 7) c 7+(-12 c 7-16$ $-36 c 6) c 6+(8 c 7+68+32 c 5) c 5+(-20 c 5+40 c 6+16 c 7-24-20 c 4) c 4) c 4) c 4+(-20+(20+(33+4 c 7) c 7) c 7+(-12$ $+(-16-6 c 7) c 7+(-4 c 7+32+16 c 6) c 6) c 6+(-24+(26-8 c 7) c 7+(-24 c 7-32-16 c 6) c 6+(34 c 6-6 c 7-6$ $+14 c 5) c 5) c 5+(60+(14 c 7-24) c 7+(44 c 7-52-40 c 6) c 6+(44 c 6-4 c 7-20-14 c 5) c 5+(-36 c 5+24 c 6-44 c 7-20$ $+16 c 4) c 4) c 4+(16+(12 c 7-28) c 7+(14 c 7-8-16 c 6) c 6+(8 c 6-7 c 7+18+(-20+c 7-3 c 5) c 5) c 5+(-40 c 7-24+($
$-2 c 7-40-4 c 6) c 6+(10 c 6+7 c 7+36-8 c 5) c 5+(-14 c 5+4 c 6-16) c 4) c 4+(2+(6+2 c 7) c 7+(3 c 7-14-2 c 6) c 6+($ $-12 c 6-2 c 7+34+8 c 5) c 5+(14 c 5-11 c 7+34+14 c 4) c 4+(4 c 4-3 c 5+8 c 6-5 c 7-7+2 c 3) c 3) c 3) c 3) c 3+(-20+(-32$ $+(-3 c 7-4) c 7) c 7+(16+(-36-12 c 7) c 7+(-4 c 7+44+16 c 6) c 6) c 6+(-8+(24+16 c 7) c 7+(20 c 7+8+8 c 6) c 6+(6 c 7$ $-28+(-2+c 5) c 5) c 5) c 5+(16 c 7+88+(-24-48 c 6) c 6+(8 c 6-24 c 7+60+(-4 c 6-2 c 7-4+4 c 5) c 5) c 5+(-84+(12$ $+c 7) c 7+(4 c 7+32+4 c 6) c 6+(-8 c 6-4 c 7-28+8 c 5) c 5+(8 c 5-8 c 6-4 c 7-8+4 c 4) c 4) c 4) c 4+(32+(-16-3 c 7) c 7$ $+(36 c 7-12-36 c 6) c 6+((-38-2 c 7) c 7+(-36+8 c 6) c 6+(-2 c 6-c 7-58-4 c 5) c 5) c 5+(-12+(32-5 c 7) c 7+(-12 c 7$ $+60-4 c 6) c 6+(12 c 6+14 c 7+48-2 c 5) c 5+(-12 c 5+16 c 6+16 c 7-8-12 c 4) c 4) c 4+(26 c 7+(4 c 6+6 c 7) c 6+(-22 c 6$ $+13 c 7+48+10 c 5) c 5+(-24 c 5-16 c 6+8 c 7-16-12 c 4) c 4+(-6 c 5+16 c 6-15 c 7-22-c 3) c 3) c 3) c 3+(12+(12+(c 7$ -7) $c 7) c 7+(-40+(-4+2 c 7) c 7+(-4 c 7-44-8 c 6) c 6) c 6+(36+(-4+2 c 7) c 7+(8 c 7+32+8 c 6) c 6+(-4 c 6-6 c 7+4$ $-4 c 5) c 5) c 5+(8 c 7-64+(24+8 c 7+16 c 6) c 6+(-16 c 6-16 c 7-44) c 5+(16 c 5-16 c 6-8 c 7+24+8 c 4) c 4) c 4+(-16$ $+(-4-9 c 7) c 7+(-16 c 7+24+4 c 6) c 6+(-12 c 6+10 c 7+48+22 c 5) c 5+(20 c 7-16-12 c 4) c 4+(24 c 4+6 c 5+28 c 6$ $-4 c 7-14 c 3) c 3) c 3+(-12+(4+3 c 7) c 7+(4 c 7+16+12 c 6) c 6+(-8 c 6+4 c 7-24+8 c 5) c 5+(8 c 5-8 c 6-4 c 7+32) c 4$ $+(12 c 4-20 c 5-16 c 6-12 c 7-12-12 c 3) c 3+(12 c 3-8 c 4+12-4 c 2) c 2) c 2) c 2) c 2) c 2) c 2+(-4+(12+(29+(23$ $+2 c 7) c 7) c 7) c 7+(16+(-48+(-70-12 c 7) c 7) c 7+(32+(4+3 c 7) c 7+(16 c 7-12 c 6) c 6) c 6) c 6+(16+(-20+(-8 c 7$ $-24) c 7) c 7+(-20+(114+34 c 7) c 7+(10 c 7-32-28 c 6) c 6) c 6+(-8+(10+7 c 7) c 7+(-34 c 7-28+4 c 6) c 6+(20 c 6$ $-2 c 7-12+(-c 7+5+2 c 5) c 5) c 5) c 5) c 5+(24+(-32+(-8 c 7-24) c 7) c 7+(8+(36+38 c 7) c 7+(-20 c 7+8$ $+24 c 6) c 6) c 6+(-36+(46+20 c 7) c 7+(-114 c 7+12-8 c 6) c 6+(-20+(12-2 c 7) c 7+(6 c 7+32+4 c 6) c 6+(-16 c 6+12$ $+4 c 5) c 5) c 5) c 5+(4+(-44+(-12+c 7) c 7) c 7+(24+(-4+2 c 7) c 7+(-4 c 7-12-8 c 6) c 6) c 6+(28+(-4-10 c 7) c 7$ $+(4 c 7+52+16 c 6) c 6+(-16 c 6+18 c 7+24+8 c 5) c 5) c 5+(-48+(-2 c 7+32) c 7+(8 c 7-16+24 c 6) c 6+(-48 c 6+4 c 7$ $-48-4 c 5) c 5+(32 c 5-24 c 6-4 c 7+16+8 c 4) c 4) c 4) c 4) c 4+(12+(-16+(13+c 7) c 7) c 7+(-48+(22-7 c 7) c 7+($ $-54 c 7+4+32 c 6) c 6) c 6+(-8+(10+(3-2 c 7) c 7) c 7+(10+(-29+4 c 7) c 7+(c 7+84-6 c 6) c 6) c 6+(28+(-6+c 7) c 7$ $+(-5 c 7+44+4 c 6) c 6+(5 c 6+3 c 7-c 5) c 5) c 5) c 5+(-72+(-70+(-29-3 c 7) c 7) c 7+(76+(116+5 c 7) c 7+(14 c 7$ $-20) c 6) c 6+(26+(33+c 7) c 7+(-21 c 7-94-4 c 6) c 6+(8 c 6+c 7-52-3 c 5) c 5) c 5+(52+(70+10 c 7) c 7+(-38 c 7-60$ $-16 c 6) c 6+(18 c 6+2 c 7-66-8 c 5) c 5+(32 c 5+40 c 6+20 c 7+88-56 c 4) c 4) c 4) c 4+(-8+(36+(4 c 7+48) c 7) c 7+($ $-50+(1-10 c 7) c 7+(-9 c 7-16+10 c 6) c 6) c 6+(-4+(-12 c 7-64) c 7+(24 c 7-10+2 c 6) c 6+(-25 c 6+24 c 