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Planets are (very likely) in orbits of stars

Darko Veljan

Abstract
The probability that a randomly and uniformly chosen point from the cir-
cumball of a tetrahedron lies outside of the inscribed ball of the tetrahedron
can be bounded very sharply from below in terms of the edge lengths of the
tetrahedron. One can imagine four stars in the Universe (vertices) with known
mutual distances and a small (exo-) planet orbiting between them within the
circumsphere. The least probability that the planet is outside of the insphere
is given in terms of the distances of the stars. The least probability occurs for
the regular tetrahedron and it is 0.962962. . . . Geometrically, this is a tricky
corollary of (refinements of) the famous Euler inequality: circumradius is at
least three times bigger than the inradius of a tetrahedron with equality for a
regular tetrahedron. The Euler inequality can be extended to Euclidean sim-
plices in all dimensions and to non-Euclidean planes. The most relevant cases
of 3D and 4D being in accordance with the relativity theory are considered.
Keywords: Euler’s inequality, refined Euler’s inequality in 3D and 4D, exo-
planet.
AMS subject classification (2020): 51M04, 51M16, 85A15.

1 Introduction
In this paper we shall geometrically explain why planets detected to be in vicinity
of four stars must, in fact, with high probability, orbit around one of the four stars.
The lower bound of the probability is given in terms of the distances of the stars.
The essence of the argument is Euler’s inequality R ≥ nr from 1765 between the
circumradius R and the inradius r of an n-dimensional simplex and particularly its
refinements as given in [1], [2] and [3].
A popular introductionary text on some mathematical and computational aspects in
astronomy or astrophysics is [4] (in Croatian) and a textbook on the topic is e.g. [5].
A popular history book on math is [6]. Many Euler’s contributions can be found
there.
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We shall first consider the case of three stars and a planet moving in their plane
(n = 2). Next is the main 3D-case (n = 3), because four (general) points form a
space.
Finally, we shall consider 4D-case (i.e. when n = 4) which is important because the
Universe is by Einstein’s relativity theory four dimensional (hyperbolic) space-time
object.

2 Triangle of stars
To begin with, we start with an easier question. Let T be a triangle of stars and a,
b and c their mutual distances. Let X be a randomly and uniformly chosen planet
(point) within the circumcircle of T . What is the minimal probability p that X lies
outside of of the incircle of T? That is, what is the minimal probability that X is
rather close to one of the stars? The probability that a randomly and uniformly
chosen point within the circumcircle of T (of radius R) which is within the incircle
of T (of radius r) is equal to the quotient of their areas r2π/R2π = (r/R)2. Hence,
p = 1−(r/R)2. In [1] (see also [2], [3]) we proved a refined Euler’s inequality R ≥ 2r
in the form

R

r
≥ abc + a3 + b3 + c3

2abc
≥ 2. (1)

with equalities if and only if the triangle T is equilateral. Recall Heron’s formula
for the area S of T in terms of side lengths a, b, c of T :

16S2 = (2s)d3(a, b, c),

where 2s = a + b + c is the perimeter of T and d3(a, b, c) := (a + b − c)(a − b +
c)(−a + b + c). Then the probability q that X is within the incircle is equal to:

q =
(

r
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)2
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(
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s
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4S

)2
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(

4S2

sabc

)2

=
(

16S2

4sabc
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=
(
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4 .

Hence,

p = 1 − q = 1 −
(

d3(a, b, c)
2abc

)2

≥ 0.75. (2)

The last inequality follows from Euler’s R ≥ 2r and above inequality.

3 Tetrahedron of stars
Now, the main topic in this paper is to show that with a high probability an (exo-)
planet from the vicinity of four stars must, in fact, orbit around one of the stars.
We quote Theorem 4.1. from [3]: the probability that a randomly and uniformly
chosen point within the circumsphere of the tetrahedron T is within the insphere of
T is at most equal to

148



Planets are (very likely) in orbits of stars

√√√√ d3(aa′, bb′, cc′)
[3(aa′ + bb′ + cc′)]3 ≤ 1

27 . (3)

Here a, b and c are side lengths forming the base of T , a′ is opposite to a etc.
Therefore, the probability p that a randomly and uniformly chosen point (planet)
from the circumball of the tetrahedron T of four stars (vertices of T ) is outside of
the inscribed ball of T is at least equal to

p ≥ 1 −
√

d3

(3e1)3 , (4)

where d3 := d3(aa′, bb′, cc′) and e1 := aa′ + bb′ + cc′. (Recall that aa′, bb′, cc′ form
a triangle, called Crelle’s triangle of T .) By Euler’s inequality R ≥ 3r (and [3]), it
follows from (4) that the probability

p ≥ 1 − 1/27 = 0.962962 . . . (4’)