7-10$ $-22 c 5) c 5) c 5+(62+(-39-7 c 7) c 7+(29 c 7-66-16 c 6) c 6+(6 c 6+14 c 7+30+7 c 5) c 5+(-4 c 5+22 c 6-22 c 7-14$ $-48 c 4) c 4) c 4+(8+(-8-3 c 7) c 7+(40 c 7+42-26 c 6) c 6+(14 c 7+14+(-45+c 6) c 6+(-c 6-2 c 7-2+3 c 5) c 5) c 5+($ $-70 c 7-38+(-c 7+18) c 6+(-2 c 6+3 c 7+45+3 c 5) c 5+(-11 c 5-8 c 6+9 c 7+52) c 4) c 4+(19+(-3+4 c 7) c 7+(-3 c 7$ +7) $c 6+(6 c 6-12 c 7+4+8 c 5) c 5+(-4 c 5+6 c 6-c 7-7+2 c 4) c 4+(7 c 4+c 5+c 6-5 c 7-15+(-1+c 3) c 3) c 3) c 3) c 3)$ c3) $c 3+(-4+(4+(31-13 c 7) c 7) c 7+(-56+(-4+(-2-c 7) c 7) c 7+(-32+(-16-3 c 7) c 7+(24+4 c 6) c 6) c 6) c 6+(4+($ $-110+(-58+4 c 7) c 7) c 7+(136+(4 c 7+48) c 7+(2 c 7+112+4 c 6) c 6) c 6+(44+(72+c 7) c 7+(-12 c 7-76-24 c 6) c 6$ $+(12 c 6-2 c 7-28-3 c 5) c 5) c 5) c 5+(-56+(84+(14 c 7+48) c 7) c 7+(-56+(44-6 c 7) c 7+(-16 c 7-40+8 c 6) c 6) c 6$ $+(52+(50-28 c 7) c 7+(-8 c 7-80+20 c 6) c 6+(92 c 6-36 c 7-44-4 c 5) c 5) c 5+(-4+(-56-8 c 7) c 7+(20 c 7-32$ $-36 c 6) c 6+(60 c 6+18 c 7-24-8 c 5) c 5+(-20 c 5+48 c 6-28 c 7+80-24 c 4) c 4) c 4) c 4+(-20+(26+(18+6 c 7) c 7) c 7$ $+((-12-28 c 7) c 7+(-10 c 7-40+12 c 6) c 6) c 6+(-6+(-97-28 c 7) c 7+(67 c 7-86+44 c 6) c 6+(-24 c 6+37 c 7-4+(c 6$ $-51-c 5) c 5) c 5) c 5+(212+(-136+31 c 7) c 7+(38 c 7+20-64 c 6) c 6+(56 c 7+252+(c 7-122-6 c 6) c 6+(4 c 7-116$ $-3 c 5) c 5) c 5+(-228+(-90-3 c 7) c 7+(6 c 7+144+8 c 6) c 6+(4 c 6+c 7-78-4 c 5) c 5+(10 c 5-24 c 6-18 c 7-44$ $+48 c 4) c 4) c 4) c 4+(70+(11+16 c 7) c 7+(34 c 7+56+(-3 c 7-60+2 c 6) c 6) c 6+(-94+(-44+4 c 7) c 7+(4 c 7-142$ $+4 c 6) c 6+(-12 c 6-5 c 7+75-4 c 5) c 5) c 5+(-82+(-49-9 c 7) c 7+(-12 c 7+92-6 c 6) c 6+(26 c 6+10 c 7+136) c 5+($ $-50 c 5+34 c 6+35 c 7+216-22 c 4) c 4) c 4+(-14+(4+17 c 7) c 7+(-c 7+72-6 c 6) c 6+(8 c 6-41 c 7+83+27 c 5) c 5+($ $-12 c 5+24 c 6-16 c 7-166-70 c 4) c 4+(53 c 4-6 c 5+c 6+3 c 7-36+(-9 c 4-c 5+c 6-4+2 c 3) c 3) c 3) c 3) c 3) c 3+(-8$ $+(28+(-25-6 c 7) c 7) c 7+(-4+(36+c 7) c 7+(12 c 7-32-12 c 6) c 6) c 6+(-60+(-56+30 c 7) c 7+(22 c 7-108$ $-16 c 6) c 6+(24 c 7+104+(26-3 c 7+2 c 6) c 6+(8 c 6-4 c 7-24+2 c 5) c 5) c 5) c 5+(84+(16+41 c 7) c 7+(44+(-24$ $+c 7) c 7+(-28+4 c 7+4 c 6) c 6) c 6+(-76+(2 c 7-68) c 7+(-10 c 7-176-12 c 6) c 6+(4 c 6-5 c 7-102) c 5) c 5+(40+(-8$ $-3 c 7) c 7+(84-16 c 7-20 c 6) c 6+(56 c 6+34 c 7+152-14 c 5) c 5+(-76 c 5+28 c 6+12 c 7-60-12 c 4) c 4) c 4) c 4+(68$ $+(104+(69-4 c 7) c 7) c 7+(-90 c 7-40+(-4 c 7-84-8 c 6) c 6) c 6+(-72+(-121+16 c 7) c 7+(12 c 7+12 c 6) c 6+(-26 c 6$ $-c 7+172+2 c 5) c 5) c 5+(-196+(-6+7 c 7) c 7+(30 c 7+156+32 c 6) c 6+(-50 c 6-20 c 7+242+42 c 5) c 5+(-22 c 5$ $-124 c 6-18 c 7-72+28 c 4) c 4) c 4+(-62+(-11 c 7+20) c 7+(-15 c 7+170) c 6+(16 c 6-50 c 7+86+75 c 5) c 5+(148 c 5$ $-14 c 6-16 c 7-234+34 c 4) c 4+(22 c 6+63 c 7+32+(c 6-104-c 5) c 5+(7 c 5-4 c 6-3 c 7+24+24 c 4) c 4+(-10 c 4$ $+8 c 5+c 7-41+c 3) c 3) c 3) c 3) c 3+(60+(-64+(-24-3 c 7) c 7) c 7+(88+(-40+8 c 7) c 7+(8 c 7+28-8 c 6) c 6) c 6+(-16$ $+(40+14 c 7) c 7+(-20-24 c 6) c 6+(-48 c 6+3 c 7-6-12 c 5) c 5) c 5+(-44+(36-27 c 7) c 7+(-12 c 7+64+44 c 6) c 6+($ $-14 c 7+92+36 c 5) c 5+(32 c 5-56 c 6+56 c 7-96+20 c 4) c 4) c 4+(-80+(96-52 c 7) c 7+(16 c 7+92+72 c 6) c 6+(50 c 6$ $-11 c 7-184+(34+c 5) c 5) c 5+(-60 c 6+88 c 7+160+(-6 c 6+c 7+72) c 5+(-6 c 5+4 c 6+10 c 7+60-20 c 4) c 4) c 4$ $+(28 c 7-4+(-3 c 7-56+2 c 6) c 6+(12 c 6+2 c 7-210-14 c 5) c 5+(-30 c 5-4 c 6-5 c 7-182+6 c 4) c 4+(-2 c 4+15 c 5$ $-18 c 6+7 c 7+44-6 c 3) c 3) c 3) c 3+(-60+(-8 c 7+8) c 7+(-28+8 c 7+24 c 6) c 6+(112 c 6+28 c 7+88+(2 c 6-3 c 7+28$