And this is rather close to 1. This can be considered as a geometric proof that a
planet very likely must orbiting around a star and taken by gravity rules must stay
in the orbit for good (or at least for billions of years). The equality in (4) in fact
occurs if and only if aa′ = bb′ = cc′, i.e. when Crelle’s triangle of T is equilateral.
In particular, we have equality in (4) and (4’) when T is a regular tetrahedron.
This geometric-probabilistic proof shows that with the chance of at least 96.2962%
we can expect that a planet moving in vicinity of four stars (with known mutual
distances of stars) is rather close to one of the stars instead of being somewhere
in deep space formed by four stars. And then the gravity rule force the planet to
orbit (eliptically) around one of the star. (A little quiz for the reader: four girls are
bathing in a lake or sea; their mutual distances are 20 meters; three girls have on
them red bikini; what has the fourth girl on? If you don’t know, see [4].)
As an astronomy example consider four stars from the Ursa Major (the Great Bear)
constellation: Dubhe, Merak, Phecda and Megrez. They are roughly 120 ly far from
the Earth. With data available from the Internet, a little computation shows that
the chance that a planet close to the constellation (within the circumball) but out
of the inball of the four stars, that is, rather close to one of the stars, is roughly a
bit more than 97%. In other words, it is quite likely that a planet is not wandering
in deep space between four stars.
A geometric example is the tetrahedron whose vertices are the origin and three unit
points on the coordinate axes. Its Crelle’s triangle is regular (with side lengths

√
2),

hence the probability in question is minimal and is (at least) 96.2962%. For the
tetrahedron ABCD with AB = BC = CD = 1 and BC ⊥ AB, CD ⊥ AB, BC,
i.e. an "ortoscheme", the considered probability is at least 97%. In any concrete
example, we can, of course, compute R and r exactly and hence the probability, but
that is not the issue here.
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4 4-simplex
Four dimensional geometry in astrophysics is also of interest since our space-time
Universe is four-dimensional. It seems, the hyperbolic geometry is prevailing, ac-
cording to relativity theory, but 3D and even more 4D hyperbolic geometry is still to
some degree "tabula rasa". One possible inequality for edge lengths of a hyperbolic
tetrahedron can be obtained by applying Theorem 2.3. from [3] to corresponding
Crelle’s triangle (if it exists). In any way, the best known approximation to our
geometric-probabilistic approach is Euclidean 3D- and 4D-geometry.
Recall, our refinement of Euler’s R ≥ 4r for a 4-dimensional simplex T =
A0A1A2A3A4 in terms of symmetric functions of edge lengths aij = AiAj, i < j, of
T is (5.8) from [3]

(
R

r

)2
≥ 8

∑
a2

ij

5∏(i, j, k, l)1/15 ≥ 42, (5)

where ∑ a2
ij is the sum of squared lengths of all ten edges of T and the symbol

(i, j, k, l) is defined by (i, j, k, l) := d3(aijakl, aikajl, ailajk) for all 0 ≤ i < j < k <
l ≤ 4. The equality in (5) holds for a regular 4-simplex. From (5) we have a sharp
lower bound for the probability p that a randomly and uniformly chosen point from
the circumball of the 4-simplex T is out of the inball of T . It is given by

p ≥ 1 −
(

r

R

)4
≥ 25∏(i, j, k, l)2/15

64(∑ a2
ij)2 ≥ 1 − 4−4. (6)

In the case of a regular 4D-simplex (of stars) with all edge lengths aij = 1, we have
(i, j, k, l) = 1 for all five choices of i, j, k, l, and the probability is p = 1 − 2−8 =
99.609 . . . %.

5 Conclusion
We have proved here that planets quite likely orbit around stars. This fact was
observed back in ancient times, as well as the fact that satellites must orbit around
planets; the first examples, naturally, being Moon around Earth and Earth around
Sun. It was firmly established only by Kepler and later explained by Newton. In
fact, the Croatian mathematician Ruđer Bošković was the first to give a procedure
to compute a planet’s orbit from three observations of its position. (Bošković did
not get the Grand Prix of the Academy in 1752 for his studies on Saturn and Jupiter,
but the prize was given to Euler.)
In this paper we provided a pure geometric proof of these facts.
In searching for an exo-planet, where humans have to move once in the future,
one can imagine the following experiment. Suppose we get a spectral signal that a
certain planet has water, but we don’t know the exact position of this planet. Then
our method predicts its position with high probability within four nearest stars.
This prediction then focus the search for the planet to much less space.
By the procedure (recursive algorithm) proposed in [3] for refined Euler’s inequality,
we can proceed further to higher dimensions and prove that the limit when dimension

150



Planets are (very likely) in orbits of stars

n tends to infinity for the probability that a randomly and uniformly chosen point
from the circumball that is out of the inball of simplex is equal to 1.
In a similar manner to astrophysics, we can apply our method to the micro world
as well, by considering for instance electrons in atoms and other subatomic particles
and predict with some high probability the behavior and position of particles, but
this is already in the domain of quantum physics. Such "predictology" is also very
much appreciated in biochemistry, molecular biology, information theory and other
modern sciences.
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