$+4 c 5) c 5) c 5+(-48+(-36+c 7) c 7+(-92+4 c 7+4 c 6) c 6+(-12 c 6-14 c 7-112+14 c 5) c 5+(28 c 5-8 c 6-4 c 7+68$ $+4 c 4) c 4) c 4+(44+(-80+4 c 7) c 7+(-12 c 7-72-8 c 6) c 6+(34 c 6+3 c 7-56-10 c 5) c 5+(-8 c 5+48 c 6-8 c 7+12$ $+4 c 4) c 4+(16 c 4+14 c 5-28 c 6+15 c 7+162-2 c 3) c 3) c 3+(4+(-4+11 c 7) c 7+(-40-12 c 6) c 6+(-4 c 6-2 c 7-52$ $-18 c 5) c 5+(-16 c 5+16 c 6-20 c 7+60-4 c 4) c 4+(-20 c 4-10 c 5-28 c 6+6 c 7-44+18 c 3) c 3+(20 c 3-20 c 4+20 c 5$ $+24 c 6+16 c 7+24-12 c 2) c 2) c 2) c 2) c 2) c 2) c 2+(16+(-2+(-10+(10+c 7) c 7) c 7) c 7+(8+(-86+(-3 c 7-56) c 7) c 7$ $+(48+(82+3 c 7) c 7+(2 c 7+8) c 6) c 6) c 6+(-36+(76+(3+2 c 7) c 7) c 7+(22+(93+10 c 7) c 7+(-34 c 7-102$ $+8 c 6) c 6) c 6+(12+(-53+7 c 7) c 7+(-26 c 7-48+42 c 6) c 6+(8 c 6-15 c 7+30-14 c 5) c 5) c 5) c 5+(-4+(-70+(11$ $-5 c 7) c 7) c 7+(60+(10+10 c 7) c 7+(-34 c 7+16 c 6) c 6) c 6+(26+(-39+3 c 7) c 7+(-14 c 7-116+36 c 6) c 6+(28 c 6$ $+47 c 7+36+(-c 6+c 7-60-c 5) c 5) c 5) c 5+(-12+(-6-5 c 7) c 7+(28 c 7+16+4 c 6) c 6+(-16 c 7+42+(-10-3 c 7$ $+2 c 6) c 6+(4 c 6+2 c 7-50-c 5) c 5) c 5+(-20+(16+3 c 7) c 7+(-2 c 7-28) c 6+(-4 c 6-7 c 7-6) c 5+(10 c 5+8 c 6-2 c 7$ $+16-8 c 4) c 4) c 4) c 4) c 4+\left(-36+(18-2 c 7) c 7^{2}+(24+(-76+8 c 7) c 7+(-5 c 7-34+10 c 6) c 6) c 6+(68+(-8+17 c 7) c 7\right.$ $+(26 c 7-46-32 c 6) c 6+(-18+(-27+c 7) c 7+(-2 c 7-59-2 c 6) c 6+(6 c 6+2 c 7+26-6 c 5) c 5) c 5) c 5+(-28+(116$ $-17 c 7) c 7+(16+(76-2 c 7) c 7+(3 c 7-52+6 c 6) c 6) c 6+(-182+(-32+5 c 7) c 7+(-10 c 7-88-12 c 6) c 6+(24 c 6-7 c 7$ $+69-12 c 5) c 5) c 5+(162+(-35+9 c 7) c 7+(-16 c 7-26-18 c 6) c 6+(58 c 6-16 c 7+100-6 c 5) c 5+(-26 c 5+46 c 6+c 7$ $+4-42 c 4) c 4) c 4) c 4+(24+(81+(13+2 c 7) c 7) c 7+(-72+(-85-3 c 7) c 7+(-5 c 7-2) c 6) c 6+(-12+(-31-5 c 7) c 7$ $+(16 c 7+131+6 c 6) c 6+(-23 c 6+5 c 7+45+c 5) c 5) c 5+(-48+(-48-2 c 7) c 7+(27 c 7+140+18 c 6) c 6+(-30 c 6-31 c 7$ $+165+41 c 5) c 5+(-4 c 5-56 c 6-16 c 7-214+66 c 4) c 4) c 4+(-6+(19-12 c 7) c 7+(13+2 c 7-9 c 6) c 6+(14 c 6+12 c 7$ $-26+13 c 5) c 5+(-32 c 5-8 c 6+9 c 7+13+61 c 4) c 4+(20 c 6+15 c 7+3+(-20+c 7-3 c 5) c 5+(-c 5-c 6-63+9 c 4) c 4$ $+(4 c 4-4 c 5-2 c 6+3 c 7+9-6 c 3) c 3) c 3) c 3) c 3) c 3+(-24+(-2+(5+8 c 7) c 7) c 7+(-28+(-44+35 c 7) c 7+(-52+4 c 7$ $-48 c 6) c 6) c 6+(78+(-69-24 c 7) c 7+(168+(76-2 c 7) c 7+(6 c 7-64+4 c 6) c 6) c 6+(-120+(48-5 c 7) c 7+(-4 c 7$ $-176-14 c 6) c 6+(11 c 6+6 c 7+18+7 c 5) c 5) c 5) c 5+(16+(214+(25+3 c 7) c 7) c 7+(-160+(-118-7 c 7) c 7+(-60$ $-8 c 7-12 c 6) c 6) c 6+(-16+(-126-6 c 7) c 7+(52 c 7+200+8 c 6) c 6+(-24 c 6+2 c 7+176-8 c 5) c 5) c 5+(-52+(-128$ $-6 c 7) c 7+(108+42 c 7+4 c 6) c 6+(-84 c 6+21 c 7+86-18 c 5) c 5+(-32 c 5-28 c 6-12 c 7-28+28 c 4) c 4) c 4) c 4+(76$ $+(-62+(-96-c 7) c 7) c 7+(62+(-49+10 c 7) c 7+(21 c 7+102-22 c 6) c 6) c 6+(-14+(74-13 c 7) c 7+(6 c 7+348) c 6+($ $-29 c 6+c 7-37+42 c 5) c 5) c 5+(-42+(27+6 c 7) c 7+(-45 c 7+314+14 c 6) c 6+(-128 c 6-20 c 7+68+107 c 5) c 5$ $+(110 c 5-14 c 6+16 c 7-384+170 c 4) c 4) c 4+(-76+(32-16 c 7) c 7+(-63 c 7-50+66 c 6) c 6+(126 c 6+7 c 7-213+(c 6$ $+18-c 5) c 5) c 5+(233 c 7+286+(-54+c 7) c 6+(-2 c 6-9 c 7-302+11 c 5) c 5+(18 c 5+16 c 6-3 c 7+48-48 c 4) c 4) c 4$ $+(-61+(35-4 c 7) c 7+(2 c 7-74) c 6+(16 c 7-120-10 c 5) c 5+(18 c 5-10 c 6-10 c 7-226-18 c 4) c 4+(32 c 4-9 c 5$ $-15 c 6+15 c 7+118-11 c 3) c 3) c 3) c 3) c 3+((62+(-2-c 7) c 7) c 7+(-28+(90+13 c 7) c 7+(14 c 7+20-8 c 6) c 6) c 6+($ $-40+(9-3 c 7) c 7+(-73 c 7+76-18 c 6) c 6+(36 c 6-45 c 7+120+25 c 5) c 5) c 5+(-36+(88-26 c 7) c 7+(-42 c 7+52$ $+112 c 6) c 6+(100 c 6+15 c 7-360+(108+c 7-3 c 5) c 5) c 5+(60 c 7+136+(-2 c 7-80-4 c 6) c 6+(10 c 6+7 c 7+118$ $-8 c 5) c 5+(-14 c 5+4 c 6-4) c 4) c 4) c 4+(-116+(-18+27 c 7) c 7+(-92 c 7-210+106 c 6) c 6+(202+(26+c 7) c 7+($ $-4 c 7+246-4 c 6) c 6+(10 c 6+6 c 7+44-6 c 5) c 5) c 5+(-98+(76+8 c 7) c 7+(19 c 7-288+6 c 6) c 6+(-44 c 6-32 c 7$ $-522-2 c 5) c 5+(106 c 5-32 c 6-35 c 7-230+38 c 4) c 4) c 4+(60+(-27-16 c 7) c 7+(2 c 7-308-12 c 6) c 6+(-4 c 6$ $+51 c 7-145-57 c 5) c 5+(66 c 5+46 c 6+7 c 7+344+30 c 4) c 4+(-19 c 4-36 c 5-7 c 6-2 c 7+268+15 c 3) c 3) c 3) c 3+(4$ $+(-126-34 c 7) c 7+(128+(52-c 7) c 7+(4 c 7+100+12 c 6) c 6) c 6+(-60+(129-5 c 7) c 7+(-26 c 7-164-16 c 6) c 6$ $+(36 c 6+14 c 7-136+5 c 5) c 5) c 5+(108+(2-6 c 7) c 7+(-14 c 7-160-12 c 6) c 6+(52 c 6+12 c 7-104-12 c 5) c 5+(6 c 5$ $+24 c 6+22 c 7+36-20 c 4) c 4) c 4+(64+(38+10 c 7) c 7+(49 c 7-242-14 c 6) c 6+(-32 c 6+52 c 7-322-121 c 5) c 5+($ $-128 c 5-2 c 6-11 c 7+694-100 c 4) c 4+(-118 c 4+96 c 5+26 c 6-108 c 7-96+111 c 3) c 3) c 3+(16+(-84+20 c 7) c 7+($ $-12 c 7-76-72 c 6) c 6+(-18 c 6-5 c 7+228-56 c 5) c 5+(-62 c 5+56 c 6-42 c 7-120) c 4+(122 c 4+362 c 5+198 c 6$ $-54 c 7+120-32 c 3) c 3+(-324 c 3-12 c 4+46 c 5+44 c 6+44 c 7-44+32 c 2) c 2) c 2) c 2) c 2) c 2+(8+(-40+(3 c 7$ $-14) c 7) c 7+(14+(25-20 c 7) c 7+(50+(30+2 c 7) c 7+(-c 7-30-2 c 6) c 6) c 6) c 6+(-20+(112+(-2 c 7+36) c 7) c 7+($ $-124+(-49-c 7) c 7+(-3 c 7-44+4 c 6) c 6) c 6+(-34+(-48+2 c 7) c 7+(7 c 7+145+5 c 6) c 6+(-13 c 6+32+7 c 5) c 5) c 5)$ $c 5+(-2+(-55+(-12-5 c 7) c 7) c 7+(80+(-50+10 c 7) c 7+(11 c 7+42-4 c 6) c 6) c 6+(4+(13-9 c 7) c 7+(7 c 7+44$ $-32 c 6) c 6+(-45 c 6+43 c 7+35+7 c 5) c 5) c 5+(-26+(52-2 c 7) c 7+(-2 c 7+36+10 c 6) c 6+(-44 c 6-16 c 7-36$ $+54 c 5) c 5+(56 c 5-32 c 6+14 c 7-20+4 c 4) c 4) c 4) c 4+(-28+(42+(8-7 c 7) c 7) c 7+(-10+(-27+5 c 7) c 7+(10 c 7$ $+84-6 c 6) c 6) c 6+(-4+(29+15 c 7) c 7+(95-36 c 6) c 6+(4 c 6-13 c 7+12+28 c 5) c 5) c 5+(42+(79-17 c 7) c 7+($ $-12 c 7-124+14 c 6) c 6+(8 c 7-207+(61+c 6) c 6+(-c 6-2 c 7+46+3 c 5) c 5) c 5+(36 c 7+156+(-c 7+4) c 6+(-2 c 6$ $+3 c 7-17+3 c 5) c 5+(-11 c 5-8 c 6+9 c 7-60) c 4) c 4) c 4+(8+(-50+5 c 7) c 7+(-13 c 7-62+(c 7+34-c 6) c 6) c 6$ $+(118+(39-2 c 7) c 7+(c 7-1-c 6) c 6+(2 c 7-100+5 c 5) c 5) c 5+(-166+(-9+c 7) c 7+(6 c 7+2+3 c 6) c 6+(-20 c 6$ $-2 c 7-57+8 c 5) c 5+(3 c 5-37 c 6+11 c 7-112+35 c 4) c 4) c 4+(38+(18-3 c 7) c 7+(-2 c 7-99-2 c 6) c 6+(6 c 6+8 c 7$ $-61-7 c 5) c 5+(-12 c 5+8 c 6+13 c 7+209-10 c 4) c 4+(-35 c 4+25 c 5+8 c 6-18 c 7-4+(c 4+c 5+20-c 3) c 3) c 3) c 3)$
c3) $c 3+(6+(3+(-16+6 c 7) c 7) c 7+(4+(50-16 c 7) c 7+(-17 c 7+22+12 c 6) c 6) c 6+(84+(43-42 c 7) c 7+(25 c 7+144$ $+64 c 6) c 6+(-155+(c 7-22-c 6) c 6+(-3 c 6+c 7+17+c 5) c 5) c 5) c 5+((-88+12 c 7) c 7+(-24 c 7-200+(-2 c 7+60$ $-4 c 6) c 6) c 6+(208+(-36-c 7) c 7+(13 c 7+248+12 c 6) c 6+(-18 c 6-2 c 7-45-3 c 5) c 5) c 5+(-128+(-6 c 7+16) c 7$ $+(12+12 c 6) c 6+(-24 c 6-c 7-228+15 c 5) c 5+(36 c 5-12 c 6-6 c 7-12+36 c 4) c 4) c 4) c 4+(30+(-313-61 c 7) c 7$ $+(132+(158+c 7) c 7+(6 c 7+14+4 c 6) c 6) c 6+(148 c 7+41+(-20 c 7-274-13 c 6) c 6+(29 c 6-9 c 7-328-3 c 5) c 5) c 5$ $+(-4+(116+7 c 7) c 7+(-44 c 7-336-12 c 6) c 6+(100 c 6+8 c 7-335-40 c 5) c 5+(-3 c 5+108 c 6+c 7+316$ $-52 c 4) c 4) c 4+(-32+(-14+24 c 7) c 7+(-12 c 7-118+21 c 6) c 6+(20 c 6-14 c 7-29-87 c 5) c 5+(-122 c 5+20 c 6+9 c 7$ $+590-171 c 4) c 4+(-24 c 6-91 c 7-103+(200+c 5) c 5+(-8 c 5+c 7+34-8 c 4) c 4+(4 c 4+c 5+2 c 6-4 c 7+51$ $+3 c 3) c 3) c 3) c 3) c 3+(-72+(73+(67+c 7) c 7) c 7+(-156+(39-12 c 7) c 7+(-11 c 7-138+14 c 6) c 6) c 6+(8+(-97$ $+11 c 7) c 7+(6 c 7-196+12 c 6) c 6+(43 c 6-16 c 7+46-8 c 5) c 5) c 5+(20+(-9+19 c 7) c 7+(16 c 7-192-42 c 6) c 6$ $+(28 c 6+46 c 7-148-96 c 5) c 5+(-116 c 5-12 c 6-30 c 7+378-108 c 4) c 4) c 4+(-26+(-103+75 c 7) c 7+(-17 c 7-14$ $-110 c 6) c 6+(-94 c 6-43 c 7+705+c 5) c 5+(92 c 6-235 c 7-394+(c 6+170-c 5) c 5+(7 c 5-4 c 6-3 c 7-64$ $+24 c 4) c 4) c 4+(-71 c 7+204+(c 7+161-c 6) c 6+(-5 c 6-4 c 7+530+15 c 5) c 5+(-7 c 5+6 c 6+16 c 7+501+5 c 4) c 4$ $+(-20 c 4-8 c 5+22 c 6-13 c 7-299+12 c 3) c 3) c 3) c 3+(76+(47-22 c 7) c 7+(26 c 7+208-22 c 6) c 6+(-252 c 6+13 c 7$ $-244+(-c 6+c 7-8-c 5) c 5) c 5+(-18 c 7+204+(-2 c 7+228-4 c 6) c 6+(8 c 6+11 c 7+436-15 c 5) c 5+(-44 c 5+8 c 6$ $+10 c 7+44-20 c 4) c 4) c 4+(-22+(123-c 7) c 7+(10 c 7+372+12 c 6) c 6+(-29 c 6-28 c 7+11+39 c 5) c 5+(-18 c 5$ $-68 c 6+4 c 7-284) c 4+(-18 c 4+5 c 5+26 c 6-6 c 7-835-4 c 3) c 3) c 3+(16+(-45-10 c 7) c 7+(-6 c 7+142+16 c 6) c 6$ $+(28 c 6-23 c 7+188+57 c 5) c 5+(68 c 5+8 c 6+12 c 7-478+56 c 4) c 4+(72 c 4-21 c 5-8 c 6+43 c 7+182-71 c 3) c 3+($ $-16 c 3-20 c 4-160 c 5-128 c 6+10 c 7-122+160 c 2) c 2) c 2) c 2) c 2) c 2+(-13+(-5+(-3 c 7-4) c 7) c 7+(46+(17$ $-4 c 7) c 7+(8 c 7-8+10 c 6) c 6) c 6+(7+(8+28 c 7) c 7+(-70 c 7-158+(38-c 7) c 6) c 6+(56+(c 7-30) c 7+(2 c 7+75$ $+2 c 6) c 6+(-5 c 6-2 c 7-50+c 5) c 5) c 5) c 5+(8+(-68-16 c 7) c 7+(52+(34+3 c 7) c 7+(-c 7+30) c 6) c 6+(-18+(61$ $-3 c 7) c 7+(-13 c 7-127+4 c 6) c 6+(10 c 6+6 c 7-77-5 c 5) c 5) c 5+(11+(37+6 c 7) c 7+(-11 c 7-60+11 c 6) c 6$ $+(23 c 6-21 c 7-50+5 c 5) c 5+(c 5+6 c 6+c 7+28-17 c 4) c 4) c 4) c 4+(8+(45+24 c 7) c 7+(-83+(-c 7+5) c 7+(-7 c 7$ $-28+6 c 6) c 6) c 6+(-56+(-35+9 c 7) c 7+(-11 c 7-126+6 c 6) c 6+(26 c 6-9 c 7+40-22 c 5) c 5) c 5+(-16 c 7+51+($ $-2 c 7-117+c 6) c 6+(60 c 6-9 c 7+68-53 c 5) c 5+(-72 c 5+30 c 6-7 c 7+127-51 c 4) c 4) c 4+(-24+(-27-c 7) c 7$ $+(20 c 7+84-15 c 6) c 6+(-56 c 6+13 c 7+161+3 c 5) c 5+(12 c 6-89 c 7-160+(c 7+140-3 c 5) c 5+(-c 5-c 6+46$ $+9 c 4) c 4) c 4+(71+(5+c 7) c 7+(16-c 7) c 6+(2 c 6-4 c 7+38) c 5+(-4 c 5+10 c 6+80) c 4+(-5 c 4+3 c 5+3 c 6-6 c 7$ $-73+3 c 3) c 3) c 3) c 3) c 3+(41+(-53+(-18+7 c 7) c 7) c 7+(4+(2-5 c 7) c 7+(-11 c 7-76+4 c 6) c 6) c 6+(-9+(6$ $-13 c 7) c 7+(37 c 7-29+10 c 6) c 6+(-31 c 6+19 c 7-79+5 c 5) c 5) c 5+(-88+(-128+25 c 7) c 7+(17 c 7+104-82 c 6) c 6$ $+(-46 c 6-20 c 7+428-79 c 5) c 5+(-26 c 7-133+(16+c 6) c 6+(-c 6-2 c 7-40+3 c 5) c 5+(5 c 5+2 c 6-3 c 7+62$ $-3 c 4) c 4) c 4) c 4+(-9+(50-38 c 7) c 7+(80 c 7+382-85 c 6) c 6+(22 c 7-234+(c 7-136) c 6+(-2 c 6-2 c 7+111$ $+2 c 5) c 5) c 5+(271+(-8-3 c 7) c 7+(-6 c 7+80) c 6+(20 c 6+15 c 7+404-6 c 5) c 5+(-32 c 5+16 c 6-3 c 7+313$ $-50 c 4) c 4) c 4+(-29+(-28+7 c 7) c 7+(-3 c 7+327+8 c 6) c 6+(-4 c 6-20 c 7+37+19 c 5) c 5+(2 c 5-38 c 6-5 c 7-527$ $-3 c 4) c 4+(50 c 4-20 c 6+30 c 7-280-36 c 3) c 3) c 3) c 3+(-48+(220+53 c 7) c 7+(-87 c 7-134+(-c 7-43-6 c 6) c 6) c 6$ $+(96+(-147+c 7) c 7+(18 c 7+277+8 c 6) c 6+(-26 c 6-10 c 7+227+3 c 5) c 5) c 5+(-16+(-21-c 7) c 7+(13 c 7+214$ $-4 c 6) c 6+(-50 c 6+15 c 7+138+4 c 5) c 5+(11 c 5-16 c 6-11 c 7-154+22 c 4) c 4) c 4+(25+(-78-10 c 7) c 7+(-21 c 7$ $+136+4 c 6) c 6+(4 c 6-25 c 7+298+108 c 5) c 5+(180 c 5+23 c 6-11 c 7-1314+187 c 4) c 4+(102 c 4-239 c 5-60 c 6$ $+155 c 7+252-146 c 3) c 3) c 3+(50+(129-43 c 7) c 7+(23 c 7+95 c 6) c 6+(-11 c 6+29 c 7-559+46 c 5) c 5+(17 c 5-54 c 6$ $+72 c 7+250-36 c 4) c 4+(-368 c 4-720 c 5-259 c 6+100 c 7-345+278 c 3) c 3+(1047 c 3+102 c 4-21 c 5-112 c 6-90 c 7$ $+43-109 c 2) c 2) c 2) c 2) c 2+(-3+(8+(10-3 c 7) c 7) c 7+(-3+(-16+6 c 7) c 7+(2 c 7+5-4 c 6) c 6) c 6+(-34+(-12$ $+15 c 7) c 7+(-24 c 7+3-6 c 6) c 6+(7 c 6+8 c 7+82-12 c 5) c 5) c 5+(-3+(40-14 c 7) c 7+(23 c 7+74+(-16+c 6) c 6) c 6$ $+(37 c 7-75+(-3 c 7-83-c 6) c 6+(4 c 6+2 c 7+58-c 5) c 5) c 5+(50+(-7+3 c 7) c 7+(-c 7-9-3 c 6) c 6+(2 c 6-4 c 7$ $+79) c 5+(-5 c 5+3 c 6+3 c 7+13-9 c 4) c 4) c 4) c 4+(-3+(87+14 c 7) c 7+(-31 c 7-42+(-c 7-6) c 6) c 6+(-31 c 7+14$ $+(2 c 7+71+c 6) c 6+(-3 c 6+3 c 7+86-c 5) c 5) c 5+(8+(-37-2 c 7) c 7+(11 c 7+113-4 c 6) c 6+(-26 c 6+2 c 7+82$ $+11 c 5) c 5+(4 c 5-23 c 6+7 c 7-146+23 c 4) c 4) c 4+((-3-8 c 7) c 7+(16+10 c 7-6 c 6) c 6+(-20 c 6+13 c 7-35$ $+27 c 5) c 5+(30 c 5-18 c 6-c 7-172+47 c 4) c 4+(-56 c 5+6 c 6+25 c 7+41+(c 5-32+c 4) c 4+(-c 6+c 7-8-c 5$ $-c 3) c 3) c 3) c 3) c 3+(26+(-55-35 c 7) c 7+(105+(5+3 c 7) c 7+(5 c 7+55-7 c 6) c 6) c 6+(11+(36-12 c 7) c 7+(9 c 7$ $+122-3 c 6) c 6+(-26 c 6+10 c 7-64+15 c 5) c 5) c 5+(-31+(-29-5 c 7) c 7+(2 c 7+128+12 c 6) c 6+(-18 c 6-14 c 7-3$ $+32 c 5) c 5+(71 c 5+8 c 6+6 c 7-243+63 c 4) c 4) c 4+(63+(79-32 c 7) c 7+(8 c 7-99+50 c 6) c 6+(52 c 6+6 c 7-602$ $-c 5) c 5+(-170 c 5-34 c 6+119 c 7+340+(-c 5+c 6-32-9 c 4) c 4) c 4+(-34 c 6+2 c 7-189+(c 7-294-3 c 5) c 5+(8 c 5$ $-4 c 6-4 c 7-330-2 c 4) c 4+(10 c 4+c 5-8 c 6+7 c 7+267-6 c 3) c 3) c 3) c 3+(-18+(-51+35 c 7) c 7+(-58 c 7-298$ $+23 c 6) c 6+(190 c 6-50 c 7+241-51 c 5) c 5+(29 c 7-236+(-143+c 6) c 6+(-c 6-2 c 7-374+3 c 5) c 5+(21 c 5-2 c 6$ $-6 c 7-155+21 c 4) c 4) c 4+(-48 c 7+18+(-2 c 7-385-6 c 6) c 6+(9 c 6+15 c 7+151-21 c 5) c 5+(c 5+38 c 6-c 7+446$ $-c 4) c 4+(-6 c 4-6 c 5-12 c 7+958+13 c 3) c 3) c 3+(-37+(90+2 c 7) c 7+(5 c 7-109-7 c 6) c 6+(-27 c 6+26 c 7-191$ $-41 c 5) c 5+(-84 c 5-28 c 6+7 c 7+794-81 c 4) c 4+(-69 c 4+74 c 5+51 c 6-75 c 7-361+88 c 3) c 3+(-69 c 3+111 c 4$ $+279 c 5+166 c 6-47 c 7+213-427 c 2) c 2) c 2) c 2) c 2+(-3+(13+(7-2 c 7) c 7) c 7+(-16+(-17+2 c 7) c 7+(21+2 c 7$ $-c 6) c 6) c 6+(-3+(-8+3 c 7) c 7+(-8 c 7+5+c 6) c 6+(2 c 6+c 7+4-3 c 5) c 5) c 5+(29+(33-7 c 7) c 7+(2 c 7-51$

```
+14c6)c6+(-2c6-117+23c5) c5+(-3c5+5c6-2c7+33+(-c5-c6+c7-23+c4)c4)c4)c4+(2+(-19+10c7)c7
+(-19c7-97+17c6)c6+(30c6-12c7+78-43c5)c5+(-86-8c7+(12+c7)c6+(-2c6-2c7-88+2c5)c5+(-4c6
+3c7-80+12c4)c4)c4+(12+(14-c7)c7+(c7-76-c6)c6+(c6+c7+3)c5+(-7c5+8c6+163-3c4)c4+(-13c4
+2c5+8c6-8c7+64+11c3)c3)c3)c3+(8+(-102 - 23c7) c7+(40c7+75 +(7+c6) c6) c6+(49 c7-48+(-3c7 - 108
-c6) c6+(4c6+2c7-93-c5)c5) c5 + (12+(c7+17)c7+(-7c7-90+5c6)c6+(22c6-9c7-52-4c5)c5+(-4c5
+6c6-c7+119-11c4)c4)c4+((59+6c7)c7+(-2c7-32)c6+(16c6-4c7-76-36c5)c5+(-74c5-2c6+5c7
+670-85c4)c4+(-16c4+115c5+30c6-67c7-177+59c3)c3)c3+(-46+(-90+30c7)c7+(-18c7+53-51c6)c6
+(20c6 - 15c7+478-24c5)c5+(27c5+10c6-34c7-250+42c4)c4+(319c4+488c5+93c6-39c7+283
-303c3)c3+(-1184c3-141c4-58c5+113c6+64c7-43+189c2)c2)c2)c2+(-4+(6c7+12)c7+(-5c7-18+(-c7
-3+c6)c6) c6 +(2c72+6+(-3c7-21+c6) c6 +(4c6-c7+10-3c5)c5) c5+(9+(11+c7)c7+(-c7-26 - c6) c6
+(4c6-c7+20-2c5)c5+(-14c5+c6+43-10c4)c4)c4+(-15+(-18+5c7)c7+(-3c7+29-7c6)c6+(-5c6+2c7
+126-3c5)c5+(33c5+2c6-15c7-79+(17+c4)c4)c4+(50c5-7c6+6c7+40+(-c5+c6+62)c4+(-c4+c6-c7
-59+c3)c3)c3)c3+(-1+(18-15c7)c7+(28c7+126-12c6)c6+(-62c6+23c7-110+33c5)c5+(118c5+28c6
-7c7+100+(-3c5+c7+79-8c4)c4)c4+(-c7-24+(142+c6) c6+(-c6-2c7-84+3c5)c5+(5c5-10c6-222)c4
+(6c4+c5-5c6+7c7-387-7c3)c3) c3+(-64c7+15+(-c7+43+c6)c6+(9c6-9c7+85+11c5)c5+(45c5+14c6
-6c7-505+45c4)c4+(25c4-49c5-36 c6+44c7+290-46 c3) c3+(102c3-118c4-208c5-90c6+35c7-166
+485c2)c2)c2)c2+((14+3c7)c7+(-6c7-13)c6+(11c6-4c7+8+12c5)c5+(-4c7-7+(12+c7-c6)c6+(-3c6
+c7+10+c5) c5+(-c6+c7-24+2c4)c4)c4+(-2+(-12-c7)c7+(5+c7)c6+(-4c6+2c7+2+4c5)c5+(10c5
-2c6-103+12c4)c4+(-2c4-15c5-5c6+9c7+35-8c3)c3)c3+(16+(28-9c7)c7+(7c7-24+12c6)c6+(-8c6
+2c7-162+8c5)c5+(-15c5+4c6+5c7+100-16c4)c4+(-109c4-138c5-3c6+c7-94+114c3)c3+(605c3
+81c4+47c5-54c6-19c7+29-157c2)c2)c2+(1+(-2+2c7)c7+(-4c7-17+2c6)c6+(7c6-3c7+16-5c5)c5
+(-13c5-c6-14+(-12+c4)c4)c4+(11c5-17c6+2c7+6+(-c5+c6+34)c4+(-c4+c6-c7+52+c3)c3)c3+(
-10c6+19c7-2+(-c6+c7-16-c5) c5+(-11c5-2 c6+c7+139-11c4)c4+(-3c4+12c5+10c6-11c7-96
+11c3)c3+(-53c3+55c4+77 c5+22c6-10c7+66 - 285 c2)c2) c2+(-2+(-3+c7)c7+(-c7+3-c6) c6+(c6+19
-c5) c5 + (2c5-c6-13+2c4) c4+(13c4+14c5-2c6+c7+11-14c3) c3+(-144c3-21c4-12c5+12c6+2c7-9
+65c2) c2+(c5+c6-2 c7+(c5-14+c4) c4+(-c5-c6+c7+11-c3) c3+(12c3-12c4-14c5-2c6+c7-13
```



```
c1) c1) cl
```

From (10) we have $\mathrm{b} 3=\mathrm{b} 31 \cdot \mathrm{Y}[7]+\mathrm{b} 30$, thus the soughtrelation among $\mathrm{c}[1], \ldots, \mathrm{c}[7]$ is given by $\mathrm{a} 7^{2} \cdot \mathrm{Y}[7]^{2}-\mathrm{b} 7^{2}=0$ or $(\mathrm{A} 7 \mathrm{~h})^{2} \cdot(2 \cdot(1+\operatorname{add}(\mathrm{c} \| \mathrm{k}, \mathrm{k}=1 . .6))+\mathrm{c} \| 7)-(\mathrm{B} 7 \mathrm{~h})^{2}=0$
>> This represents, compactly, an implicit heptagon's inverseradius -equation interms of our $\mathrm{c}-$ substitutions with remarkably small coefficients : because
$[\min ([\operatorname{coeffs}(\operatorname{expand}(A 7 h))]), \max ([\operatorname{coeffs}(\operatorname{expand}(A 7 h))])],[\min ([\operatorname{coeffs}(\operatorname{expand}(B 7 h))])$, $\max ([\operatorname{coeffs}(\operatorname{expand}(B 7 h))])]$
$[-1614,2180],[-1314,1047]$
In the following theorem we describe the inverse radius equation
in terms of elementary symmetric polynomials of squares of sides of a cyclic heptagon :

THE MAIN THEOREM : Consider a cyclic heptagon with sides $a_{1}, . ., a_{7}, \rho=r^{-1}$ (inverse circumradius)
$>$ If $\epsilon_{1}, . ., \epsilon_{7}$ are the elementary symmetric polynomials in the squares of the sides,
$\mathrm{c}[\mathrm{k}]=\operatorname{sum}\left(\operatorname{binomial}(14-2 \cdot \mathrm{j}, \mathrm{k}-\mathrm{j}) \cdot(-1)^{\mathrm{j}} \cdot \epsilon_{\mathrm{j}} \cdot 2 \cdot \mathrm{j}, \mathrm{j}=0 . . \mathrm{k}\right)$ and
$\Delta[7]=\operatorname{product}\left(4-\mathrm{a}[\mathrm{k}]^{2} \cdot \rho^{2}, \mathrm{k}=1 . .7\right)=\operatorname{sum}\left(4^{7-\mathrm{j}} \cdot(-1)^{\mathrm{j}} \cdot \epsilon_{\mathrm{j}} \rho^{2 \cdot \mathrm{j}}, \mathrm{j}=0 . .7\right)$,
then (the square of the inverse circumradius) ρ^{2} satisfies the following degree 38 equation
=>
$\rho_{7}^{\mathrm{el}}=\rho^{-64} \cdot \operatorname{subs}\left(\operatorname{seq}\left(\mathrm{c} \| \mathrm{k}=\mathrm{c}[\mathrm{k}], \mathrm{k}=1 . .7,(\mathrm{~A} 7 \mathrm{~h})^{2}-\Delta_{7} \cdot(\mathrm{~B} 7 \mathrm{~h})^{2}\right)\right.$
The leading monomial of $\rho_{7}^{\text {el }}$ is equal to $\epsilon_{7}^{10} \rho^{76}$.
REMARK: We have length $\left(\rho_{7}^{\mathrm{el}}\right)=19649983, \operatorname{nops}\left(\rho_{7}^{\mathrm{el}}\right)=199695$
Moreover the coefficients of ρ_{7}^{el} have at most 22 digits :
$\left[\min \left(\left[\operatorname{coeffs}\left(\operatorname{expand}\left(\rho_{7}^{\text {el }}\right)\right)\right]\right), \max \left(\left[\operatorname{coeffs}\left(\operatorname{expand}\left(\rho_{7}^{\text {el }}\right)\right)\right]\right)\right]$
$[-1143554017381916344320,1208261736827975630848]$
length(-1143554017381916344320), length (1208261736827975630848)
22, 22

In conclusion, we can interpret the quantity $Q_{7}:=(A 7 h)^{2}-\Delta 7 \cdot(B 7 h)^{2}$ as a kind of minimal condensed polynomial relation (among $c 1, \ldots, c_{7}$), $Q_{7}=0$. It has only up to four-digit coefficients (between -1614 and 2180). Our formula for $\rho_{7}^{e l}$, having 199695 monomial terms (with up to 22-digit coefficients), is expectedly large (as a 2200 pages book!). From this formula one can get other expressions by simple substitution (e.g., by side lengths - what might be unreasonable, instead one might rewrite it in monomial or Schur basis of symmetric functions, etc.). Similar explicit circumradius formulas we have obtained for cyclic octagons already in 2004 (see $[9,11,14,18]$) (for partial results see [22]), but for heptagon area equation we need to compute resultant of two polynomials of degree 11 and 12- not yet achievable on our computer at hand.
Future research: One may expect, with more powerful computer system, to obtain circumradius equation for cyclic nonagon (cyclic 9-gon) which has degree 187 in circumradius squared.

References

[1] A. F. Möbius, Ueber die Gleichungen, mittelst welcher aus der Seiten eines in einen Kreis zu beschriebenden Vielecks der Halbmesser des Kreises un die Flähe des Vielecks gefunden werden, Crelle's Journal, 3:5-34. 1828.
[2] A. W. Richeson, Extension of Brahmagupta's Theorem, American Journal of Mathematics,Vol. 52 No.2, (Apr.,1930),pp.4An
[3] D. P. Robbins, Areas of polygons inscribed in a circle, Discrete \& Computational Geometry, 12:223-236, 1994.
[4] D. P. Robbins, Areas of polygons inscribed in a circle, Amer. Math. Monthly 102 (1995), 523-530
[5] V. V. Varfolomeev, Inscribed polygons and Heron Polynomials, Sbornik: Mathematics, 194 (3):311-331, 2003.
[6] V. V. Varfolomeev, Galois groups of Heron-Sabitov polynomials for pentagons inscribed in a circle, Sbornik: Mathematics, 195 (3):3-16, 2004.
[7] D. Svrtan, D. Veljan and V. Volenec, Geometry of pentagons: from Gauss to Robbins, submitted to arXiv on 29 Mar 2004., https://arxiv.org/abs/math/0403503
[8] F. Miller Maley, David P. Robbins, Julie Roskies, On the areas of cyclic and semicyclic polygons, submitted to arXiv on 16. Jul 2004., https://arxiv.org/abs/math/0407300 submitted to arXiv on 9. Aug 2004., https://arxiv.org/abs/math/0408104
[9] I. Pak, The area of cyclic polygons: Recent progress on Robbins' conjectures, Advances in Applied Mathematics, Volume 34, Issue 4, May 2005, Pages 690-696.
[10] D. Svrtan, Generalized Chebyshev Symmetric Multivariable Polynomials Associated to Cyclic and Tangential Polygons, invited talk, Conference on Difference Equations, Special Functions and Applications, München, Germany, 25.07.2005.-29.07.2005.
[11] D. Svrtan, A new approach to rationalization of surds, submitted
[12] D. Svrtan, On the Robbins problem for cyclic polygons, 2005., https://www.mathos.unios.hr/images/predavanja/abs_svrtan.pdf
[13] M. Fedorchuk and I. Pak, Rigidity and polynomial invariants of convex polytopes, Duke Math. J. 129 (2) 371-404, 15 August 2005., https://doi.org/10.1215/S0012-7094-05-12926-X
[14] Pech, P., Computations of the Area and Radius of Cyclic Polygons Given by the Lengths of Sides, ADG2004 (Hong, H. and Wang, D., eds.), LNAI, 3763, Gainesville, Springer, 2006, 44-58.
[15] D. Svrtan, On circumradius equation for cyclic polygons, Rigidity and Flexibility, Invited talk, Wienna, Austria, 23.04.2006.-06.05.2006.
[16] G. Panina, G. N. Khimshiashvili, Cyclic polygons are critical points of area, Zap. Nauchn. Sem. POMI, 2008, Volume 360, 238-245
[17] R. Connelly, Comments on generalized Heron polynomials and Robbins' conjectures Author links open overlay panelRobert Connelly, Discrete Mathematics Volume 309, Issue 12, 28 June 2009, Pages 4192-4196
[18] D. Svrtan, Geometry of Cyclic Heptagons/Octagons via "New" Brahmagupta Formula, International Congress of Mathematicians/Rajendra Bhatia(ed.).-Hyderabad:HindustanBookAgency,2010.140-141, Tuesday, August 24 18:20-18:35 D. Svrtan, University of Zagreb Intrinsic geometry of cyclic heptagons/octagons via new Brahmagupta formula
[19] Moritsugu S., Radius Computation for an Inscribed Pentagon in Sanpou-Hakki (1690), ACM Communications in Computer Algebra, 44(3), 2010, 127-128.
[20] Moritsugu S., Radius Computation for Inscribed Polygons and Its Solution in SanpouHakki (1690), Kyoto University RIMS Kokyuroku, 2011. (in press; in Japanese).
[21] Moritsugu S., Computing Explicit Formulae for the Radius of Cyclic Hexagons and Heptagons, Bulletin of JSSAC(2011), Vol. 18, No. 1, pp. 3-9
[22] S. Moritsugu, Computation and Analysis of Explicit Formulae for the Circumradius of Cyclic Polygons Communications of JSSAC (2018), Vol. 3, pp. 1--17
[23] Moritsugu S., Computing the Integrated Circumradius and Area Formulae for Cyclic Heptagons by Numerical Interpolation, Bulletin of the Japan Society for Symbolic and Algebraic Computation 28 (1), 3-13, 2022-04
[24] Moritsugu S., Applying new Brahmagupta's formula by Surtan to the problems on cyclic polygons (Computer Algebra : Foundations and Applications), 2022. Jun, Research Institute for Mathematical Sciences, Kyoto University, RIMS Kokyuroku, Vol. 2224, 103-113.

[^0]: (Dragutin Svrtan) Faculty of Science, Department of Mathematics, Zagreb, Croatia, dragutin.svrtan@gmail.com

